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Abstract
Metagenomics enables the characterization of the specific metabolic potential of a microbial
community. The common approach towards a quantitative representation of this potential is to
count the number of metagenomic sequence fragments that can be assigned to metabolic pathways
by means of predicted gene functions. The resulting pathway abundances make up the metabolic
profile of the metagenome and several different schemes for computing these profiles have been
used. So far, none of the existing approaches actually estimates the proportion of sequences
that can be assigned to a particular pathway. In most publications of metagenomic studies,
the utilized abundance scores lack a clear statistical meaning and usually cannot be compared
across different studies. Here, we introduce a mixture model-based approach to the estimation of
pathway abundances that provides a basis for statistical interpretation and fast computation of
metabolic profiles. Using the KEGG database our results on a large-scale analysis of data from
the Human Microbiome Project show a good representation of metabolic differences between
different body sites. Further, the results indicate that our mixture model even provides a better
representation than the dedicated HUMAnN tool which has been developed for metabolic analysis
of human microbiome data.
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1 Introduction

In metagenomics a central task is to characterize the metabolic potential of a microbial
community. The metabolic profile of a metagenome quantifies the amount of genetic material
that can be attributed to metabolic pathways. The abundance of a pathway is usually
estimated by the number of sequences that can be mapped to gene families with functional
roles within that pathway. Several heuristics exist to compute a corresponding estimate.
Using for instance the KEGG database, an abundance may be estimated by counting all
BLAST best hit matches to KEGG Orthologs which are annotated for the particular pathway
(see e.g. [4]). There are two major difficulties with this classical approach of metabolic
profiling: First, the computational effort for the identification of homologs can become
burdensome. Usually the BLASTX tool is required, which takes a considerable amount of

∗ This work was partially supported by the Deutsche Forschungsgemeinschaft (ME3138 “Compositional
descriptors for large scale comparative metagenome analysis“).
† corresponding author

© Kathrin Petra Aßhauer and Peter Meinicke;
licensed under Creative Commons License CC-BY

German Conference on Bioinformatics 2013 (GCB’13).
Editors: T. Beißbarth, M. Kollmar, A. Leha, B. Morgenstern, A.-K. Schultz, S. Waack, E. Wingender; pp. 1–13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62918115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.GCB.2013.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


2 On the estimation of metabolic profiles in metagenomics

CPU-time even for a moderately sized data set. Second, the usual counting scheme lacks
a probabilistic model that would provide a clear statistical interpretation of the resulting
quantities. To our knowledge, none of the existing heuristics actually yields an estimate of
the fraction of sequence material that can be mapped to a particular pathway. Depending on
the particular method the existing tools merely provide different kinds of abundance scores
[14, 12, 1, 5, 4]. Although these scores may be used for comparative analysis as well, they do
not provide a strictly probabilistic description of metagenomic sequence data. Therefore,
the comparison and combination with other methods or models is at least problematic. We
address both problems, the algorithmic and statistical efficiency within a metabolic mixture
model in terms of a mixture of pathways (MoP). This model is capable to provide both,
a sound statistical basis and a fast estimation of pathway abundances. Our results on a
large-scale analysis of data from the Human Microbiome Project (HMP) show the utility of
our method for fast model-based estimation of pathway abundances. Further, the results for
the mixture-based metabolic profiles indicate a better separation between body sites than
for the profiles of the HUMAnN tool which has particularly been developed for analyis of
HMP data.

2 Material

2.1 Human Microbiome Project (HMP)

Within the scope of the Human Microbiome Project (HMP) [3] an extensive collection of
samples from healthy individuals from diverse human body sites was established allowing
an insight into the functions of the healthy human microbiome. More than thousand HMP
data sets are recorded in HMP’s Data Acquisition and Coordination Center (DACC) Project
Catalog (http://www.hmpdacc.org/resources/data_browser.php) providing a comprehensive
data basis for large-scale comparative studies investigating the associations of the human
microbiome in healthy and diseased states.

From the HMP-DACC website we assessed the available metadata for the metagenomic
samples (http://www.hmpdacc-resources.org/hmp_catalog/main.cgi) and the metabolic
reconstruction data (http://www.hmpdacc.org/HMMRC/). The metabolic reconstruction
data is obtained through the HMP Unified Metabolic Analysis Network (HUMAnN) pipeline
[1]. HUMAnN performs functional and metabolic profiling directly from high-throughput
metagenomic short sequence reads. The pipeline starts with a similarity search against a
functional sequence database including the KEGG Orthologs (Release 54) using an accelerated
translated BLAST implementation. Subsequently, the output is used for a series of gene-
and pathway-level quantification, noise reduction, and smoothing steps resulting in the
identification of present/absent pathways and modules together with their relative abundances.
From the available metabolic reconstruction data, we used the “KEGG pathway abundance
values – Summary file” (as of February 2013).

For our mixture modeling approach we used the reduced data samples of the HMP
as describes in [10]. For comparability, the available samples and pathway abundances of
HUMAnN and our mixture modeling approach were reduced to a subset of samples and
pathways available in both methods. The final dataset includes 680 data samples from 14
specific body subsites, which can be grouped into five major body sites.
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2.2 KEGG database
For the metabolic mixture modeling approach introduced here, we use the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database as reference knowledge base for estimating the
pathway abundances of metagenomic samples [9, 8]. KEGG integrates a variety of information
and provides links from gene catalogs to higher-level systematic functions of the organisms
enabling biological interpretation of genomes and high-throughput datasets.

An essential part of the database with respect to metabolic profiling are the KEGG
Orthologs (KO) that consist of gene groups with specific functions directly linked to known
pathways in the KEGG Pathway database. Further, the KEGG Orthology is structured as a
hierarchy of four flat levels: top, second, third level, and leaf nodes. While the leaf nodes
represent the KEGG Orthologous groups, the third level represents the KEGG Pathways,
which can be further summarized in higher level pathway classes (top and second level).

For the mixture modeling the required data reference was extracted from the KEGG
database (Release 64.0).

2.3 MarVis
The MarVis-Suite (Marker Visualization) [7, 6], a toolbox originally developed for the
analysis of metabolomic data, was used for filtering, clustering, and visualization of the
pathway abundances. For exploration of complex pattern variation within the samples of the
different body sites/subsites we used the MarVis-Cluster interface which permits high-level
visualization and cluster analysis based on a one-dimensional self-organizing map (1D-SOM).
The MarVis-Filter software was used for the identification of pathways overrepresented in
the gastrointestinal tract samples compared to the other body subsites.

3 Methods

3.1 Taxonomic mixture modeling
The mixture model based Taxy approach provides a fast and direct estimation of taxonomic
abundances in metagenomes. Taxy-Oligo [13] and Taxy-Pro [10] do not perform a taxonomic
classification of sequencing reads but instead apply a mixture model to approximate the
overall metagenome distribution of oligonucleotides and protein domain hits, respectively.
The discrete distribution of oligonucleotides/protein domains is modeled by a mixture of
organism-specific profiles as obtained from sequenced reference genomes. Because of the
computational efficiency of the taxonomic mixture model approach, both methods were able
to perform a large-scale analysis of sequence data from the HMP without using a computer
cluster or special hardware. All reference profiles were obtained from the bacterial and
archaeal genomes available in the KEGG database (Release 64.0). These genomes were also
used for pre-computing the organism-specific pathway abundances for the metabolic profiling
of metagenomes. For Taxy-Pro, all protein domain profiles according to the Pfam database
[2] were obtained from the CoMet web server [11].

3.2 Metabolic mixture modeling
For metabolic profiling, we assume that the genomic sequence material to some degree can
be explained by a mixture of pathways. The mixture approach accounts for the fact that in
most cases a putative gene function as observed in a sequence fragment provides evidence for
more than one metabolic pathway. The statistical representation of this ambiguity of the
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4 On the estimation of metabolic profiles in metagenomics

function-to-pathway mapping was the main motivation for the development of the following
model. With M pathways Pi the probability to observe a function F encoded in sequences
under this model is:

p̃(F ) =
M∑

i=1
p(Pi)p(F |Pi) (1)

The tilde indicates that p̃(F ) only is an approximation of the functional profile p(F ) because
not every function can be explained in terms of metabolic pathways. The prior pathway
probabilities p(Pi) denote the overall sequence-based abundance of functions associated with
pathway Pi and correspond to the mixture weights of the model. These weights are the
central model parameters, which can directly be used and interpreted in terms of the relative
abundances of a metabolic profile. The conditional probability p(F |Pi) denotes the i-th
pathway-specific distribution over N possible gene functions Fj . The annotation in current
databases, such as KEGG, can be represented by some M ×N assignment matrix A with
binary entries Aij = 1 denoting that function j is associated with pathway i. From that
assignment it follows that all functions not associated with pathway i must attain a zero
conditional probability. Just from the annotation, we cannot draw any conclusions about
the other probabilities. Without further knowledge the only reasonable assumption is that
the p(F |Pi) are proportional to the corresponding overall function probabilities, i.e.

∀i, j : p(Fj |Pi) ∝ Aijp(Fj). (2)

This constraint implies that the ratio between any two non-zero function probabilities in a
pathway is equal for all pathways these two functions are associated with and must equal
the global ratio of the corresponding probabilities of the functional profile p(F ). With the
N estimates p̂(Fj) of the specific function probabilities of the profile as derived from the
observed frequencies, e.g. from BLAST hit counts, we have the following estimator of the
conditional probabilities:

p̂(Fj |Pi) = Aij p̂(Fj)∑N
k=1 Aikp̂(Fk)

. (3)

Now let us consider the assignment probability

p(P |Fj) = p(P )p(Fj |P )∑M
i=1 p(Pi)p(Fj |Pi)

(4)

which denotes the responsibility of a pathway for a given function Fj , i.e. the contribution
of a pathway to the explanation of that function. We assume that this probability is equal
for all pathways the function is associated with. Without further knowledge, just with the
underlying pathway annotation, there is no reason to prefer a particular pathway for the
explanation of an observed function. This implies the following additional constraint:

∀i, j, k : Akjp(Pi|Fj) = Aijp(Pk|Fj). (5)

For a function Fj that is annotated in two pathways Pi and Pk we can obtain the ratio of
the corresponding pathway abundance estimators using the former three equations (3), (4)
and (5):

p̂(Pi)
p̂(Pk) = p̂(Fj |Pk)

p̂(Fj |Pi)
=

∑N
s=1 Aisp̂(Fs)∑N
t=1 Aktp̂(Ft)

. (6)
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From the above proportionality, we finally obtain the estimator of the pathway probabilities:

p̂(Pi) =
∑N

j=1 Aij p̂(Fj)∑M
k=1

∑N
l=1 Aklp̂(Fl)

. (7)

Using matrix vector algebra we can compute the whole metabolic profile vector p with
entries p̂(Pi) from the functional profile vector f with entries p̂(Fj) by

p = Af
1T Af (8)

where 1 is an M -vector of ones. In an application of the above mixture model most time
will be spent for the computation of the functional profile which usually requires a costly
BLASTX matching of metagenomic reads against a database of functionally annotated
protein sequences, such as the KEGG Orthologues. However, with our formulation in terms
of a statistical model we are able to provide a shortcut that utilizes the combination with
another model to obtain a hierarchical mixture of pathways. Assume that we have the
functional profiles of K reference organisms as columns in an N ×K matrix F and we have
estimated the relative abundances of the reference organisms in a taxonomic profile vector t.
Then we can approximate the functional profile of the metagenome by a linear combination
of reference profiles Ft. In Taxy-Pro [10] we use this mixture model in combination with
Pfam functional profiles to estimate the taxonomic abundances in a metagenome. Here,
we propose a combination with K pre-computed KEGG reference profiles to predict the
functional profile of a metagenome from its taxonomic profile which may be obtained by
some fast method such as the oligonucleotide-based Taxy tool [13]. The estimator of the
metabolic profile is then

p = AFt
1T AFt . (9)

Note that also the matrix product AF can be pre-computed to obtain K organism-specific
metabolic profiles which are then just combined by the taxonomic weights t of a metagenome
to obtain its metabolic profile. In principle, this gives rise to a nested model where a mixture
of pathways is first used for each reference organism to estimate its metabolic profile. This
step has only to be performed once for each organism and therefore even a costly BLASTX
analysis may be used for the “offline” training of the organism-specific models. When applied
to metagenomic data a mixture of the utilized reference organisms has to be estimated by
some taxonomic profiling method. In order to combine the two models the second step
requires a profiling method that actually estimates the abundances in terms of the amount
of sequence material that can be attributed to a particular organism. For example, this
requirement is automatically fulfilled when using Taxy-Oligo [13] or Taxy-Pro [10], which we
both included in the evaluation of our approach, as described above. For an application of
the MoP model, it is important to check whether the metagenome composition can actually
be approximated by a mixture of known reference organisms. If the reference is completely
insufficient for a description of the metagenome composition, the mixture approach in general
would become inadequate. Therefore, it is desirable, that the taxonomic profiling method
gives us an indication of the fidelity of the abundance estimates. Both, Taxy-Oligo and
Taxy-Pro provide a specific error measure to assess the adequacy of the underlying model. In
this case, the fraction of oligonucleotides unexplained (FOU) and the fraction of domain-hits
unexplained (FDU) should be inspected when using Taxy-Oligo and Taxy-Pro, respectively.
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6 On the estimation of metabolic profiles in metagenomics

3.2.1 Workflows
For the evaluation of our model, we implemented the direct application of the metabolic
mixture model as well as the nested model.

The direct application of the mixture model starts with a BLASTX analysis where the
metagenomic reads are mapped against a reference database consisting of KO amino acid
sequences of bacterial or archaeal origin. By default BLAST hits with E-value ≤ 10−2 were
considered to be significant. The functional profile vector f is obtained by counting the KO-
specific BLAST hits using a fractional increment of 1/K if K different KOs simulataneously
show significant hits for a particular sequence. Note that due to the computational expense of
BLASTX on metagenomes, we restricted the correlation analyis (see section 4.1) to a subset
of six HMP data samples from different body subsites (SRS013825, SRS016752, SRS022621,
SRS024265, SRS024428, and SRS055401). For the computation of the assignment matrix
A the association of KOs with KEGG Pathways was extracted from the database and
transformed into a binary matrix. Finally, the mixture model was applied as described above
using the functional KO profile vector f and matrix A as input.

For the nested model, we first pre-computed the organism-specific metabolic profiles from
reference genomes using all bacterial and archaeal KEGG Genomes. The KEGG Genomes
were downloaded and subsequently fragmented in overlapping reads of length 400 bp with
200 bp overlap simulating a two-fold coverage of the genomes as previously described in [10].
For each reference organism, first the functional profile vector is calculated and then the
metabolic profile is estimated applying the steps as described for the direct mixture approach.
By combining the weights t of a metagenome with the pre-computed organism-specific
metabolic profiles the metabolic profile of a metagenome can be obtained in an efficient
manner. Note that a BLASTX/KO analysis of the metagenome is not required in this case.
For the estimation of the taxonomic profile t, we were using both, Taxy-Oligo and Taxy-Pro.
According to the utilized taxonomic profiling method we denote our metabolic mixture model
MoP-Oligo and MoP-Pro, respectively.

4 Results

To validate the metabolic mixture model on a well-studied dataset, we analyzed metagenomic
sequences from the Human Microbiome Project (HMP) [3]. Originally, the metabolic profiles
of the HMP data have been investigated by means of the HMP Unified Metabolic Analysis
Network (HUMAnN) pipeline [1]. In the following, we use the metabolic profiles of HUMAnN
for comparison with the abundance estimates that we obtained from our mixture of pathways
model.

4.1 Correlation analysis
To study the similarity of metabolic profiles across different methods we computed the
Pearson and Spearman (rank) correlation coefficients of the pathway abundance estimates.
First, we evaluated the fast approximation scheme using pre-computed reference profiles based
on Taxy-Pro taxonomic profiles (MoP-Pro). The resulting metabolic profiles were compared
with the direct application of the mixture model to KO frequencies, which were obtained
from a more time consuming BLASTX analysis. For each data sample, the correlation of the
pathway abundances on two different pathway hierarchy levels (second and third level) was
calculated.

The means and standard deviations of all data examples of the Pearson and Spearman
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correlation coefficients are shown in Table 1. The results show a very high correlation of
the approximation-based and the directly obtained abundances. By reducing the number
of pathways from 340 to 38 according to the third and second pathway hierarchy levels an
increase of the correlation from 0.9558 to 0.9804 and 0.9491 to 0.9842 could be observed for
the Taxy-Pro-based approximation. These results indicate that the approximative approach
is very close to the direct approach and therefore provides a computationally attractive
alternative to the BLAST-based estimation.

Table 1 Correlation analysis based on the metabolic abundances obtained by applying the
Taxy-Pro-based approximation and the direct mixture approach. The correlation is calculated
according to Spearman and Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.9557 (± 0.0409) 0.9491 (± 0.0124)
Second level 0.9803 (± 0.0150) 0.9842 (± 0.0110)

The correlations are similarly high for the even faster Taxy-Oligo variant (MoP-Oligo)
with results shown in Table 2.

Table 2 Correlation analysis based on the metabolic abundances obtained by applying the
Taxy-Oligo-based approximation and the direct mixture approach. The correlation is calculated
according to Spearman and Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.9575 (± 0.0409) 0.9466 (± 0.0105)
Second level 0.9796 (± 0.0138) 0.9813 (± 0.0087)

In contrast to the high similarity of results between different variants of the mixture
approach the correlation between the mixture-based pathway abundances and the HUMAnN-
based profiles is comparatively low with a Pearson correlation of 0.5290 as shown in Table 3.
However, the correlation is increasing when considering the second pathway level or when
using the Spearman rank correlation. A maximum rank correlation of 0.9080 indicates that
the coarse shape of metabolic profiles is still rather similar between different approaches.
Note that the correlation with HUMAnN profiles was averaged over all 680 HMP samples.

Table 3 Correlation analysis based on the metabolic abundances obtained by applying HUMAnN
and the TaxyPro-based mixture model. The correlation is calculated according to Spearman and
Pearson and at the third and second pathway hierarchy level.

Pearson Spearman
Third level 0.5290 (± 0.0206) 0.7588 (± 0.0242)
Second level 0.7884 (± 0.0308) 0.9080 (± 0.0135)

4.2 Nearest neighbor classification
To assess the quality of the estimated metabolic profiles we first investigated whether the body
site (subsite) classification of HMP samples can be reproduced by the corresponding pathway
abundances. For that purpose, we evaluated the predictive power of metabolic profiles by
some nearest neighbor classification scheme using different profile distance measures. We
utilized a leave-one-out cross validation, measuring the classification rate for Euclidean
distance, City block metric and Shannon-Jensen divergence on profiles.

GCB 2013



8 On the estimation of metabolic profiles in metagenomics

The results for body sites and subsites as shown in Table 4 reveal that the nearest neighbor
classification rate is rather high and varies between 0.9735 and 0.9897 for the five body sites
and between 0.8853 and 0.9235 for the 14 body subsites. For both classification problems,
HUMAnN shows the highest prediction accuracy irrespective of the distance measure used.
However, the two mixture variants are always very close with a maximum difference of 2.94%
for the Euclidean distance on body subsite level between HUMAnN and MoP-Oligo.

Table 4 Nearest neighbor classification performing a leave-one-out cross validation with the
Euclidean distance, City block metric and Shannon-Jensen divergence as distance measure for the
approaches HUMAnN, MoP-Pro, and MoP-Oligo.

Body site Body subsite
Euclidean City block Jensen-Shannon Euclidean City block Jensen-Shannon

HUMAnN 0.9838 0.9897 0.9868 0.9147 0.9235 0.9132
MoP-Pro 0.9794 0.9809 0.9779 0.9103 0.9103 0.9059
MoP-Oligo 0.9735 0.9750 0.9779 0.8853 0.8956 0.9132

4.3 Clustering performance
For a more comprehensive analysis of profile distances, we compared the body site (subsite)
classification of samples with a profile-based clustering of the data. For clustering, we used a
standard hierarchical approach with average linkage, also known as UPGMA. In this context,
we evaluated the same three distance measures as for the nearest neighbor classification
experiment. The quality of the cluster partitioning was assessed by the Jaccard coefficient,
measuring the overlap of the resulting clusters with the HMP body site (subsite) groups.

The results obtained through the application of HUMAnN, MoP-Pro, and MoP-Oligo are
presented in Table 5 which shows a large variation of the clustering performance.

Table 5 Cluster partitioning quality in terms of the Jaccard coefficient based on Euclidean
distance, City block metric and Shannon-Jensen divergence for metabolic profiles of HUMAnN,
MoP-Pro, and MoP-Oligo

Body site Body subsite
Euclidean City block Jensen-Shannon Euclidean City block Jensen-Shannon

HUMAnN 0.4335 0.4342 0.4325 0.2361 0.3715 0.2344
MoP-Pro 0.6958 0.8817 0.6971 0.4791 0.4603 0.4801
MoP-Oligo 0.6577 0.7251 0.6382 0.3671 0.3008 0.3939

The Jaccard coefficient varied between 0.4325 and 0.8817 at body site level and between
0.2344 and 0.4801 at body subsite level. The partitioning of the MoP-Pro approach always
showed the highest values on body site and subsite level. For both levels, the clustering
performance of the MoP-Oligo approach is superior to HUMAnN except for the City block
metric at body subsite level.

4.4 1D-SOM clustering and visualization
In order to study the overall variation of pathway abundance patterns over the whole range
of HMP samples, we analyzed the estimated metabolic profiles with the MarVis tool. A
one-dimensional self-organizing map (1D-SOM) was created using MarVis-Cluster (see Figure
1) to obtain a set of ordered prototypes well-suitable for visualization of profile variations.
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Here, we utilized the second pathway level where we reduced the profiles to include
just the top 10 pathways with the highest variance over all samples. Taking the union of
the top 10 MoP and HUMAnN pathways we achieved a total of 13 profile dimensions that
we used for 1D-SOM clustering with 14 prototypes and a unit 2-norm scaling of profile
vectors. The resulting visualization indicates that most of the body sites are separated
into distinct clusters (Figure 1). For the MoP profiles three major groups of clusters can
be identified: gastrointestinal tract (GI tract, left side), urogenital tract (UG tract, right
side), and an intermediate set of clusters from airways, oral and skin sites. Furthermore
there are some interesting gradients (left to right) that show a decreasing relative abundance
for Amino Acid Metabolism, Carbohydrate Metabolism, and Signal Transduction pathways
and an increasing abundance for Membrane Transport, Nucleotide Metabolism, Replication
and Repair, and Translation pathways. In contrast, the 1D-SOM based on the HUMAnN
pathway profiles shows a distinct picture of the overall variation. The different body sites are
not as clearly separated as for the MoP-based SOM and the overall abundance gradients of
selected pathways are not as prominent as for the MoP results. The visible gradients (left to
right) that show a decreasing abundance include the Amino Acid Metabolism and Metabolism
of Cofactors and Vitamins pathways while an increasing abundance can be observed for
Metabolism of Other Amino Acids, Replication and Repair, and Translation pathways.

Figure 1 1D-SOM created with MarVis-Cluster at second pathway hierarchy level for MoP-Pro
(upper) and HUMAnN (lower) profiles (GI tract – gastrointestinal tract; UG tract – urogenital tract).
The numbers (in brackets) indicate the number of profiles (samples) assigned to the corresponding
prototype (cluster) above.

GCB 2013
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4.5 Significant pathways
For a specific analysis of the metabolic profiles in terms of statistically significant differences
in pathway abundances between different body sites we compared the gastrointestinal (GI)
tract samples with all other HMP samples. To identify overrepresented pathways for the
GI body site we applied an ANOVA with Holm-Bonferroni (FWER) correction on pathway
abundances of the second level pathway hierarchy, filtered for pathways with an FWER
below 0.05, and ranked the remaining pathways according to their fold-change in terms of
the corresponding overrepresentation factor on mean abundances. In Table 6 the significant
pathways of MoP-Pro and HUMAnN with a calculated fold-change larger than 1 are listed.

Table 6 MarVis-Filter analysis for the identification of overrepresented pathways in the gastroin-
testinal tract samples in comparison to all other body subsites. All second level pathways obtained
through the application of the MoP-Pro and HUMAnN approach with a fold-change larger than 1
are listed.

MoP-Pro
Pathway (second level) Fold-Change

Transport and Catabolism 2.00
Signal Transduction 1.81
Digestive System 1.79
Biosynthesis of Other Sec-
ondary Metabolites

1.53

Nervous System 1.48
Carbohydrate Metabolism 1.23
Glycan Biosynthesis and
Metabolism

1.15

Endocrine System 1.13
Immune System 1.12

HUMAnN
Pathway (second level) Fold-Change

Digestive System 2.04
Endocrine System 1.12
Glycan Biosynthesis and
Metabolism

1.07

Amino Acid Metabolism 1.06
Biosynthesis of Other Sec-
ondary Metabolites

1.06

Energy Metabolism 1.01

HUManN and MoP-Pro identified pathways associated with the Digestive System, En-
docrine System, Biosynthesis of Other Secondary Metabolites, Glycan Biosynthesis and
Metabolism to be overrepresented in GI tract samples. For all these pathways, except for
the Digestive System, the MoP-Pro fold-change was higher than the corresponding factor of
HUManN. Exclusively for the HUMAnN approach, pathways associated with Amino Acid
Metabolism and Energy Metabolism are found to be slightly overrepesented. Furthermore,
through the application of the MoP-Pro we detected five additional pathways to be overrep-
resented: Transport and Catabolism, Signal Transduction, Nervous System, Carbohydrate
Metabolism, and Immune System. These additional pathways are possibly related to a mutu-
ally beneficial relationship between the gut microbiota and the host, maintaining a normal
mucosal immune function and nutrient absorption. Furthermore, the overrepresentation of
pathways associated with the nervous system may provide an indication for the bidirectional
brain-gut interactions which have an important role in the modulation of gastrointestinal
functions and possibly support the hypothesis of a communication pathway between the
microbiota and the host’s central nervous system [15].

4.6 Runtime
To get an overview of the computational cost of the different variants of the mixture modeling,
we measured the approximate runtime averaged over the six selected HMP data samples
(average size ~200 MB) used for the correlation analysis. For the selected data sets the
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mean runtime ranges from minutes to months. The longest CPU times were required by the
direct application of the mixture model due to the costly similarity searches against the KO
database. On a computer with four CPUs (2.4 GHz) BLASTX searches and calculation of
the metabolic profile took approximately 58 days. The fastest method was MoP-Oligo with
about half a minute, followed by the MoP-Pro method with about one minute runtime in
total. Once the taxonomic profile is estimated, using either MoP-Oligo or MoP-Pro, the
resulting matrix vector multiplication for obtaining the metabolic profile of a metagenome
can be done within a second.

5 Discussion

We presented a novel metabolic profiling approach for metagenomics, which is based on
a mixture of pathways (MoP) model for estimation of pathway abundances. To overcome
computationally intense homology searches, we implemented a shortcut to estimate the
metabolic profile of a metagenome. Here, we link the taxonomic profile of the metagenome
to a set of pre-computed metabolic reference profiles. The combination of the taxonomic
abundance estimates, obtained through the fast methods Taxy-Oligo and Taxy-Pro, and the
metabolic reference profiles, based on the KEGG database, achieves an unrivaled speed of
the metabolic profiling approach.

We are aware of the difficulties in the evaluation that arise when trying to assess the
quality of the resulting metabolic profiles. Therefore we restricted our evaluation to the
large-scale data from the Human Microbiome Project (HMP) and to the comparison with
the observations and findings for this data obtained through the HUMAnN approach. In this
setup we tried to provide several views on metabolic profiles considering different aspects of
quality: Our correlation analysis has shown that the pathway abundances obtained through
our statistical model are slightly different when compared to the HUMAnN abundance
predictions. However, we demonstrated through the nearest neighbor classification that our
model based approach is at least comparable to the HUMAnN approach when considering
the prediction of body sites and subsites. Considering the cluster performance analysis,
our approach even outperforms the HUMAnN pipeline in most cases. Furthermore, our
case study on statistically overrepresented pathways in the gastrointestinal tract provides
additional insight in comparison with the results of the dedicated HUMAnN approach.

To our knowledge, the MoP approach for the first time provides a potentially unbiased
estimator of the fraction of sequences that can be attributed to a particular pathway. In
addition, our model-based combination with taxonomic abundance estimators also provides
the fastest way to estimate the metabolic profile of a metagenome. We intend to make the
method accessible via an easy-to-use interface by integration into the CoMet web server [11]
(http://comet.gobics.de).
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