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Abstract
The transcription of genes is often regulated not only by transcription factors binding at single
sites per promoter, but by the interplay of multiple copies of one or more transcription factors
binding at multiple sites forming a cis-regulatory module. The computational recognition of cis-
regulatory modules from ChIP-seq or other high-throughput data is crucial in modern life and
medical sciences. A common type of cis-regulatory modules are homotypic clusters of binding
sites, i.e., clusters of binding sites of one transcription factor. For their recognition the homotypic
Sunflower Hidden Markov Model is a promising statistical model. However, this model neglects
statistical dependences among nucleotides within binding sites and flanking regions, which makes
it not well suited for de-novo motif discovery. Here, we propose an extension of this model
that allows statistical dependences within binding sites, their reverse complements, and flanking
regions. We study the efficacy of this extended homotypic Sunflower Hidden Markov Model
based on ChIP-seq data from the Human ENCODE Project and find that it often outperforms
the traditional homotypic Sunflower Hidden Markov Model.
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1 Introduction

The computational recognition of cis-regulatory modules (CRMs) is an important task in
DNA sequence analysis. If the sequence motifs of the transcription factor binding sites
(TFBSs) involved in putative CRMs are known, CRM recognition reduces to finding the
composition of TFBS occurrences in a set of promoters or other unaligned sequences, and
many methods exist for this task [13]. However, if the sequence motifs are unknown, CRM
recognition becomes challenging, and reliable methods are still missing.

A promising model for CRMs is the Sunflower Hidden Markov Model (Sunflower HMM)
proposed by Hoffmann and Birney [6], which allows multiple occurrences of TFBSs per
sequence. However, the Sunflower HMM assumes statistical independence of the nucleotides
within TFBSs and flanking regions, which limits its applicability to de-novo motif discovery.
There is evidence about the presence of statistical dependences among adjacent nucleotides
within TFBSs [9, 2, 1], and neglecting the dependences within flanking regions often leads to
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the erroneous identification of repeats instead of putative TFBSs or to poor performance in
the recognition of TFBSs [12].

Multiple TFBSs of the same transcription factor often build homotypic clusters, which
we call homotypic CRMs. Such homotypic CRMs are frequent not only in invertebrates [8],
but also in humans [4]. In this paper we focus on their recognition by a homotypic version of
the Sunflower HMM, and by its extension that allows statistical dependences among adjacent
nucleotides both within TFBSs and flanking regions.

The rest of the paper is structured as follows: in Section 2 we present the extended
homotypic Sunflower HMM and corrresponding learning algorithms, and in Section 3 we
study the efficacy of the extended homotypic Sunflower HMM in comparison to the traditional
homotypic Sunflower HMM based on ChIP-seq data from the ENCODE project [11].

2 Extended homotypic Sunflower Hidden Markov Models

In the following two subsections, we introduce the extended homotypic Sunflower HMM and
the Baum-Welch algorithm for estimating its model parameters. For the sake of convenience,
we call the (traditional or extended) homotypic Sunflower HMM simply (traditional or
extended) Sunflower HMM from now on.

2.1 Model
Consider a data set of N sequences x1, . . . , xN , and denote the i-th sequence of length Li by
xi = (xi,1, . . . , xi,Li

), where i ∈ {1, . . . , N}. In analogy to the traditional Sunflower HMM,
we define the probability of sequence xi given model parameters π and φ by

P (xi|π, φ) =
∑
u

i

P (ui|π)P (xi|ui, φ), (1)

where ui denotes a hidden path consisting of states ui,j ∈ {m1, . . . ,mM ,m1, . . . ,mM , f1, f2},
withM denoting the width of a putative TFBS. Here, π denotes the probability of a transition
from a flanking region to a TFBS or its reverse complement, and φ denotes all emission
parameters of the model.

The states ui,j are indicator variables for TFBS occurrences in the following manner:
ui,j = mk indicates that xi,j is the k-th nucleotide of a TFBS on the forward strand,
ui,j = mk indicates that xi,j is the k-th nucleotide (read in 3′ → 5′ direction) of a TFBS on
the reverse complementary strand, and ui,j = f1 and ui,j = f2 indicate that xi,j is part of
the flanking region. State f1 indicates the start position of a flanking region, while state f2
indicates subsequent positions of a flanking region.

In analogy to the traditional Sunflower HMM, we define the probability of path ui given
model parameter π by

P (ui|π) = P (ui,1|π) ·
Li∏

j=2
P (ui,j |ui,j−1, π), (2)

which states that the hidden path ui is a realization of a homogeneous first-order Markov
model.

The transition of one state to another is parameterized by a sparse transition matrix.
There are three possible transitions from states f1 and f2: to m1 with probability π/2, to mM

with probability π/2, and to f2 with probability 1−π. Here, we assume that the probabilities
for the occurrence of a TFBS on the forward strand and on the reverse complementary strand
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Figure 1 Graphical representation of the transition matrix of the extended Sunflower HMM.
Circles denote states of the HMM. States f1 and f2 emit the flanking region, m1, m2, . . . , mM emit
the TFBS, and mM , mM−1, . . . , m1 emit the reverse complementary TFBS. States in the same color
correspond to the same position in the motif. Arrows represent transition probabilities between
states with a probability greater than zero. The transition probability is either marked as a label of
the corresponding arrow or is 1 in case of unlabeled arrows.

are equal. There are deterministic transitions from mk to mk+1, from mk to mk−1, from
mM to f1, and from mM to f1. All other transitions are forbidden, i.e., their propabilities
are zero. The graphical representation of this transition matrix is shown in Figure 1.

In contrast to the traditional Sunflower HMM, we define the likelihood of sequence xi

given path ui and model parameter φ by

P (xi|ui, φ) = P (xi,1|ui,1, φ) ·
Li∏

j=2
P (xi,j |ui,j , xi,j−1, φ). (3)

In the traditional Sunflower HMM, the conditional probabilities P (xi,j |ui,j , xi,j−1, φ) from
equation 3 are replaced by P (xi,j |ui,j , φ), which states that xi,j and xi,j−1 are conditionally
independent given ui,j and model parameter φ. This conditional independence of the
traditional Sunflower HMM is responsible for the occasionally erroneous identification of
repeats instead of putative TFBSs, and it is this conditional independence assumption that
we drop in the extended Sunflower HMM.

Figure 2 shows the additional conditional dependences among adjacent nucleotides by red
and blue arrows. Red arrows represent conditional dependences within TFBSs and within
reverse complementary TFBSs, and blue arrows represent conditional dependences within
flanking regions. We assume that nucleotides in TFBSs or reverse complementary TFBSs are
independent of nucleotides in flanking regions and vice versa, so there are no arrows between
TFBSs and flanking regions or between reverse complementary TFBSs and flanking regions.

We denote the probability of emitting symbol a in state f1 by λ1,a, the conditional
probability of emitting nucleotide b in state f2 given that the previous nucleotide is a by
λ2,a,b, and all of these model parameters by λ. In analogy to λ, we denote the probability of
emitting nucleotide a in state m1 by θ1,a, the conditional probability of emitting nucleotide
b in state mk given nucleotide a emitted by state mk−1 by θk,a,b, for k ∈ {2, . . . ,M}, and all
of these model parameters by θ. These parameters are equivalent to the parameters of the
weight array model of [14], i.e., to those of an inhomogeneous first-order Markov model.

The emission probabilities of states m1, . . . ,mM corresponding to the reverse complemen-
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Figure 2 Extended Sunflower HMM for an example sequence of length 13 bp. The sequence
contains a 3 bp long TFBS at positions 3-5 and its reverse complement at positions 9-11. The circles
denote the values of the hidden states and the boxes the emitted nucleotides. Black arrows encode
the dependences present in traditional Sunflower HMMs. Colored arrows encode the additional
dependences modeled by the extended Sunflower HMMs: red arrows represent dependences within
TFBSs, and blue arrows represent conditional dependences within flanking regions.

tary TFBS can be computed as a function of θ by

P (xi,j = a|ui,j = mM , θ) = ψM,a

P (xi,j = b|ui,j = mk, xi,j−1 = a, θ) =
θk+1,b,a · ψk,b

ψk+1,a
,

(4)

where a denotes the complementary nucleotide to a, and the auxiliary variables ψk,a are
given by the recursion

ψ1,a = θ1,a

ψk,a =
∑

b∈{A,C,G,T}

θk,b,a · ψk−1,b,
(5)

where k ∈ {2, . . . ,M}.
We denote φ = (θ, λ), and by plugging equations 2 and 3 into equation 1, we obtain the

definition of the extended Sunflower HMM with model parameters π and φ.

2.2 Learning
In this section we describe how the model parameters π, θ, and λ of the extended Sunflower
HMM can be learned and derive the corresponding Baum-Welch algorithm.

Model parameter π encodes the expected frequency with which TFBSs occur in a data
set, and we allow the user to externally set this intuitive model parameter. Likewise, we
treat the model parameter of the flanking regions λ as fixed, and we set it as maximum-
likelihood estimator of a homogeneous first-order Markov model estimated from the entire
data set. The reason for not learning λ via the Baum-Welch algorithm is that dynamically
learning λ requires computing the sufficient statistics over almost the entire data set, which
is unnecessarily time consuming given that the difference to the sufficient statistics of the full
data set is only small, since the number of nucleotides in flanking regions and the number of
nucleotides in the entire data set differ only slightly.

In analogy to [7] and many other de-novo motif discovery algorithms, we estimate the
model parameter θ by a maximum-likelihood approach. To this end, we derive a Baum-Welch
algorithm [10] for the extended Sunflower HMM, which is a special case of the EM algorithm
[3]. Formally, the Baum-Welch algorithm consists of two steps, which we will call E step
and M step in analogy to the EM algorithm. The algorithm iterates between computing the
expected sufficient statistics from the current values of the model parameters in the E step
and computing the model parameters that maximize the log-likelihood of these expected
values in the M step.
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Here, we denote the conditional probability that nucleotide a is emitted in state m1 or the
complementary nucleotide a is emitted in state mM by γ1,a, and we denote the conditional
probability that nucleotide b is emitted in state mk given the previous nucleotide a or the
reverse complementary nucleotide b is emitted in state mk given the following nucleotide a
by γk,a,b for k ∈ {2, . . . ,M}. In the E step we compute γ1,a and γk,a,b by using the current
estimate of model parameter θ(t) by

γ
(t)
1,a =

N∑
i=1

Li∑
j=2

P (ui,j = m1|xi, θ
(t), π, λ)δxi,j ,a

+
N∑

i=1

Li∑
j=2

P (ui,j = mM |xi, θ
(t), π, λ)δxi,j ,a

γ
(t)
k,a,b =

N∑
i=1

Li∑
j=2

P (ui,j = mk|xi, θ
(t), π, λ)δxi,j−1,aδxi,j ,b

+
N∑

i=1

Li∑
j=2

P (ui,j−1 = mk|xi, θ
(t), π, λ)δxi,j−1,bδxi,j ,a.

(6)

In the M step we use the conditional probabilities from the E step to compute the next
estimate of model parameter θ(t+1) by

θ
(t+1)
1,a =

γ
(t)
1,a∑

a∈{A,C,G,T}
γ

(t)
1,a

θ
(t+1)
k,a,b =

γ
(t)
k,a,b∑

b∈{A,C,G,T}
γ

(t)
k,a,b

.

(7)

For the computation of P (ui,j = k|xi, θ, λ) needed by each E step, we derive a Forward-
Backward algorithm for the extended Sunflower HMM. First, we compute the forward
variables αi

j,k = P (xi,1, . . . , xi,j , ui,j = k|θ, λ) for k ∈ {m1, . . . ,mM ,m1, . . . ,mM , f1, f2} by
the recursion

αi
1,k = P (xi,1|ui,1 = k, θ, λ)δk,f1

αi
j,k =

∑
l

αi
j−1,lP (ui,j = k|ui,j−1 = l, π)P (xi,j |ui,j = k, xi,j−1, θ, λ). (8)

Second, we compute the backward variables βi
j,k = P (xi,j+1, . . . , xi,Li |ui,j = k, θ, λ) for

k ∈ {m1, . . . ,mM ,m1, . . . ,mM , f1, f2} by the recursion

βi
Li,k = 1

βi
j,k =

∑
l

βi
j+1,lP (ui,j+1 = l|ui,j = k, π)P (xi,j+1|ui,j+1 = l, xi,j , θ, λ). (9)

Finally, we combine the forward and backward variables and obtain

P (ui,j = k|xi, θ, λ) =
αi

j,kβ
i
j,k∑

k α
i
j,kβ

i
j,k

. (10)

The Baum-Welch algorithm iterates the E step and the M step, yielding monotonically
increasing log-likelihoods, and we terminate the algorithm when the difference of two subse-
quent log-likelihoods falls below ε = 10−6. Typically, the algorithm reaches different local
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Figure 3 ROC curves (a) and PR curves (b) for the classification on the CREB1 data set. We
find that in both cases the curves of classifier B, which uses the extended Sunflower HMM, lie
above the curves of classifier A, which uses the traditional Sunflower HMM, except for recalls near
zero, where the precisions of the traditional Sunflower HMM are greater than the precisions of the
extended Sunflower HMM.

maxima or saddle points for different initializations, so we run it multiple times with different
initializations and finally select the model parameter θ with the highest log-likelihood.

3 Results

We have implemented the traditional and extended Sunflower HMMs including all algorithms
in Java using Jstacs [5]. To assess the efficacy of the traditional and extended Sunflower HMM
for the recognition of homotypic CRMs, we perform a classification of ChIP-seq positive
versus negative regions based on data of human embryonic cells from the ENCODE project.
We use the data for the six transcription factors CREB1, SP1, GABP, TEAD4, USF1, and
YY1 from the HAIB TFBS track of the UCSC Genome Browser 1. We select genomic regions
covered by peaks with a score above 200 as positive sequences and the adjacent genomic
regions of the same length as negative sequences. We split the positive and negative data
sets for each transcription factors in two subsets, one for training and one for testing, at a
ratio of 2:1.

We build two classifiers as follows: classifier A combines a traditional Sunflower HMM as
foreground model for the positive sequences with a homogeneous Markov model of order 0
as background model for the negative sequences, while classifier B combines an extended
Sunflower HMM for the positive sequences with a homogeneous Markov model of order 1 for
the negative sequences.

For each transcription factor, we estimate the parameters of the homogeneous Markov
models of order 0 and 1 by maximum likelihood from the union of positive and negative
training data sets. We use these values as parameters of the background models of the
classifiers and also as parameter λ of the Sunflower HMMs.

We learn the model parameters θ on the positive data set by applying the traditional
and extended Baum-Welch algorithm of Section 2.2. As a consequence, the only features
discriminating between positive and negative sequences in each classifier are TFBSs in the

1 http://genome.ucsc.edu/cgi-bin/hgTables

http://genome.ucsc.edu/cgi-bin/hgTables
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Figure 4 Classification results for six transcription factors. We classify the test data sets for
CREB1, SP1, GABP, TEAD4, and USF1 using the two classifiers A and B trained on the training
data sets. We show results of classifier A based on the traditional Sunflower HMM in light brown
and those of classifier B based on the extended Sunflower HMM in red. Figure (a) shows the results
in the area under the receiver operating characteristic curve (AUC-ROC), and Figure (b) shows the
area under the precision-recall curve (AUC-PR).

foreground model. We may thus reason that a foreground model with a better classification
performance has recognized TFBSs more accurately, so the classification performance may
be regarded a measure of accuracy of recognition of homotypic CRMs from ChIP-seq data.

We compute the receiver operating characteristic (ROC) curves and the precision-recall
(PR) curves for all six pairs of data sets. The ROC curve shows the true positive rate, also
known as recall, as a function of false negative rate. The true positive rate is defined as
the ratio of true positives and all positives. Analogously, the false positive rate is the ratio
of false positives and all negatives. The PR curve shows the positive predictive value, also
known as precision, as a function of the true positive rate. The positive predictive value
is the ratio of true positives and the sum of true positives and false positives. Figure 3
shows the ROC and PR curves for the CREB1 data set. Both the ROC curves and the PR
curves indicate that taking into account dependences among adjacent nucleotides leads to an
improved recognition of CREB1 binding sites.

For calculating the overall classification performance we use the area under the ROC curve
(AUC-ROC) and the area under the PR curve (AUC-PR). Figure 4 shows the AUC-ROC and
AUC-PR values for both classifiers and each of the six transcription factors. The first pair
of columns in each figure corresponds to the area under the curves shown in Figure 3. For
CREB1, we observe that classifier B increases the AUC-ROC by 0.02 and the AUC-PR by
0.04 over classifier A. For the remaining transcription factors, we observe that the extended
Sunflower HMM achieves higher AUC-ROC values and higher AUC-PR values than the
traditional Sunflower HMM also for GABP, USF1, and YY1, whereas we do not observe an
improved recognition of homotypic CRMs by taking into account dependences for SP1 and
TEAD4.

4 Conclusions

In this work, we have extended the Sunflower HMM for homotypic CRMs by allowing
statistical dependences among adjacent nucleotides within TFBSs and flanking regions. We
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have derived a modified Baum-Welch algorithm including modified forward and backward
algorithms, and we have found by case studies on ChIP-seq data that this extension improves
the recognition of TFBSs for four out of six studied transcription factors.

However, this work is limited in several aspects. First, we have considered only one
motif type and only first-order dependences. Second, the learning algorithm is based on the
maximum likelihood principle, which neglects prior knowledge. Despite these limitations, the
extended homotypic Sunflower HMM presented here might possibly be a useful starting point
for the reliable recognition of CRMs. Further promising extensions could involve Bayesian or
discriminative learning approaches or a generalization of the model to heterotypic CRMs, to
higher-order nucleotide dependences.
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