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Abstract
We explain how to see the set of positions of a dialogue game as a coherence space in the sense of
Girard or as a bistructure in the sense of Curien, Plotkin and Winskel. The coherence structure
on the set of positions results from a Kripke translation of tensorial logic into linear logic extended
with a necessity modality. The translation is done in such a way that every innocent strategy
defines a clique or a configuration in the resulting space of positions. This leads us to study
the notion of configuration designed by Curien, Plotkin and Winskel for general bistructures in
the particular case of a bistructure associated to a dialogue game. We show that every such
configuration may be seen as an interactive strategy equipped with a backward as well as a
forward dynamics based on the interplay between the stable order and the extensional order.
In that way, the category of bistructures is shown to include a full subcategory of games and
coherent strategies of an interesting nature.
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1 Introduction

An important dichotomy in the denotational semantics of a programming language like PCF
is provided by the distinction between the qualitative and the quantitative interpretations
of the language. The distinction is important but recent since the first quantitative model
emerged in the work by Girard on quantitative domains [9] only a few months before the
discovery of linear logic. All the denotational models of PCF were qualitative before that.
This includes the domain-theoretic models either based on continuous functions between
Scott domains [24] or on stable functions between dI-domains [2] as well as the precursor
of game semantics based on sequential algorithms between concrete data structures [3].
The difference between qualitative and quantitative models is best understood today by
translating the intuitionistic types of PCF into formulas of linear logic. There, the distinction
between the two classes of models boils down to the way the exponential modality ! of
linear logic is interpreted. As shown by Ehrhard in his work on differential linear logic, the
quantitative models of linear logic are usually better behaved and closer to a mathematical
understanding of resource (formal series, differential calculus) because they incorporate the
number of times a procedure is called by its environment. On the other hand, the qualitative
models are precious tools for automatic verification of software because they interpret finite
types (typically limited to booleans or to finite approximations of the natural numbers) as
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finite mathematical structures, and thus provide mechanical procedures to decide specific
properties of programs.

Quite interestingly, most interactive models based on game semantics are quantitative,
rather than qualitative. There is a good reason for that: once understood how to track the
several copies of a game A in the game !A by using indices or pointers, it is generally easier
to describe the behaviour of a PCF program in exactly the same way as it proceeds in time,
typically in a Krivine machine. As a consequence, the number of times a program of type
p!Aq ( B calls its procedure of type A is generally reflected in the game model. As we
already mentioned, a remarkable counter-example to this general principle is provided by
the sequential algorithm model of PCF [3] which is indeed operational and qualitative at
the same time. Lamarche and Curien [15, 5] have shown very early in the history of game
semantics how to reformulate this model of PCF as a model of intuitionistic linear logic
based on sequential data structures — which we prefer to call here simple games in order
to distinguish them among the more general dialogue games. Because of the qualitative
nature of the model, simple games are defined as alternating decision trees, without the
need for extra indexing or pointer structure. The key idea of the model is to define the
simple game !A as the tree of partial explorations of a given strategy σ of the simple game A.
The contraction !A Ñ !Ag !A of linear logic is then interpreted by a clever memoisation
procedure which keeps track of the portion of the strategy σ of the game A on the left
explored by the two environments playing independently on the copies of !A on the right.
In this way, one obtains a qualitative model of intuitionistic linear logic whose co-Kleisli
category embeds in the category of sequential algorithms originally introduced by Berry
and Curien. Note that we write AgB for the tensor product of simple games defined by
interleaving, in order to distinguish it from the tensor product of dialogue games AbB.

The interest in this specific Curien-Lamarche modality ! has been recently revived by the
observation that the category of dialogue games and innocent strategies defined by Hyland
and Ong [12] may be reconstructed as a bi-Kleisli category from the category of simple games,
using a quantitative (or repetitive) version of the modality [11]. For the sake of completeness,
we find instructive to take the reverse point of view here, and to see the category Simple
of simple games as a specific full subcategory of a category Dialogue of dialogue games
and innocent strategies. This category Dialogue should be understood as a resource-aware
and linear variant of the original category in [12]. At this point, it is worth recalling the
definition of a dialogue category, see [23] for instance:

I Definition 1 (Dialogue category). A dialogue category C is a symmetric monoidal category
equipped with an object K together with a functor

 : C op ÝÑ C (1)

and a family of bijections

ϕA,B : CpAbB,Kq – CpA, Bq

natural in A and B. A dialogue category is called affine when it is equipped with a natural
family of morphisms (called weakening)

eA :  A ÝÑ 1.

The category Dialogue of dialogue games and total innocent strategies may be concisely
defined as the free affine dialogue category with finite sums (and tensors distributing over
these finite sums). A more concrete definition will appear in §3 but the conceptual definition
is convenient at this introductory stage. Similarly,
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542 On dialogue games and coherent strategies

I Definition 2 (Negation category). A negation category C is a category equipped with a
functor (1) and with a family of bijections

νA,B : CpA, Bq – CpB, Aq

natural in A and B.

The category Simple of simple games and total sequential strategies may be concisely defined
as the free negation category with finite sums. Note that Simple coincides with the free
category FampGq with finite sums (or finite family construction) generated by the category G

of finite Opponent starting games and total strategies considered in [5]. As a dialogue
category, the category Dialogue is also a negation category. This implies the existence of a
negation and finite sum preserving functor

embedding : Simple ÝÑ Dialogue

The functor is full and faithful, and injective on objects. As such, it identifies the category
Simple of simple games to a full subcategory of the category Dialogue of dialogue games.
The category Simple is symmetric monoidal closed with tensor product and linear implication
noted g and ´́˚ respectively. As such, it defines a dialogue category with negation defined
as  A “ A ´́˚ K where K is the simple game with one initial Player move ˚ (which may be
also seen as a unique initial position ˚ of the game) followed by a single Opponent move q.
Again, by the universal characterization of the category Dialogue, this induces a finite sum,
tensor and negation preserving functor

pathification : Dialogue ÝÑ Simple

which we call pathification because it transports every dialogue game A to a simple game
entirely defined by its alternating paths. Despite its name, the pathification functor is a
brutal transformation on the original dialogue game, since it destroys the asynchronous
structure of the asynchronous game A and only retains its alternating paths. On the other
hand, every simple game is already a tree, and thus the composite functor

Simple
embedding // Dialogue

pathification // Simple

is equal to the identity. One preliminary observation of the paper is that the tensor
product AgB between simple games factors as

AgB “ pathificationpembeddingpAq b embeddingpBqq

and similarly, that the Curien-Lamarche exponential modality ! factors as

Simple shriek // Dialogue
pathification // Simple (2)

Note that the transformation shriek is entirely described by the recursive equation

shriek
ˆ

à

iPI

 
à

jPJi

 Aij

˙

“
à

iPI

â

jPJi

  shriek pAijq

whose purpose is to replace every cartesian product (or negated sum indexed by j P Ji) by
the corresponding tensor product. We will illustrate the construction in (3) and (5). In
particular, for every pair of simple games A,B, there exists a bijection

Simplep!A,Bq – DialoguepshriekpAq, embeddingpBqq.
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This basic observation seems to underlie a lot of work in the field of game semantics, in
particular the graph-theoretic formulation of the sequential algorithm model by Hyland and
Schalk [13]. A fundamental difficulty (or phenomenon) arises at this point of our analysis:
the transformation shriek is not functorial — and this is precisely the reason why we prefered
to indicate it with a dotted line in (2). In order to understand what is going wrong, let
us define 1 as the simple game with a unique Player move ˚ (or initial position) and the
Sierpinski game Σ “   1 as the simple game with a unique initial Player move ˚ (or initial
position) followed by a unique Opponent move done, itself followed by a unique Player
move done. The cartesian product Σ & Σ in the category Simple is equal to the simple
game  

`

p 1q ‘ p 1q
˘

. Now, consider the morphism

σ
P

q

O

done

Σ Σ Σ&

PP

q

O

q
L R

done doneL R

O

(3)

in the category Simple, where σ denotes the strategy which starts at the initial position
pK,Kq and consists of the two sequences of moves below:

sL : pK,Kq
O
ÝÑ pK, qLq

P
ÝÑ pq, qLq

O
ÝÑ pdone, qLq

P
ÝÑ pdone, doneLq

sR : pK,Kq
O
ÝÑ pK, qRq

P
ÝÑ pq, qRq

O
ÝÑ pdone, qRq

P
ÝÑ pdone, doneRq

(4)

together with their even-length prefixes. We indicate with a grey orb in (3) the fact that
the moves qL and qR are incompatible and thus cannot appear in the same play of the
game Σ & Σ. By definition, shriek transports the simple game Σ into itself, and the simple
game Σ & Σ “  

`

p 1q ‘ p 1q
˘

into the dialogue game Σb Σ “ p  1q b p  1q. We claim
that shriek is not functorial because it cannot transport the strategy σ to any innocent
strategy

PP

q

O

q
L R

done doneL R

P

q

O

done

O

Σ Σ Σ
τ

(5)

in the category Dialogue. Note that we remove the grey orb between the moves qL and qR
in the case of the dialogue game Σ b Σ to indicate that the two moves are compatible in
the game. Imagine that there exists such an innocent strategy τ “ shriekpσq. In order to
make our argument work, we will make the mild hypothesis that any reasonable functorial
definition of shriek should transport the projection πi : Σ & Σ Ñ Σ to the expected strategy
shriekpπiq : Σb Σ Ñ Σ which plays a copycat strategy between Σ and the first or second
component of Σb Σ depending on the value of i “ 1, 2. With this additional hypothesis, it
is easy to deduce from the equality πi ˝ σ “ idΣ (for i “ 1, 2) and from the totality of τ that
the strategy τ “ shriekpσq coincides with the strategy consisting of the two plays

sLR : pK,K,Kq
Op˚q
ÝÑ pK, qL,Kq

P p˚q
ÝÑ pq, qL,Kq

O
ÝÑ pdone, qL,Kq

P
ÝÑ pdone, doneL,Kq

O
ÝÑ pdone, doneL, qRq

P
ÝÑ pdone, doneL, doneRq

sRL : pK,K,Kq
O
ÝÑ pK,K, qRq

P
ÝÑ pq,K, qRq

O
ÝÑ pdone,K, qRq

P
ÝÑ pdone,K, doneRq

Op˚˚q
ÝÑ pdone, qL, doneRq

P p˚˚q
ÝÑ pdone, doneL, doneRq
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together with their even-length prefixes. One recognizes here the contraction strategy
Σ Ñ Σ g Σ of the Curien-Lamarche model for the simple game Σ “ ! Σ. Our whole point is
that the strategy τ is not innocent as a strategy Σ Ñ Σ b Σ because it does not play in the
same way in the move P p˚q of the play sLR and in the move P p˚˚q of the play sRL although
the Player views are the same seen from the move Op˚q and from the move Op˚˚q.

In order to repair the situation, we introduce the notion of coherent strategy which relaxes
the familiar notion of innocent strategy between dialogue games in such a way that (1) there
exists a functor

Dialogue
embedding // Coherent

which enables one to transport every strategy σ : A Ñ B between simple games into a
coherent strategy using the composite functor

Simple
embedding // Dialogue

embedding // Coherent

and moreover (2) a functor

Simple shriek // Coherent (6)

making the diagram below commute

Dialogue

embedding

��

Simple

shriek
77

shriek ''
Coherent

(7)

One main purpose of this paper is thus to introduce the notion of coherent strategy on a
dialogue game. We proceed in the same (slightly unconventional) way as the notion emerged
in our work. First, we recall in §2 the relationship between dialogue games and tensorial
logic, and then define in §3 the notion of innocent strategy we have in mind. Then, we
introduce in §4 a Kripke translation of tensorial logic into linear logic extended with a
necessity modality (noted l ) which enables us to interpret the set of positions of a dialogue
game as a coherence space in the sense of Girard or as a bistructure in the sense of Curien,
Plotkin and Winskel [6]. After briefly recalling in the Appendix this model of bistructures,
we show in §5 that the configurations σ of the bistructure rAs of positions of a dialogue
game A are positional strategies extending the familiar notion of innocent strategies. These
strategies are precisely what we call the coherent strategies of a dialogue game. Accordingly,
the category Coherent is defined as the category of coherent strategies between dialogue
games. We thus obtain a series of functorial translations:

Simple
embedding// Dialogue // Coherent

forgetful // Bistr

where Bistr denotes the category of bistructures and configurations introduced by Curien,
Plotkin and Winskel [6] and where forgetful adapts to Coherent the forgetful functor U
from the category M of coalgebras of the comonad l to the category Bistr. One interesting
observation is that the functor

Simple shriek // Coherent
forgetful // Bistr l // Bistr (8)
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transports every simple game A to the bistructure ! rAs where ! denotes the qualitative
exponential modality of Bistr. From this follows that the functor lifts to a functor between
the Kleisli categories associated to Simple and to Bistr. We deduce that every sequential
algorithm σ : !AÑ B defines a stable and extensional function ΓpAq Ñ ΓpBq between the
associated bidomains of configurations.

2 Dialogue games and tensorial logic

Tensorial logic is a primitive logic of tensor and negation which refines linear logic by relaxing
the hypothesis that negation is involutive. At the same time, tensorial logic may be seen as
a resource-aware version of polarized linear logic developed by Laurent [17] which itself was
based on the ideas by Girard on polarities in classical logic [10]. In particular, it extends
the connection between polarized linear logic and dialogue games formulated in [16] to the
positional and resource-aware notion of dialogue game defined below.

I Definition 3. A dialogue game is defined as a family of rooted trees (or forest) where
every node m is equipped with an equivalence relation conflictrms on its set of children.
A node of the forest A is called a move of the dialogue game. One writes m $A n when
the node n is a child of the node m in the forest A, and one declares in that case that the
move m justifies the move n. Accordingly, a root of the forest A is called an initial move of
the dialogue game because it is not justified by any other move. A position of the dialogue
game A is then defined as a (non-empty) subtree x of the forest A containing only pairwise
non-conflicting moves. The set of positions of a dialogue game is denoted Pos pAq. By
convention, we declare that every move of odd depth is Player, and every move of even depth
is Opponent. In other words, every initial move is Player, and every branch of the forest is
then alternating between Opponent and Player moves.

We will make use of the fact that every finite dialogue game A may be alternatively seen as
a formula of tensorial logic:

A,B ::“ 0 | 1 | A‘B | AbB |  A

modulo the equations:

Ab pB ‘ Cq – pAbBq ‘ pAb Cq 0bA – 0

together with the associativity and commutativity of ‘ and b and the fact that the formulas 0
and 1 are their respective units. Let us briefly explain how the correspondence works. The
dialogue game 0 is the empty forest and the sum A‘B of two dialogue games is obtained by
putting the two forests A and B side by side. As already mentioned, the game 1 is the tree
with a unique Player move ˚. The negation  A of a dialogue game A is defined by “lifting”
the game A with a move ˚ which justifies the initial moves of the game A. The equivalence
relation conflictr˚s is defined as the total relation, hence every two moves justified by the
unique initial move ˚ are conflicting in the game  A. The tensor product of two dialogue
games is required to satisfy the distributivity law

à

iPI

Ai b
à

jPJ

Bj “
à

pi,jqPIˆJ

Ai b Bj

For that reason, the tensor product of two finite dialogue games is entirely described by the
equality

A “
â

iPI

 Ai
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546 On dialogue games and coherent strategies

where the dialogue game A is defined as the coalesced sum of the trees  Ai. This coalesced
sum A is the dialogue game with unique initial move ˚ obtained (1) by taking the disjoint
sum of the trees  Ai and then (2) by identifying the unique initial move ˚i of each tree  Ai
to the unique initial move ˚ of the game A. By definition of a coalesced sum, this dialogue
game A is a tree whose unique initial move justifies the moves justified by the root ˚i in the
game Ai. Its compatibility relation is defined as follows:

conflictr˚As “
ě

iPI

conflictr˚is

Typically, the boolean formula 1‘ 1 is interpreted as the forest with only two nodes V and F
(for Vrai and Faux, true and false in French) whereas its double negation B “   p1‘ 1q
and the tensor product Bb B define the following dialogue games:

VF

P P

q

O

VF

P P

q

O

L R

VF

P P

q

O

A dialogue game is called simple when the conflict relation is full over every move of the
game. For instance, the dialogue game B is simple whereas the dialogue game Bb B is not
simple because the two moves qL and qR are not in the same equivalence class of conflictr˚s.
Note that the set of positions of a dialogue game may be defined inductively as follows:

Pos p0q “ H

Pos p1q “ t ˚ u

Pos pA‘Bq “ Pos pAq ` Pos pBq
Pos pAbBq “ Pos pAq ˆ Pos pBq
Pos p Aq “ Pos pAq ` t ˚ u

Every such position x may be nicely depicted by drawing every move m in it as a circle (or
as an ellipse) containing the circles corresponding to the moves n justified by m. The colour
convention is to depict the Player moves as blue circles, and the Opponent moves as red
circles. Typically, the four positions tKu, tK, qRu, tK, qR, VR, qLu and tK, qL, FL, qR, VRu of
the game Bb B are respectively depicted as

F VVq
Lq

R

Similarly, the maximal position of the dialogue game pBbBq(B “  pBbBb p1‘ 1qq is
depicted as

V F V (9)

where, by convention, we write A ( B for the dialogue game  pAb B1q when B “  B1.
The intuition behind these pictures is that every move m of a dialogue game is a memory
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cell of a more advanced technology than in the case of concrete data structures, since it may
contain several independent cells, each of them filled by a value. Quite obviously, each of
these cells corresponds to a specific equivalence class of conflictrms. This is typically the
case of the Opponent move q in the position (9) which is filled by the three independent
“values” qL, qR and done. Note that one recovers the traditional notion of memory cell when
the dialogue game is simple, since in that case every memory cell is filled by at most one
value.

3 Innocent strategies

In order to define the notion of innocent strategy on dialogue games, we find convenient
to recall the asynchronous formulation of innocence formulated in [20]. The starting point
of the approach is the idea that every dialogue game A defines an asynchronous transition
system

whose nodes are the positions of the game,
with a transition m : xÑ y between two positions whenever y “ xZ tmu where m is a
move of the game and Z means disjoint sum,
with a permutation pxÑ y1 Ñ zq „ pxÑ y2 Ñ zq whenever y1 “ xZ tmu, y2 “ xZ tnu

and z “ xZ tm,nu for two different moves m and n of the game.
Every transition m : x Ñ y is polarized either as Player or Opponent depending on the
polarity of the move m added to the position x in order to obtain the position y. Every
initial Player move ˚ of the dialogue game defines an initial position t˚u of the associated
asynchronous transition system. By convention, we generally identify the initial position t˚u
with the initial Player move ˚.

I Definition 4. A sequential play of a dialogue game A is defined as a path

˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

mk
ÝÑ xk

starting from an initial position ˚ of the asynchronous transition system and then alternating
between Opponent and Player moves. In particular, every move mk is Opponent when k is
odd and Player when k is even. The position x is called the target position of the play s. A
play is called empty when k “ 0. There is a one-to-one correspondence between the initial
positions of a dialogue game and its empty plays.

I Definition 5. A sequential strategy σ of a dialogue game A is defined as set of even-length
sequential plays which

has a starting point: σ contains the empty play ˚ for exactly one initial position ˚,
is closed under even-length prefix: s ¨m ¨ n P σ implies that s P σ,
is deterministic: s ¨m ¨ n1 P σ and s ¨m ¨ n2 P σ implies that n1 “ n2

for all plays s and all moves m,n, n1, n2 of the dialogue game.

I Definition 6. A sequential strategy is called backward innocent when every play s P σ,
every path t, every pair of Opponent moves m1, m2, and every pair of Player moves n1, n2
which satisfy the properties:

s ¨m1 ¨ n1 ¨m2 ¨ n2 ¨ t P σ and  pn1 $ m2q and  pm1 $ m2q

satisfy also the properties:

 pn1 $ n2q and  pm1 $ n2q and s ¨m2 ¨ n2 ¨m1 ¨ n1 ¨ t P σ.
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548 On dialogue games and coherent strategies

Backward innocence may be depicted as the following diagrammatic property:

s

t

n

m





mm

n

σ � ∈σ �

s

t

n

m





m

n n

m





m

n

σ⇒ (10)

I Definition 7. A strategy σ is forward innocent when every play s P σ, every pair of
Opponent moves m1, m2, and every pair of Player moves n1, n2 satisfying the properties:

s ¨m1 ¨ n1 P σ and s1 ¨m2 ¨ n2 P σ and m1 ‰ m2

satisfy also the properties:

n1 ‰ n2 and s ¨m1 ¨ n1 ¨m2 ¨ n2 P σ.

Forward innocence may be depicted as the following diagrammatic property:

s

m

mm

n

σ � ∈σ �

s

n

m





m

n n

m





m

n

σ⇒
n

∈ σ
(11)

I Definition 8. A strategy is called innocent when it is backward and forward innocent.

One important property of innocence established in [20] is that every innocent strategy is
positional, in the sense that it is entirely described by its set of halting positions. By halting
position of the innocent strategy σ, we mean a position x of the dialogue game such that
there exists a play s P σ with target position x.

I Definition 9. A sequential strategy σ of a dialogue game A is called total when for every
play s P σ, and for every Opponent move m such that s ¨m is a play of the dialogue game A,
there exists a Player move n such that s ¨m ¨ n P σ.

Note that the notion of total strategy considered here is weaker than in [23] since we do
not require that every maximal position px, yq of the strategy in DialoguepA,Bq reaches
two maximal positions x and y of the dialogue games A and B. A typical illustration is
provided by the strategy eA :  AÑ 1 which contains exactly the empty play on the unique
initial position ˚. Its unique maximal position is the pair p˚, ˚q of initial positions in  A
and 1 although the position ˚ is not maximal in the dialogue game  A.
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One main application of tensorial logic is the following characterization of the category
Dialogue of dialogue games and total innocent strategies. The proof of the proposition may
be done directly in a proof-theoretic style or by extending to finite sums the combinatorial
presentation of innocence in [23].

I Proposition 10. The category Dialogue is the free affine dialogue category with finite
sums (and tensor product distributing over these finite sums) generated by the empty category.

Although Proposition 10 looks like a purely conceptual statement, it provides a very useful
tool in order to relate game semantics to various models of tensorial or linear logic. In
particular, it states that there exists a canonical (and functorial) interpretation of dialogue
games and total innocent strategies

r´s : Dialogue // D (12)

in any affine dialogue category D with finite sums, where the tensor distributes over finite
sums. Moreover, by its mere construction, the functor A ÞÑ rAs preserves the monoidal
structure, the finite sums, the negation and the weakening map eA :  AÑ 1 up to coherent
isomorphism.

4 A Kripke translation of tensorial logic into linear logic + necessity

One preliminary insight of the paper is that the construction A ÞÑ Pos pAq which transports
a dialogue game to its set of positions may be understood as an instance of the semantic
functor (12). After all, a simple example of such an affine dialogue category D is provided
by the category Rel of sets and relations with weakening eA : AK Ñ 1 defined as the empty
relation. As in the case of any such affine ˚-autonomous category, the tensorial negation  A
is interpreted as the involutive negation:

r As “ rAsK. (13)

In the specific case of Rel, this implies that rAs coincides with the set of maximal positions
of the dialogue game A. This preliminary observation leads to the idea of replacing the
inappropriate interpretation (13) of tensorial negation by the following one

r As “ l rAsK (14)

where the modality l would be typically defined as

lA “ A & K (15)

in order to add a point to the relational interpretation of A. The idea is tempting, but there
remains to justify it from a logical and algebraic point of view. In order to understand where
we stand, it is worth recalling that tensorial logic enjoys the same position with respect to
linear logic as intuitionistic logic does with respect to classical logic. From that point of
view, it makes sense to translate tensorial logic into linear logic in just the same way as one
translates intuitionistic logic into classical logic. A typical solution is to adapt the well-known
Kripke translation of intuitionistic logic in the modal logic S4 consisting of classical logic
extended with a necessity modality l. Recall that the Kripke translation is based on the
following interpretation of the intuitionistic implication:

rA ñint B s “ l p rAsK _ rBs q (16)
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550 On dialogue games and coherent strategies

Note that one recovers an intuitionistic variant of (14) by taking the formula B equal to
false in (16). Consequently, our next purpose will be to design a linear logic extended
with a necessity modality l in such a way as to make our tensorial version of the Kripke
translation (14) work. We could proceed syntactically and define a sequent calculus for the
logic, which we will call linear S4 for simplicity. Since this is essentially equivalent, we prefer
to remain at an algebraic level, and to define a categorical semantics of linear S4. To that
purpose, we introduce the following notion:

I Definition 11. A necessity modality on a symmetric monoidal category L is defined as a
symmetric monoidal comonad l. By this, one means a comonad l thus equipped with two
natural families of morphisms

εA : A ÝÑ lA δA : lA ÝÑ l lA

making the expected associativity and unit diagrams commute, together with a natural
family of coercions

mA,B : lAblB Ñ l pAbBq m1 : 1 ÝÑ l 1

making l a lax symmetric monoidal functor, and compatible with the structure of the
comonad.

It is well-known and not difficult to check that in that case, the comonad factors as

l “ Forget ˝Necessary

where Forget and Necessary define a symmetric monoidal adjunction

pM,b, 1q

Forget

""
K

Necessary

bb pL,b, 1q (17)

and the category M is typically defined as the category of Eilenberg-Moore coalgebras of
the comonad. The adjunction is called a symmetric monoidal adjunction because it is the
same thing as a formal adjunction in the 2-category of symmetric monoidal categories and
symmetric monoidal functors in the lax sense, see [21] for details. The notion of symmetric
monoidal adjunction is important in tensorial logic because it enables one to transport the
tensorial negations of the category L into the category M. Suppose for instance that the
category L is ˚-autonomous. In this case, the category M inherits a tensorial negation

 A “ Necessary p pForget AqKq (18)

from the linear negation in the category L. Hence, M defines a dialogue category. This
establishes that every ˚-autonomous category L equipped with a necessity modality l induces
a model of tensorial logic, simply defined as its dialogue category M of Eilenberg-Moore
coalgebras. Note that the category M has finite sums as soon as the underlying category L

has finite sums. One shows moreover that the dialogue category M is affine when the necessity
modality l is affine in the following sense.

I Definition 12. An affine necessity modality l on a symmetric monoidal category L is a
necessity modality equipped with a family of coalgebra maps eA : lA ÝÑ 1 natural in A.
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The notion of affine necessity modality is quite familiar in models of linear logic. In particular,
the exponential modality ! of a linear category L defines an affine necessity modality, see
[21] for details. The ongoing discussion establishes that

I Proposition 13. Every ˚-autonomous category with finite sums equipped with an affine
necessity modality l induces a functor

pDialogue,b, 1q ÝÑ pM,b, 1q

where M denotes the category of Eilenberg-Moore coalgebras of the comonad l.

It is not very difficult to check that equation (15) defines an affine necessity modality l in
the category Rel, with weakening eA : A& 1 Ñ 1 defined as the projection on the second
component. Much more interesting is the fact that the same equation (15) defines an affine
necessity modality in the category Coh of coherence spaces. The resulting semantic functor
A ÞÑ rAs enables us to identity the set of positions Pos pAq as the web of the coherence
space rAs. By way of illustration, the dialogue game B “   p1‘ 1q is transported to the
following coherence space:

VF

q

VF

P P

q

O

(19)

where the initial position K is coherent with the three other positions q “ tK, qu, F “ tK, q, F u
and V “ tK, q, V u which are themselves pairwise incoherent. One main benefit of our logical
approach to game semantics is that every innocent strategy σ playing on the dialogue game A
is shown to be interpreted as a clique of halting positions rσs in the coherence space of
positions rAs. This fact that the set of halting positions of an innocent strategy σ defines a
clique in rAs is reasonable, but it does not seem so easy to establish by a direct and purely
combinatorial proof.

5 Dialogue categories and coherent strategies

Our next task is to apply our general method in order to interpret the positions of a dialogue
game A as the web of a bistructure. The bistructure model of linear logic was introduced
by Curien, Plotkin and Winskel about ten years ago [6] and it remains today one of the
most clever and enigmatic models ever designed for linear logic. Its main achievement is
to integrate the causality principles underlying Berry’s notion of stable function — later
revisited by Girard in his coherence space model of linear logic — to the information structure
underlying the notion of continuous function between Scott domains [24]. The definition of
bistructure is recalled in the appendix. In order to achieve our task on dialogue games, we
introduce an affine necessity modality on bistructures:

l : Bistr ÝÑ Bistr

simply defined by extending a given bistructure E with one element ˚ in such a way that
˚ ďR e for all e P E. Note that by definition of a bistructure, this implies that ˚ ¨ e for
all e P E. We then apply Proposition 13 in order to interpret the set of positions of a
dialogue game A as the web of a bistructure rAs, and an innocent strategy σ : A Ñ B as
a configuration rσs defining a morphism rAs Ñ rBs in the category M of coalgebras of the

CSL’13



552 On dialogue games and coherent strategies

comonad l. Typically, the bistructure associated to the dialogue game B “   p1‘1q refines
the coherence space (19) with the extra ďL and ďR ordering information:

VF

P P

q

O

VF

R

L L

q

R
R

The diagram should be read as follows: it states that F, V ďL q and that K ďR q, F, V .
An easy induction on the formulas of tensorial logic enables one to characterize the two
orders ďL and ďR on the set of positions of a dialogue game A.

I Proposition 14. For every dialogue game A, two positions x, y P Pos pAq satisfy
x ďL y precisely when y Ď x and the position y may be obtained from x by removing
subtrees with Player moves as roots,
x ďR y precisely when x Ď y and the position x may be obtained from y by removing
subtrees with Opponent moves as roots.

Proposition 14 is important because it provides an elementary and purely combinatorial
account of the two orders ďL and ďR. A typical illustration of these orderings is provided
by the three positions of the dialogue game Bb B ( B considered earlier:

V F VVq
L

q
R

q
L

q

Unfortunately, the coherence relation ¨rAs between positions of a dialogue game A appears
more difficult to formulate in a similarly simple combinatorial way. We will not try to do
that here. Rather, we establish the following useful property.

I Proposition 15. The set-theoretic intersection x X y of two positions x, y P Pos pAq
included in a position z P Pos pAq is itself a position of the dialogue game A. Moreover,
the two positions x and y are coherent in the bistructure rAs of positions in the sense that
x ¨rAs y whenever they satisfy the inequalities:

xX y ďR x xX y ďR y.

Dually, the two positions x and y are incoherent in the bistructure of positions in the sense
that x ˚rAs y whenever they satisfy the inequalities:

x ďL xX y y ďL xX y.

Proof. See the appendix. J

An interesting and non trivial consequence of Proposition 13 is the following statement:

I Proposition 16. The set of halting positions rσs of a total innocent strategy σ playing on
a dialogue game A defines a configuration of the bistructure of positions rAs.

Once this result established, a natural question is to understand more generally the behaviour
of any configuration σ of the bistructure rAs of positions associated to a dialogue game A.
We know already that every such configuration σ is secured, and thus has a backward
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dynamics which recovers from every position x P σ the causal cascade which produced it
from the initial position of the dialogue game ˚. Indeed, in the case of a bistructure of
positions rAs, securedness means that for every position x in the configuration σ and for
every position y obtained by removing some Opponent information from x, there exists a
position z P σ obtained by removing some Player information from y. This interpretation of
securedness follows from Proposition 14. The somewhat surprising observation is that every
configuration σ of a bistructure of positions rAs is also equipped with a forward dynamics
and thus behaves like a (usually not sequential) strategy. This last claim is formulated as
the following result:

I Proposition 17. For every configuration σ of the bistructure rAs of positions of a dialogue
game A, and for every pair of positions x P σ and z P σ, such that x Ď z, and for every
Opponent transition m : x Ñ y to a position y P Pos pAq such that y Ď z, there exists a
(possibly empty) path of Player transitions t : y Ñ y1 Ñ ¨ ¨ ¨ Ñ yn Ñ y1 such that y1 P σ and
y1 Ď z. The position y1 is moreover unique.
Proof. See the appendix. J

The result of Proposition 17 justifies to introduce the following definition.

I Definition 18. A coherent strategy on a dialogue game A is defined as a configuration
on the bistructure of positions rAs. Accordingly, the category Coherent is defined as
the category with dialogue games as objects and with configurations σ of the bistructure
rAs( rBs making the diagram below commute

rAs

dA
��

σ // rBs

dB
��

l rAs
lσ // l rBs

where dA and dB are the coalgebra structures
wrt. the comonad l

of the bistructures of positions rAs and rBs.

as morphisms. By construction, the category Coherent is an affine dialogue category with
finite sums, and its tensor product distributes over these finite sums. Moreover, there is a
functor of dialogue category

Dialogue
embedding // Coherent

and the category Coherent embeds fully and faithfully as a dialogue category in the dialogue
category M of coalgebras of the comonad l.

6 Sequential algorithms as stable extensional functions

The connection between dialogue games and bistructures provided by the functor r´s only
works at this stage for the linear fragment of tensorial logic. In particular, it does not include
the quantitative exponential modality of dialogue games and innocent strategies. However,
we explain that this connection is sufficient in order to interpret the qualitative exponential
modality ! of simple games. The connection is provided by the following observation:

I Proposition 19. For every simple game A, there exists an isomorphism

λA : ! rAs Ñ l rshriekpAqs (20)

in the category of bistructures, where ! denotes the qualitative exponential modality on
bistructures introduced by Curien, Plotkin and Winskel.
Proof. See the appendix. J
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Just as announced in the introduction, using this result, one constructs a functor

shriek : Simple ÝÑ Coherent

making the diagram (7) commute. The functor shriek is constructed in such a way that the
composite functor (8) coincides with the functor

Simple
r´s // Coherent

forgetful // Bistr ! // Bistr

One observes moreover that the bistructure rAs of positions of a simple game A is a B-
bistructure in the sense of Curien, Plotkin and Winskel, see [6]. From this follows that its
set of configurations ΓpAq equipped with the stable order ĎR and the extensional order Ď

defines a bidomain in the sense of Berry [2]. From all this, one deduces that

I Proposition 20. There exists a functor

Γ : KleislipSimple, !q // KleislipBistr, !q

between the co-Kleisli categories induced by the Curien-Lamarche modality ! on simple games
and the Curien-Plotkin-Winskel modality ! on bistructures. The definition of the functor Γ is
based on the fact that every sequential algorithm

σ : A ñ B (21)

may be alternatively seen as a sequential strategy

σ : !A ÝÑ B

in the category Simple of simple games, which may be itself seen as an innocent strategy

ϕpσq : shriekpAq ÝÑ B

in the category Dialogue of dialogue games. By definition, the functor Γ transports the
sequential strategy (21) to the composite morphism

! rAs λA // l r shriekpAq s counit // r shriekpAq s
rϕpσqs // rBs

in the category of bistructures, which itself corresponds to the stable and extensional function

Γpσq : ΓpAq ñ ΓpBq

between the bidomains of configurations ΓpAq and ΓpBq induced by the bistructures of positions
rAs and rBs of the simple games A and B.

7 Conclusion

This work on coherent strategies between dialogue games is still at a pretty preliminary stage
but we find useful to share the general methodology of our approach based on tensorial logic
as well as the somewhat unexpected discovery that the category of bistructures contains a
subcategory of dialogue games and coherent strategies. Our final result that every sequential
algorithm between two simple games A and B induces a stable and extensional function
ΓpAq Ñ ΓpBq between the associated bidomains of configurations is related to the extensional
description of sequential algorithms investigated by Curien, Laird and Streicher [14, 7, 18]. In
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particular, Streicher made the important observation that the set of sequential strategies with
errors on a simple game defines a bidomain in the sense of Berry. In that line of research,
it should be possible to refine our Proposition 20 in order to characterize the sequential
algorithms between A and B as a specific class of stable and extensional functions, but we
prefer to leave that aspect for future work. Note that such a characterization has already
been given by Calderon and McCusker [4] for sequential strategies between simple games.
Another question of interest would be to understand the relationship between the present
work on dialogue games and bistructures with the tight connection between sequential games
and Ehrhard’s hypercoherence spaces [8, 22].
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A Appendix: a short account of bistructures

We recall below the notion of bistructure as well as the main definitions of the theory.

I Definition 21. A (countable) bistructure is a quadruple pE,ďL,ďR,¨q where E is a
countable set called the web of the bistructure, ďL, ďR are partial orders on E and ¨ is a
binary reflexive, symmetric relation on E such that:
1. defining ď as the transitive closure of pďL Y ďRq, we have the following factorisation

property:
e ď e1 ñ De2 P E, e ďL e2 ďR e1

2. defining ĺ as the transitive closure of pěL Y ďRq, we have the following properties:
a. ĺ is finitary, i.e., te1|e1 ĺ eu is finite, for all e P E,
b. ĺ is a partial order,
3. (a) ÓLĎ˚ and (b) ÒRĎ¨.

Here, the two compatibility relations are defined by:

e ÓL e1 ðñ D e2 P E, e2 ďL e and e2 ďL e1
e ÒR e1 ðñ D e2 P E, e ďR e2 and e1 ďR e2.

and we write ˚ for the reflexive closure of the complementary of ¨. We then recall below
the definition of configuration.

I Definition 22. A configuration of a bistructure pE,ďL,ďR,¨q is a subset σ Ď E which
is:

consistent: @e, e1 P σ, e ¨ e1, and
secured: @e P σ, @e1 ďR e, De2 P σ, e1 ďL e2.

We write ΓpEq for the set of configurations of a bistructure E, and ΓfinpEq for the subset
of finite configurations. At this point, we recall how Curien, Plokin and Winskel [6] define
a stable order ĎR and an extensional order Ď on the configurations σ, τ P ΓpEq of a given
bistructure E.

I Definition 23. Let E be a bistructure. The stable order ĎR and the extensional order Ď

on configurations are defined as:
ĎR is set-theoretic inclusion,
σ Ď τ ðñ @e P σ, De1 P τ, e ďL e1.
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Note that it follows from the reflexivity of ďL that ĎR is included in Ď. A third relation ĎL

is then defined as follows:

σ ĎL τ ðñ σ Ď τ and p@υ P ΓpEq, pσ Ď υ and υ ĎR τq ñ τ “ υq

Thus, σ ĎL τ means that τ is a ĎR-minimal configuration such that σ Ď τ . We also write
σ ÒR τ when there exists a configuration υ P ΓpEq such that σ ĎR υ and τ ĎR υ.

We briefly recall from [6] that the category Bistr has bistructures as objects and configurations
of A (B as morphisms σ : A Ñ B. The category is ˚-autonomous and has finite sums
provided by the following definitions.

the negation E K of a bistructure pE,ďL,ďR,¨q is defined as pE,ěR,ěL,˚q,
the sum E1 ‘E2 of two bistructures pE1,ď

L
1 ,ď

R
1 ,¨1q and pE2,ď

L
2 ,ď

R
2 ,¨2q is defined as

pE1 ` E2,ď
L
1 ` ď

L
2 ,ď

R
1 ` ď

R
2 ,¨1 ` ¨2q,

the tensor product E1 b E2 of two bistructures pE1,ď
L
1 ,ď

R
1 ,¨1q and pE,ďL2 ,ďR2 ,¨2q is

defined as pE1 ˆ E2,ď
L
1 ˆ ď

L
2 ,ď

R
1 ˆ ď

R
2 ,¨1 ˆ ¨2q,

the bistructure 0 has an empty web, and the bistructure 1 has a singleton web,
the exponential !E of a bistructure pE,ďL,ďR,¨q is defined as pΓfinpEq,ĎL,ĎR, ÒRq

where these structures are introduced in Definition 23.

B Appendix: Proof of Proposition 15

Proof. The proof is established by an easy induction on the formula defining the dialogue
game A. The property is obvious in the case of the two unit games 0 and 1. We treat in
turn the inductive case of the game AbB, of the game A‘B and of the game  A.

First inductive case: the dialogue game AbB

By definition of the dialogue game A b B, the two positions x and y are of the form
x “ xA b xB and y “ yA b yB. Suppose that the two positions x and y are included in a
position z “ zA b zB . In that case, the positions xA and yA obtained by projecting x and y
on the component A are included in the position zA. By induction hypothesis, it follows
that xA X yA is a position of the dialogue game A. One establishes symmetrically that the
intersection xB X yB is a position of the dialogue game B. The set-theoretic intersection
xX y is equal to pxA X yAq b pxB X yBq which is a position of the dialogue game AbB. We
conclude that xX y is a position of the game AbB.

Now, suppose that two positions x “ xA b xB and y “ yA b yB are included in a
position z “ zA b zB and moreover that x X y ďR x and x X y ďR y. In that case, the
two positions xA and yA are included in the position zA. Moreover, xA X yA ď

R xA and
xA X yA ď

R yA since x X y “ pxA X yAq b pxB X yBq and the order ďR is defined in the
bistructure rA b Bs “ rAs b rBs as the componentwise product of ďR in the bistructures
rAs and rBs. By induction hypothesis applied to the game A, it follows that xA ¨rAs yA.
One establishes symmetrically that xB ¨rBs yB. From this, we conclude by definition of
coherence in the bistructure rAbBs “ rAs b rBs that xA b xB ¨rAbBs yA b yB and thus,
that x ¨rAbBs y.

There remains to establish the last statement of the proposition. Suppose that two
positions x “ xAbxB and y “ yAb yB are included in a position z “ zAb zB and moreover
that x ďL xXy and y ďL xXy. The proof that x ˚rAbBs y is done in the same way as in the
previous paragraph. In that case, the two positions xA and yA are included in the position zA.
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Moreover xA ďL xAXyA and yA ďL xAXyA because xXy “ pxAXyAqbpxBXyBq and the
order ďL is defined in the bistructure rAbBs “ rAsbrBs as a componentwise product of ďL
in the bistructures rAs and rBs. By induction hypothesis applied to the game A, it follows
that xA ˚rAs yA. One establishes symmetrically that xB ˚rBs yB . From this, we conclude by
definition of coherence in the bistructure rAbBs “ rAs b rBs that xA b xB ˚rAbBs yA b yB
and thus, that x ˚rAbBs y.
Second inductive case: the dialogue game A‘B

By definition of the dialogue game A‘B, the fact that the two positions x and y are included
in a position z implies that the three positions x, y, z lie in the same component A or B of
the game A‘B. We may suppose without loss of generality that the three positions x, y, z
are positions of the component A. From this, it follows easily by induction hypothesis applied
to the dialogue game A that the intersection x X y is a position in the game A and thus
in the game A ‘ B. The two remaining statements of the proposition are just as easy to
establish by induction.

Third inductive case: the dialogue game  A

By definition of the dialogue game  A, we are in one of the two possible situations: either
the three positions x, y, z are in the component A or one of the two positions x, y is the
initial position ˚ itself. The first case is easily treated by induction hypothesis on A. In the
second case, one of the two positions x and y is equal to the initial position ˚. For the sake of
discussion, we may suppose without loss of generality that the position x is equal to the initial
position ˚. The intersection x X y “ ˚ is a position of the dialogue game  A. Moreover,
it follows from the definition of the bistructure r As of positions of the game  A as the
bistructure l prAsKq that the two positions x and y are coherent in the bistructure r As
since x “ ˚ is the position added to the bistructure rAsK by the necessity modality. Note
that, by definition of l prAsKq, the position x “ ˚ also satisfies ˚ ďR y. Moreover, if y ďL ˚
then y “ ˚, and thus x ˚r As y. This concludes the proof by induction of Proposition 15. J

C Appendix: Proof of Proposition 17

Proof. The proof is based on the very specific properties of the bistructure rAs associated
to a dialogue game A, and in particular on the two Propositions 14 and 15. Given the
position x P σ and the Opponent transition m : x Ñ y such that y Ď z for z P σ, let
y` denote the smallest position (with respect to inclusion) containing the position y as a
subset: y Ď y`, and satisfying y` ďR z. This position y` exists and is defined according to
Proposition 14 by removing from the position z all the subtrees with an Opponent root n
not element of the position y. It is important to observe that the position y` only contains
Player moves besides the moves already in the position y. The situation may be depicted as
follows. Note that the Opponent move m in the position y is depicted in red, and the layer
of Player moves between y and y` is depicted in blue.

m

x

z

m

x

y

z

y
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By the securedness property of the configuration σ, there exists a position y1 P σ such that
y` ďL y1. By Proposition 14, the position y1 is obtained from the position y` by removing a
series of subtrees with Player roots. From this follows in particular that the position xX y1
is obtained from the position xX y` “ x by removing a series of subtrees with Player roots.
Hence, x ďL xX y1.

First claim: the move m appears in the position y1

We claim that the move m appears in the position y1. Suppose that this is no the case,
and that the move m does not appear in the position y1. In that case, a simple argument
shows that the position xX y1 is obtained from the position y1 by removing only subtrees
with roots in the position y` but not in the position y. An important point is that the
roots of these subtrees removed from y1 in order to obtain xX y1 are all Player moves. By
Proposition 14, it thus follows that y1 ďL xX y1. Recall moreover that the two positions x
and y1 are included in the position z and that x ďL xX y1. All this put together establishes
thanks to Proposition 15 that the positions x and y1 are incoherent in the bistructure rAs.
Since the two positions x and y1 are also coherent as elements of the clique σ, they are
necessarily equal. This contradicts the definition of y and of y` and more specifically the
fact that y` ďL y1. The point is that the position x “ y1 can be obtained from the position y
(and thus from the position y`) only at the condition of removing the subtree with Opponent
root m. From this, we conclude that the move m necessarily appears in the position y1.

Second claim: the position x is a subset of the position y1

Now, we want to prove that x Ď y1. Suppose that this is not the case, and let the position x`
be obtained by removing the subtree with Opponent root m from the position y1 P σ. By
construction, one has x` ďR y1. One also has xXx` “ xX y1 since m is not an element of x.
From this follows that x ďL xX x` since we already know that x ďL xX y1. By securedness
of σ, there exists a position x1 P σ such that x` ďL x1. By Proposition 14, the position x1 is
obtained from the position x` by removing subtrees with Player roots. From this follows
that the position x X x1 is obtained from the position x X x` by removing subtrees with
Player roots. Hence, xX x` ďL xX x1 by Proposition 14 again. From this and x ďL xX x`,
we conclude by transitivity that x ďL xX x1. At this point, a simple argument shows that
the position xX x1 is obtained from the position x1 by removing subtrees whose roots stand
among the Player moves in y` but not in y. The fact that these moves are all Player moves
implies that x1 ďL xX x1. The two inequalities x ďL xX x1 and x1 ďL xX x1 together with
the fact that the positions x and x1 are included in the position z implies by Proposition 15
that x and x1 are incoherent in the bistructure rAs. Since the two positions x and x1 are also
coherent as elements of the clique σ, they are equal. The equality x “ x1 establishes that
x Ď y1 since x1 Ď x` Ď y1 by definition of the position x1 P σ.

From the two claims just established, we conclude that y “ xZ tmu is a subset of the
position y1. By construction, the position y1 is at the same time a subset of y` which only
contains Player moves besides the moves already in the position y. From this, we deduce that
the position y1 only contains Player moves besides the moves already in position y, and thus
that there exists a path of Player transitions from the position y to the position y1 P σ. J
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D Appendix: Proof of Proposition 19

Proof. We construct the isomorphism

λA : ! rAs Ñ l rshriekpAqs

in the category of bistructures, for every simple game A. The first step of the construction
is to characterize the configurations σ of the associated bistructure rAs of positions. A
preliminary observation is that there is a one-to-one relationship between (1) the positions of
the simple game A seen as a dialogue game (2) the sequential plays

˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

mk
ÝÑ xk

of the simple game A and (3) the elements of the web of the bistructure rAs. Since every
position x of the bistructure rAs corresponds to a specific sequential play of the simple game A,
every configuration σ is alternatively described by a set of sequential plays (or positions) x P σ
of the simple game A. We claim that every configuration σ of the bistructure rAs is closed
under even-length prefix in the sense that every sequential play (or position) y which is even-
length prefix of a sequential play (or position) x P σ is also an element of the configuration σ.
In order to establish our claim, we first observe that by Proposition 14, a position y is an
even-length prefix of the position x precisely when y ďR x. Suppose that we are in that
case, and that y ďR x. By securedness of σ, we know that there exists a position z P σ

such that y ďL z. We would like to prove that z “ y. Suppose that it is not the case
and that z is a strict prefix of y. In that case, z P σ is also a strict prefix of x P σ. By
Proposition 14, the position z is obtained from the position y by removing a subtree (in that
case, a branch) with a Player root. Hence, the position z is also obtained from the position x
by removing a subtree with a Player root since y is a prefix of x. From this, we conclude by
Proposition 14 that x ďL z. By definition of a bistructure, the two positions x and z are thus
incoherent in the bistructure rAs. The two positions x and z are also coherent as elements
of the configuration σ. From this, we conclude that x “ z. This contradicts the fact that
the position z is a strict prefix of the position y and thus of the position x. From this, we
conclude that z “ y, and thus, that the configuration σ is closed under even-length prefix.

Similarly, we may establish a complementary property of the configuration σ, which states
that every strict prefix y P σ of a position x P σ is of even length. The reason is that the two
positions x and y of the configuration σ are coherent, whereas the relation x ďL y (and thus
x ˚rAs y) would hold if the position y was of odd length. This second observation leads us
to introduce a useful variant of our Definition 5 of sequential strategy on a dialogue game A,
see for instance [19].

I Definition 24 (sequential strategy with errors). A sequential strategy σ with errors on a
dialogue game A is defined as set of sequential plays which

has a starting point: σ contains the empty play ˚ for exactly one initial position ˚,
is closed under even-length prefix, in the sense that for every even-length prefix s of a
sequential play t, one has t P σ ñ s P σ,
has no intermediate errors, in the sense that for every odd-length prefix s of a sequential
play t, one has ps P σ and t P σq ñ s “ t,
is deterministic, in the sense that for every even-length sequential play s, s ¨m ¨ n1 P σ

and s ¨m ¨ n2 P σ implies that n1 “ n2,
for all plays s and all moves m,n, n1, n2 of the dialogue game.
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Note that by definition of a strategy σ with errors, every odd-length position s of the strategy σ
is maximal among the positions in σ. Such an odd-length position of the strategy σ is called
an error of the strategy. We have just established that every non-empty configuration σ

of the bistructure rAs of positions of a simple game A satisfies the three first properties
of Definition 5. We prove the fourth property (determinism) below. Suppose given an
even-length position x of the configuration σ, alternatively seen as a sequential play:

s “ ˚
m1
ÝÑ x1

m2
ÝÑ ¨ ¨ ¨

m2k
ÝÑ x2k “ x

and suppose that the two sequential plays y1 “ s ¨m ¨ n1 and y2 “ s ¨m ¨ n2 are positions in
the configuration σ. We claim that n1 “ n2. The proof is very easy, since it simply consists
in observing that the two positions y1 and y2 are strictly incoherent in the bistructure rAs
when the moves n1 and n2 are different. Since the positions y1 and y2 are elements of the
configuration σ, and thus coherent, we conclude that n1 “ n2. This establishes that every
non-empty configuration σ of the bistructure rAs defines a sequential strategy with errors of
the underlying simple game A. Conversely, it is easy to check that every sequential strategy σ
with errors of the simple game A defines a non-empty configuration of the bistructure rAs of
configurations. From this we conclude that

Fact: there is a one-to-one relationship between the non-empty configurations of
the bistructure rAs and the sequential strategies with errors of the simple game A

At this point, an obvious but important observation is that every sequential strategy σ with
errors of the simple game A may be alternatively seen as a non-empty subtree of A which
only branches on Opponent moves. This subtree is entirely described by its set maxpospσq
of maximal positions. Note that the positions in maxpospσq may be either of even-length or
of odd-length. The sequential strategy σ with errors is then recovered from maxpospσq as

σ “ maxpospσq Y even-length-prefixpmaxpospσqq

where even-length-prefixpXq denotes the set of even-length prefixes of a position in X.
This establishes that there is a one-to-one relationship between the non-empty configurations
of rAs and the non-empty subtrees of the simple game A which only branch on Opponent
moves. Now, such a non-empty subtree which only branches on Opponent moves in the
simple game A is the same thing as a position in the dialogue game shriekpAq. From this,
we conclude that:

Fact: there is a one-to-one relationship between the non-empty configurations of
the bistructure rAs and the positions of the dialogue game shriekpAq

We use the notation configpxq for the non-empty configuration σ of the bistructure rAs
associated to the position x in the dialogue game shriekpAq. At this point, starting from
Proposition 14, it is not difficult to establish that

configpxq ĎR configpyq ðñ x ďR y

because configpxq Ď configpyq precisely when x Ď y and the position x may be obtained
from the position y by removing subtrees with Opponent moves as roots ; that

configpxq ĎL configpyq ðñ x ďL y
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precisely when y Ď x and the position y may be obtained from the position x by removing
subtrees with Player moves as roots ; and finally that

configpxq ÒR configpyq ðñ x ¨rshriekpAqs y

for every two positions x, y of the dialogue game shriekpAq. This establishes that the
bistructure rshriekpAqs of positions of the dialogue game shriekpAq is isomorphic to the
bistructure ! rAs restricted to its non-empty configurations. As for the empty configuration,
one has that

H ĎR σ H ¨!A σ

for every configuration σ of the bistructure ! rAs. This concludes our proof that the bistructure
! rAs is isomorphic to the bistructure l rshriekpAqs for every simple game A. J
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