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—— Abstract

We give the first relationally parametric model of the extensional calculus of constructions. Our

model remains as simple as traditional PER models of types, but unlike them, it additionally
permits the relating of terms that implement abstract types in different ways. Using our model,
we can validate the soundness of quotient types, as well as derive strong equality axioms for
Church-encoded data, such as the usual induction principles for Church naturals and booleans,
and the eta law for strong dependent pair types. Furthermore, we show that such equivalences,
justified by relationally parametric reasoning, may soundly be internalized (i.e., added as equality
axioms to our type theory). Thus, we demonstrate that it is possible to interpret equality
in a dependently-typed setting using parametricity. The key idea behind our approach is to
interpret types as so-called quasi-PERs (or zigzag-complete relations), which enable us to model
the symmetry and transitivity of equality while at the same time allowing abstract types with
different representations to be equated.
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1 Introduction

Reynolds [23] famously introduced the concept of relational parametricity with a fable about
data abstraction. Professors Bessel and Descartes, each teaching a class on complex numbers,
defined them differently in the first lecture, the former using polar coordinates and the latter
using (of course) cartesian coordinates. But despite accidentally trading sections after the
first lecture, they never taught their students anything false, since after the first class, both
professors proved all their theorems in terms of the defined operations on complex numbers,
and never in terms of their underlying coordinate representation.

Reynolds formalized this idea by giving a semantics for System F in which each type
denoted not just a set of well-formed terms, but a logical relation between them, defined
recursively on the type structure of the language. Then, the fact that well-typed client
programs were insensitive to a specific choice of implementation could be formalized in terms
of their taking logically related inputs to logically related results. Since the two constructions
of the complex numbers share the same interface, and it is easy to show they are logically
related at that interface, any client of the interface must return equivalent results regardless of
which implementation of the interface is used. Hence, parametricity gives a way of modelling
a general notion of representation-independent program equivalence, significantly coarser
(and thus more flexible) than standard notions of set-theoretic equality.

Subsequently, Plotkin and Abadi [22] showed how to build a logic in which parametricity
could be used to prove the equivalence of System F programs. Plotkin-Abadi logic is a
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system in the LCF tradition, where an external logic is used to reason about the behavior
of programs written in a particular programming language. This logic lets us prove, for
example, that the polar and cartesian representations of the complex numbers are indeed
equal at a suitable existential type.

More recently, there has been a great deal of interest in unifying programming languages
with their program logic, by means of dependent type theory [21]. Dependent type systems
allow types to mention program terms and thereby state strong invariants about the behavior
of programs. The ability to put strong preconditions on functions means that we can
support operations that might be unsafe in general (e.g., unchecked array access) without
compromising the safety of the programming language.

However, the notion of equality available in dependent type theory has historically been
limited. In intensional type theories (e.g., [2]), equality is given purely as the S-equality of
terms. Even the more generous approach of extensional type theory [20, 1] still equips each
set with an intrinsic notion of equality at the time of its definition. The approach of fixing
a notion of equality is at odds with the “outside view” of equality suggested by relational
parametricity, where equivalence is determined relative to the operations exported to a client.
This limitation is especially galling given the recent work of Bernardy et al. [6], who show that
the syntax of type theory is wholly compatible with parametricity—every well-typed term in
the calculus of constructions respects the relationally parametric interpretation associated
with its type—but there is no way to internalize this fact.

As a result, though it is possible to define many types such as existentials, coproducts,
and dependent pairs, it is not possible to prove that they satisfy the expected equational
properties (e.g., n-rules). This is particularly frustrating in a dependently-typed setting,
where being able to internalize parametricity properties would greatly facilitate verification.

In this paper, we give the first relationally parametric model of an extensional variant
of the calculus of constructions [11], by means of a realizability-style interpretation of type
theory [14]. Our model lets us prove equalities and induction principles using parametricity-
based reasoning, then internalize these properties as new axioms. In other words, we can
internalize relational parametricity into our dependent type theory.

We interpret the types of the calculus of constructions by means of a logical relations
model, and interpret the identity type using the relations our model defines. However, an
off-the-shelf logical relation is only guaranteed to be a reflexive congruence for well-typed
terms (the fundamental property). Logical relations in general are not necessarily symmetric
or transitive, both of which are needed to use the relation as a model of equality.

A common approach to gaining symmetry and transitivity is to require the relations
interpreting types to be partial equivalence relations (PERs), which are symmetric and
transitive by definition. However, we pay a high price for mandating symmetry: relating
terms with different representations (e.g., Peano and binary numbers) is no longer possible,
since we can no longer relate different things on each side of the relation. Consequently, we
can no longer prove representation independence results in a natural way.

Traditionally, this difficulty is resolved by giving a Reynolds-style relational semantics for
the language together with a PER model in a mutually recursive construction, and proving a
correspondence between the two (the identity extension lemma). However, this approach
more than doubles the work involved in defining a model, which hits particularly hard when
facing the complex models of dependent type theory. Moreover, to our knowledge, no such
parametric PER models of dependent type theory have yet been developed.

Our key innovation is to model types instead using so-called quasi-PERs (a.k.a. difunc-
tional relations, or zigzag-complete relations), which generalize PERs to the asymmetric
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K = x| Hz: X.k | Ha: k. & Kinds
X,A = Tla:x. X | Hz: X.Y | e=x¢ Types

| X:X. A| Ae | da:k.A| AB | «a
e = z | A:X.e|ee| da:k.e | eA | refl Terms
v n= Az:X.e | da:k.e | refl Values
r = - | Te: X | Ta:k Contexts

Figure 1 Syntax.

case. Using quasi-PERs, we give a single relational model which supports symmetry and
transitivity of equality as well as the relating of terms with differing type representations.
To illustrate this point, we show how to state parametricity axioms for some types familiar
from System F such as Church numerals and existentials. Exploiting the presence of type
dependency, we also show how parametricity can be used to recover strong dependent pairs
(i.e., Yz : X.Y with m and 7o projections) from a Church encoding, as well as showing the
soundness of quotient types in our model. Proof details can be found in the accompanying
extended technical appendix, available online at http://www.mpi-sws.org/ dreyer/.

2 Syntax, Typing and Operational Semantics

Our overall system is an explicitly-typed version of the calculus of constructions, extended
with an identity type and an elimination rule for equality based on equality reflection. We
use extensional type theory to make equality axioms (e.g., n for Church encodings of pairs)
behave well. In an intensional system, equality axioms make subject reduction fail, since
the eliminator for the equality type gets stuck. Extensional type theory makes equality
elimination implicit, and so has better computational behavior. In Figure 1, we give the
syntactic categories of our type system, and in Figure 2, we list the judgements in our system.
Most of the kinding and typing rules are standard, as is the standard call-by-name evaluation
semantics, and so we omit them for space (they can be found in the appendix).

We present our system with distinct syntactic categories for kinds (ranged over by
metavariables k), types (ranged over by metavariables X,Y, A, B, C, and type variables a, 3)
and terms (ranged over by metavariables e, and term variables x,y, z). We typically adopt
the convention of using A, B, and C for type constructors of arbitrary kind, and X and
Y for type constructors of base kind. Almost all of the typing rules are standard for the
calculus of constructions, and we discuss only our variations in detail.

Our treatment of equality follows extensional type theory. We introduce identities with
refl when two terms are equal, and so the definitional equality for identity types satisfies
the uniqueness of identity proofs property (a.k.a. Axiom K [17]). We also support equality
reflection: if ' Fe, : e =x €/, then T'F e = ¢’ : X. This rule makes typechecking undecidable,
as typing derivations may need to invent equality proofs. To summarize, our definitional
equality is just the fn-theory of the lambda calculus plus rules for equality types. For
expository reasons, we have not included any parametricity properties in definitional equality,
saving these for Section 5.

3 Semantics

Our overall semantics is a realizability model, in which types are interpreted as relations
between closed terms e. However, since the syntactic types appearing within terms are
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T" ok Context Well-formedness I'F &k : kind Kind Well-formedness
'HA:x Kinding of Type Constructors I'ke: X Typing of Terms
'k =+k'":kind Kind Equality I'-A=A":x Type Equality
F'Fe=e€:X Term Equality e e Operational Semantics

Figure 2 Summary of Judgments.

computationally irrelevant, we simplify matters by working with relations over Exp, the set
of equivalence classes of closed terms modulo differences in syntactic types. That is, in the
model, we consider Az : X.e=Ax:Y.e, Ada:k.e=Xa:k'. e, and e A = e B, for arbitrary
X,Y, k, k', A, B. This is analogous to building the model with type-erased terms, and we
will sometimes write __ in place of (irrelevant) type annotations and arguments.

3.1 Quasi-PERs

The primary technical innovation in our work is to switch from a PER semantics of types to
an interpretation based on quasi-PERs, which generalize PERs to the asymmetric case.

» Definition 1. (Quasi-PER) A quasi-PER between two sets X and Y is a zigzag-complete
relation R C X x Y: if (z,y) € R, and (/,y') € R and («/,y) € R, then (z,y') € R.

The zigzag condition is best visualized pictorially:

So if R tells us that two elements of X are related to a given y, then they are related to all
the same elements of Y. Indeed, given a QPER R C X x Y, both Ro R~!is a PER on X,
and R"'oRisaPERonY. (All QPERs arise in this way, and so this could equivalently be
taken as a definition of quasi-PERs.)

Like PERs, QPERs form a complete lattice. The meet of two QPERs is the intersection,
and indeed they are closed under arbitrary intersections. As a result, they also have arbitrary
joins, with the join | | R defined as the intersection of every QPER containing | JR. The join
will, in general, have more elements that the union, best illustrated by the direct construction
of the join:

|_|0R - UR
|_|k+1R = URU{(z,y) | (z,y) e, R A (2, ¢) €, R A (2y) € L], R}
LR = UkEN LR

So the join takes the union and fills in all the missing zigzags.

Our reason for using QPERs in our semantics of types is quite simple. When giving
a relational type interpretation, we are pulled in two contrary directions. First, we want
to use the relation to model representation independence: we want to be able to say that
two different implementations of the same interface are equal. For this, we need to consider
relations between different sets. Second, we also want to use our logical relation to define
equality at each type. For this, we (seemingly) need symmetry and transitivity properties
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on the relations we use to interpret types. These apparently conflicting demands can be
reconciled by interpreting types as QPERs. While QPERs are capable of relating terms of
different types, they also induce a canonical equivalence relation, which we can use in turn
to model equality. The trick is that this equivalence relation is not a relation on terms, but
on pairs of related terms.

To see how this works, first suppose we have two well-typed terms e and ¢ at some
type X. The fundamental property of logical relations will tell us that (e, es) € [X] and
(t1,t2) € [X], where (e1,ea) and (t1,t2) are essentially e and ¢ under different, but related,
environments. The model of e = ¢ : X will then be the proposition that (e1,t2) € [X].

For the relation to model symmetry, i.e., that e = ¢t implies ¢t = e for e,t : X, we will
need to show that (e1,t2) € [X] (together with the knowledge that (e, e2) and (t1,t2) are
in [X7], thanks to the fundamental property) implies (¢1,e3) € [X]. But this is precisely the
definition of zigzag closure!

Similarly, we can show that transitivity holds for well-typed terms. Consider the diagram:

@&—®

Here, (a1, as), (b1,b2), and (c1, c2) can again be thought of as programs a, b, ¢ under different
(but related) environments. Given that (a1,b2) and (b1,c2) are in [X], the zigzag closure
lets us derive (a1, cz) € [X], as required for transitivity.

Consequently, each QPER @ C R x S may also be viewed as a PER on the set R x S:

» Definition 2. (Canonically induced PER) Every QPER @ C R x S induces an equivalence
relation ~g C @ x @ (and hence a PER on R x S), defined as (a1, az) ~¢ (b1,b2) iff the
zigzag {(a1, a2), (b1,b2), (a1,b2), (b1,a2)} € Q. (We write ~ as shorthand for ~¢ if @ is
evident from context.)

Hence, a QPER provides a way of telling when pairs of related terms are equivalent. In this
sense, our approach reverses the usual method of building parametric models. Instead of
building a PER model of types as well as a relational model between such PERs, we use
QPERs to directly define a relational model, from which a canonical PER model can then
be derived after the fact.

3.2 A Comparison with PER Models

Readers familiar with traditional parametric models may be surprised with the QPER
structure: since the composition of a QPER with itself is a PER, shouldn’t QPERs have
merely the same expressive power as PERs? In fact, QPERs give rise to a significantly
coarser notion of program equivalence than PERs.

Traditional PER models are symmetric, and therefore cannot relate different implementa-
tions of the same type (e.g., PER models cannot show that Peano and binary representations
of the natural numbers are equivalent). This deficiency is then rectified by giving a second
relational model. However, the asymmetry inherent in QPERs allows us to relate different
implementations, without having to give two models — indeed, our model seems to validate
all of the program equivalences provable in Plotkin-Abadi logic.
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V(ei,ea) € Roer L Aesl A
CaND 2 { R € QPER(Exp,Exp) | V(e1,es) € R, (€}, €)) € Exp®.
e1 o e Ney o ey, = (e),e5) €R

Figure 3 Candidate Relations.

3.3 The Semantic Interpretation

With these preliminaries in place, we can move on to a description of the model.

3.3.1 Contexts

The interpretation of the I ok judgment is the set of grounding environments -y that satisfy
it. We give the interpretation in Figure 4.

An environment v is in the interpretation of the empty context iff it is the empty
environment. It is in the interpretation of the context I', 2 : X ok iff it is an element of [I" ok],
together with a pair (e, e’) of closed terms from the interpretation of T' - X : x. Finally,
~ is in the interpretation of the context I',« : k ok iff it is an element of [I" ok], together
with a tuple ((4, A"), R). Here, A and A’ are closed syntactic types, and R is the semantic
interpretation of the type. Note that there are no well-formedness constraints on the syntactic
types A and A’: we do not need them, since the operational semantics never examines a type
constructor, and the relation R carries all the necessary semantic constraints.

In Figure 4, we also define a notion of equivalence v ~r o« 7' on environments. This
relation says that the relations R and R’ to which v and ' map the same type variable
a must be equal, and that pairs of terms (e1,e})/x and (ez,e)/x must lie in the same
equivalence class of the relation. The ~r o relation is indeed a PER, but actually proving
that fact can only be done after the proof of soundness of the interpretation of types and
kinds. This is due to the fact that the definition is “biased”—the second line asymmetrically
uses [['F X : %] 1 on the right-hand side.

In Figure 5, we give notation concerning environments that we will use in the sequel.
~ contains left- and right-bindings for each of the variables in its domain; 7; is the left
projection of the environment, and 7, is the right projection. We write v(e) to indicate the
pair of terms we get from the left and right projections of v applied to e.

3.3.2 Kinds

)

We give the semantics of kinds in Figure 7. We begin by giving a “pre-interpretation’
function ||-|| (defined in Figure 6), which gives an approximate interpretation of kinds,
without reference to term or type arguments. This interpretation is less precise than we
want, but is a useful device to simplify the argument that our main interpretation function
[-] is well-defined. That main interpretation of kinds, [I' F & : kind], on the other hand, is
relative to a context «y. The interpretation of the base kind I' - « : kind, given in Figure 3,
is a slight restriction of the set of quasi-PERs on terms. Namely, we restrict ourselves to
quasi-PERs of terminating terms, closed under expansion and reduction.

The interpretation of the higher kind T+ I : k. &’ : kind is morally a currying of the
interpretation I', « : k F &’ : kind. In particular, it is the subset of functions ||| — ||x’||, such
that (1) we ignore the syntactic part of an argument triple ((X, X2), R) (the condition in
the first line of the interpretation in Figure 7), and (2) on any argument R € [I' F & : kind] +,
the result is in [I', o : k = &' : kind] (7, ((41, A2), R)/a) (the second and third lines of the
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[I" ok] e PN

[ ok] = {0}

[T,z: X ok] = {(v,(e,€)/z)|v€[Tok]A(e,e)e[lFX:x] ~}

[T,a:k0k] = {(’y,((X,X'),R)/a) |7€[[Fok]]/\((X,X'),R)ETypeQX [T+ & : kind] 7}
()~ ok () <= always

(71, (e, €1)/) ~(r,e:x ok) (Y2, (e2, er)/x) <= v ~rok Y2 A(€1,€1) ~rrxag v (e2,€5)
(’717 (Aa Rl)/a) ~ (T, ik ok) (’727 (B7 RQ)/C!) — Y1 ~T ok V2 N Rl = R2

Figure 4 Interpretations of Contexts and Environment Equivalence.

()i = 0 e) = (mle)z(e)
(7, (e1, e2) /)i = Yi,ei/x 1(A) = (m(A),72(4)
(v, (A1, A2), R) )i = i, Aifa (k) = (n(k) (k)

Figure 5 Notation.

interpreting clause in Figure 7). On anything outside the dependent domain, we force the
result to be a fixed (“dummy”) element !,» € ||’|| (the fourth line). While not technically
necessary, this last condition simplifies the proof, by freeing us of the need to quotient by the
irrelevant possible values of a kind outside the domain of the context. Similarly, elements
of ' F1lz : X. k' : kind are the currying of the interpretation I,z : X F £’ : kind, with the
condition that elements return the same result for all equivalent pairs (e, ez2) ~¢ (€], €5),
where X = [['F X : ] ~ is the relational interpretation of X.

3.3.3 Type Constructors

In Figure 8, we give the interpretation of the type constructors of our language, as a function
that takes a kinding derivation and returns an element of the appropriate semantic kind.
The first line of the definition says that the interpretation of I' - « : k proceeds by looking
up « in the environment argument 7, and returning the relation component of the triple.
(Here and elsewhere, we use overbar notation to denote pairs, e.g., A denotes (A, A).)

The interpretation of a lambda-abstraction Aa : k. A is just a function that takes an
argument in k, and returns the result of interpreting A in an extended environment. Likewise,
a type constructor application A B takes the meaning of A, and passes it the syntax and
semantics of B. Similarly, a term abstraction Az : X. A just returns a function which takes a
pair (e, e’), and returns the interpretation of A in an extended environment, and application
A e passes v(e), the pair of related instantiations of e, to the interpretation of A.

When the kind conversion rule is used to replace the kind of the constructor with an
equivalent one, we simply interpret the subderivation and return that as our answer. As a
result, however, we need an easy-to-prove coherence property for our semantic interpretations,
stating that the interpretation of A is the same at any kind it inhabits (see the appendix).

Next, we give the interpretations of types of base kind. The kinding interpretation
requires that such types be interpreted as relations (specifically, QPERs) between terms.
The interpretation of the function type Iz : X. Y is the set of (terminating) terms that take
related arguments in X to related results in Y, in the context extended by the argument
pair. This is essentially the usual rule for function types in logical relations, adjusted to
support dependency. The interpretation of the polymorphic type Ila : k. X puts a pair of
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[l = {0}
1] = Rel(Exp, Bxp) IT,z: X| = {(v,e/z) | v € IT| A& € Exp®}
Iz : X. k|| = Exp 2—) l&|l ~ el A
Ha: k. k|| = (Type® x ||&]]) — ||« 5 i
| l (Typ &1 — NIl IT,a: k| = (7, (A, R)/a) | A € Type® A
Re |[|x]|

Le = 0

!Hz:X. K = )\(6,6/) € EXpZ. !re

!Ha:m K/ == )\(Z,R) S T}’P62 X ”‘%H !K'

Figure 6 Pre-Interpretations of Kinds and Contexts.

[T'F & : kind] € |T]] = P(||&])

[T F = : kind] ~ = CAND
VA,B,R € |s||. T(A,R) = T(B,R) A
VA, R € [T'F & : kind] 7.

T(A,R) €l,a:kF« :kind] (v, (4, R)/a)
AVA,RE[TF k:kind] 7. T(A, R) = !,/
[CHTz: X. k:kind] v = let X =[[F X : %] ~in
Ve, € X.e~ge = Ré=Reé A
Re|llz: X. x| | Vee X. Rec [[ z: X Fk:kind] (v,e/x) A
ved X.Re

[CHIa: k. & :kind] v = < T € ||la: k. &

Figure 7 Interpretations of Kinds.

type abstractions in the relation, if for each relation R in kind &, their bodies are related at
the term relation for X, in the environment augmented with R for «.

A pair of terms reducing to (refl, refl) inhabit the identity type e; =x es only when
v1(e1) and y2(e2) are related at X (alternatively, y(e1) ~ ¢ 7y(ez2)). Since the identity type is
interpreted by a relation containing at most one pair of values, we validate axiom K.

4  Soundness

Our main theorem is a proof of Reynolds’ fundamental property for our language. By
induction over derivations, we can show that every well-typed term is related to itself by the
relational interpretation of its type. Our proof proceeds in two stages.

1. Using the pre-interpretation of contexts and kinds given in Figure 6, which are clearly well-
defined, we first show basic structural properties of the main semantic
interpretation—mamely, that it is well-defined, that it is coherent, and that it satis-
fies semantic weakening and substitution properties. (For space reasons, we do not state
the exact lemmas in this extended abstract, but the lemmas and their proofs can be
found in the appendix.)

2. Then, we prove the fundamental property. This is a large structural induction over the
syntax of kind, type, and term derivations, as well as equality derivations. We state the
fundamental property below, and give the complete proof in the appendix.

4.1 The Pre-Interpretation and Structural Properties

The pre-interpretation of kinds ||x|| (Figure 6) interprets x as a set, by induction on the syntax
of k, ignoring term and type indices. The pre-interpretation |T'|| merely characterizes the
shape of environments that semantically realize I', without placing any interesting invariants
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[CHA:s] € |ITlF = [l=]

[T,a: 65, Fa: k] v R if v(a) = (A, R)

[T,a:kFA:k] (7,(B,R)/c) if Re [+ & : kind] ~
AW otherwise
[CHA:Ta: k. &) v ((B),[CFB:x]v)

2. [T,z: XFA:k] (v,e/z) ifee[IFX:x] vy

[TFXa: k. A:Tla: k. 6] v
[T+~ AB:[B/a]&] v

MB,R)

[THFXMe: X . A:llz: X. kK] v = Xé I otherwise

[THAe:[e/z]k] v = [THA:Ilz: X.&] vv(e)

[THA:k] v = [+ A:k] v (when T+ k= ' : kind)
elj,/\e/ll,/\

[Tz : X.Y : %] v={ (e1,€1) | V(e e5) €[CF X :x] 7.
(e1 ea,el €5) € [T,z : X Y : %] (v, (e2,e5)/x)
elANe LA
[CFTa: k. X 5] v=1 (e,€') | VA, A, Re [k «:kind] 7.
(e Ay A el a: sk X %] (v,((4,A),R)/a)
[TCHei=xez:x] v={(e,e) | e—"reflAe " refl A (v1(e1),72(e2)) € [T F X : x] v}

Figure 8 Interpretations of Type Constructors.

on them. This turns out to be sufficient for “bootstrapping” purposes (i.e., for defining the
main semantic interpretations [-]), as well as for proving various properties like semantic
weakening and substitution. By virtue of their being hygienic and structural, these properties
hold under the assumption that the environments they quantify over merely belong to the
pre-interpretation of contexts rather than the main interpretation. As a result, we can
establish these properties independently of the fundamental theorem, and thus rely on them
freely (not just inductively) when proving the fundamental theorem.

4.2 Fundamental Property

Like the structural properties, we show the fundamental theorem by an inductive case
analysis of the typing derivation. Unlike the structural properties, the fundamental theorem
does require that environments -y be semantically well-formed (i.e., are elements of [T" ok]).
Furthermore, we will need to show that the interpretations are appropriately invariant with
respect to environment equivalence (v ~r ok 7'). Since there are many different judgment
forms, we have to give clauses for each judgment form.

» Theorem 3 (Fundamental Property).

Suppose T ok, and v,7" € [T ok] such that v ~~'. Then:

If D ::TF k:kind, then [D] v =[D] +'.

If D:TFA:k, then [D] v=[D] +'.

IfD:Tke:X theny(e) ~v'(e) € [T F X : %] 7.

If D:THFA: K, then [D] v € [Tk & : kind] ~.
IfT'F k =k :kind, then [ F x : kind] v = [T F &’ : kind] +'.
IfTHFA=A g, then[THA: k] y=[TFA : k] +.
IfTFe  =ex: X, then y(er) ~7'(e2) € [T+ X : «] .

Nooa,rwDdbH=

This theorem justifies the use of parametricity reasoning about our language, since all
well-typed terms are self-related by the corresponding relational interpretations of types. As
a corollary, parametricity implies consistency: since the relational interpretation of the type
Il @ *. « is empty, it must also be a syntactically uninhabited type.
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5 Examples

In all of the following proofs we assume I' is well-formed, and that environment v inhabits
[T ok] in order to appeal to the fundamental property.

5.1 Sums and Natural Numbers

Recall the Church encodings of some the basic data types in System F — the empty type 0 as
Il : *. «, the sum type A+ B as Ila : *. (A — a) = (B — a) — «, and the natural numbers
N as Ha: . @ = (@« = a) = a. Our model validates the expected 5 and 7 properties for
these types. The proofs follow on the standard lines, and so we leave the details to the
appendix. It is also possible to use parametricity to internalize the induction principles. This
is more convenient to state with dependent records, so we will give that example next.

5.2 Dependent Records

Cartesian products can be defined in the usual way, and there are no surprises with them.

More interesting is the fact that dependent records (X-types) are realizable in our model.
Yz: X.YE2Ta:+ (Iz: X.Y = a) = «

with the introduction form:
pairzy S da:x Me:z: XY sa. kzy

However, when it comes to eliminators, this type looks like a weak pair type, corresponding
to a type with an eliminator let (z,y) = p in €/, rather than projective eliminators like 71 (p)
and m3(p). In the absence of parametricity, this is correct, but it is a remarkable fact [12]
that in a parametric model, we can realize strong eliminators for this type, defined as follows:
fst: (Bz: X.Y) > X =Xp.p X (Az. \y. 2)
snd: Tp: (Zz: X.Y). [fstp/z]Y = Ap. p (Zx : X.Y) pair ([fstp/z]Y) (Az. A\y. y)
Note that the projective eliminator snd is not syntactically well-typed. Instead, we will use
our parametric model to show that it has the correct semantic type and equations, and so it
realizes the projective eliminator. This means it is safe to add as an axiom to our system,
and that it will have good computational behavior.

» Lemma 4. (Normal forms for eta-expanded pairs)

If (p,p)) € [THXz:X.Y :%] ~, then there exist terms u,u’,t,t' such that (u,u') €
[TEX:«] vand (t,t') € T,z: XY %] (v, (u,u')/x) such that p __ pair <* pair u t and
p' __ pair +<* pairu’ t'.

» Lemma 5. (Weak eta for pairs)

If (p,p) € [TFXx: X.Y : %] ~, then (p,p') ~ (p__ pair,p’ __ pair).

The proofs of these two lemmas are essentially standard, and together imply that this type
correctly encodes a weak pair. We use these facts to show snd has the correct semantic type:

» Lemma 6. (Semantic well-typedness for snd)

We have that (snd,snd) € [T F1Ig: (8z: X.Y). [fstq/z]Y : %] ~.

This proof is direct, but it relies critically on the context and environment being well-formed,
since it appeals to the fundamental property in several places.

» Corollary 7. (Projective eta for X-types)

If (p,p) € [TF3x: X.Y : %] v, then (p,p’) ~ (pair (fstp) (snd p), pair (fstp’) (sndp’)).

This follows easily with the previous three lemmas in hand.

441

CSL’13



442

Internalizing Relational Parametricity in the Extensional Calculus of Constructions

5.3 Induction for the Natural Numbers

Though Church numerals are directly definable with polymorphism, their induction principle
is not. That is, there is no syntactically typable term

ind : TIP : N — *. P(z) = (IlIn : N. P(n) — P(sn)) = In:N. P(n)

However, we can show that this type is realizable within our model. That is, we can show
that the term

AP, i, f,n. leto = pairziin

let h = Ap. pair (s (fstp)) (f (fstp) (sndp)) in
snd (n (Xz : N. P(x)) o h)

is related to itself at the type above. By using a dependent pair, we we can package up
the two arguments of IIn : N. P(n) — P(s n) into a single argument, which is what the step
function in the Church encoding expects. We then use parametricity to prove that for all n,
applying the iterator n (Xz : N. P(x)) o h gives us a record whose first component is n, and
so whose second component must be of type P(n). Details are given in the appendix.

5.4 Existential Types
Our model supports the standard encoding of existential types:

Ja:k X(a) & HOB:* Ha:k X(a)—B) =B
pack : Mok X(a) = Ja: k. X(a)
pack = da:k. Ax. (Af 1+ Ak kax)

We can easily validate the expected 8 and n laws for existentials, as well as the represent-
ation independence principle, which allows existential packages with different but related
implementations to be proven equivalent. Again, the proofs are standard (e.g., see [4]), and
we leave them for the appendix. More interestingly, and perhaps surprisingly, we can show
the soundness of an existential equality principle similar to the one from Plotkin-Abadi logic
(left-to-right direction of Theorem 7 of [22]):

» Proposition 8 (Existential equality). If (e,e’) € [['F 3o : k. X : %] ~, then there exist

1. A A € Type,

2. Re[I'kk:kind] v

3. (t)el,a:sbX %] (v,((A,A),R)/a)

such that (e,€) ~[r-3a:x. x:5] v (Pack A t, pack A" t').

This says that any two terms (e, e’) related at existential type must be equivalent to some
packages (pack A t,pack A’ t') that are related by a representation independence argument.

Proof. First consider the pair (e,e’), and the application (¢ _, e _). Starting from

(e,e') € [T F 3o : k. X : %] 7, we instantiate the type abstraction on both sides and choose
the relational interpretation of the abstract type to be the following, defined by a QPER join:

(A, A') € Type® A

Il
s= U {(Pac"“‘e’ Pack A€} | () e [Dia: w b X <] (1, (A ), B) /) }
€llx] v

We write T to indicate the reduction and expansion-closure of a relation on terms 7". Next,
we verify that (pack,pack) € [I,8:*Fa: k. X = 8: %] (v,(_,S)/B). From this we get:

(e _ pack, ¢/ pack) € S
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Note that these terms are eta-expansions of (e, €’), which must therefore be equivalent to
(pack __ s,pack __ ') for some s and 5.

Ideally, we would like to use the fact that (pack _ s,pack _ s’) € S to conclude there
is a QPER R such that (s,s") € [Ia:kF X : %] (v,(_, R)/«a). However, the QPER-join
adds elements that are not in the union, so this does not immediately follow. Instead, we do
induction on the join to show that there is some (pack __ ¢, pack _ t') ~ (pack __s,pack __ )
such that (¢,') € [I,a: kX : %] (v,(_, R)/a). Then, by the eta-rule for existentials, and
transitivity of ~ri-34.x. x:4] 4, We can conclude that (e,e’) ~ (pack _ ¢, pack __ t'). <

That is, the two terms that witness the relation are not necessarily the exact terms that
e and e’ evaluate to, but rather are equivalent to them. (The same caveat holds for the
existential equality principle in Plotkin-Abadi logic.) Because of this issue, we cannot give a
direct realizer internalizing this reasoning principle in our type theory, as we need to extend
the type theory with a form of proof-irrelevance first: knowing two existential packages are
equal does not tell us which relation witnesses that equality! This we leave for future work.

However, we can still of course add equality axioms for particular instances of representa-
tion independence. For example, consider the following two existential packages:

X £ Ja:x ax (a—a)x (a— bool)
M :X = packN (z,s,(An. n bool true (Ak. false)))
O:X = packbool (true, (Ab. false), (Ab. b))

This package exports a seed value, an operation on it, and a test that says whether the
argument is the seed or not. Since M and O behave the same, we can relate them at
existential type, and add refl : M =x N as an axiom to our system.

5.5 Quotient Types

While not an application of parametricity in the sense of theorems for free [28], we can also
show the realizability of quotient types [15] in our semantics. Quotient types, give a way to
define new types by taking an existing type, and quotienting it by an equivalence relation.

To do this, we first define the auxiliary predicate Eqy, which formalizes the notion of an
equivalence relation. They are relations R : X — X — x, satisfying:

Eqx(R) £ Tlz: X. Rz x x
Ir: X,y: X.Rzy<+ Ryzx X
r: X,y: X,2: X.Rey—-Ryz— Rxz

Next, we can show the realizability of the following datatype:

X/R £ 38:x,
Yinj: X — .
Yapp : My« IIf : X — ~.
(Ila: X,a': X.Rad — fa=y fad')— (8—=7).
a: X,d' : X. Rad — inj(a) =g inj(a') x
Iy 1Lf, pf,x. app vy f pf (injx) = f

What we are doing is defining an existential type, such that if X is a type and R is an
equivalence relation on it, we return a new type 8 and two operations inj and app.

The inj is the injection into the quotient type. It takes an X, and returns a 3, with the
property that if @ and a’ are related by R, then inj a = inj a’. The app function then lifts
any function f from X — ~ into one on 8 — -y, provided that f respects the equivalence
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relation R. The last two lines give the equational theory of the quotient type. First, if a
and a’ are related by R, then inj a = inj a’. Second, if we lift a function f to operate on
quotients, and we pass it the argument inj x, then the application of the lifted function
should equal f x.

Proof. (Sketch) The proof of the soundness of the axiom proceeds quite directly. First, we
define the following relation:

S = {(6176/2) | 36/1762761- (6176/1) € [[Xﬂ A (6276/2) € [[X]] N qe [[R]] (elvell) (627612)}

As an abuse of notation, we suppress most of the context and environment arguments from
the definition. By making use of the fact that we have a proof of Eqy (R), we can show that
S is a QPER, and then use it as our witness for showing the existential type is inhabited.
We can define inj and app as:

inf=Ax:X.x

app=My:x Af: X —=>ypf:...;0: X. fx
and give two dummy realizers for the proofs:

equiv = Aa,a’,r. refl

appok = A\y. Af, pf, x. refl
With these, we can then show the semantic well-typedness of the term

pack X pair inj (pair app (pair equiv appok))

by showing it is related to itself at the witness relation S. Note that this term is not
well-typed in the syntactic system, but that it does inhabit the appropriate semantic type.
In terms of the operational semantics of the underlying realizers, quotienting is a no-op: no
representation changes are needed to protect the quotient type’s invariant: data abstraction
is enough. |

5.6 A Note on the Constructivity of the Axioms

In this section, we have frequently introduced axioms into the type theory, justified by
reasoning about the model construction. Readers may worry that these axioms may ruin
the computational properties of the language, by blocking reduction. Fortunately, all of the
axioms we introduce have computational content. Since our model is a realizability-style
construction, we show that an axiom is sound by giving untyped terms inhabiting the semantic
interpretation of that axiom’s type. As a result, all the axioms we add are constructive, since
they necessarily have realizers equipping them with computational content.

6 Discussion and Related Work

6.1 Quasi-PERs

The earliest use of quasi-PERs to to model data abstraction we have found is by Tennent and
Takeyama [26], who were studying program equivalences in the context of data refinement.
In this e-mail, they sketched a logical relations model of the simply-typed lambda calculus
in terms of quasi-PERs (which they called “zigzag-complete relations”). The term “quasi-
PER” was coined by Hofmann [16], who gave a logical relations model of a simply-typed
functional language, augmented with first-order state (i.e., references to integers). Though
this language had no polymorphism, it did have effect annotations, and so Hofmann needed
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to prove representation independence to show the equivalence of programs with possibly-
differing sets of effects (i.e., “effect masking” [19]). Our work greatly extends the reach of
quasi-PERs to support polymorphism, higher kinds, and type dependency, showing that the
simple idea of quasi-PERs scales up even to a wide array of type-theoretic features.

Hutton and Voermans [18] studied a relational version of Squiggol [9], in which the
category of sets and relations was replaced with the category of PERs and saturated relations
In this setting, they observed that the functional relations were precisely the difunctionals.
Many useful properties of quasi-PERs are worked out in this paper, even though their
application of them is rather different from our own.

6.2 Semantic Models for Parametricity

The standard approach to building parametric models is to begin with a non-parametric
model of the language, and then give a second interpretation of types as relations over
the non-parametric semantic types. This approach is used in Bainbridge et al. [5], and an
abstract characterization of it was given by Rosolini [24] using categories of reflexive graphs,
which both Dunphy and Reddy [13] and Birkedal et al. [10] have developed further.

Our model does not immediately fit into this framework, since we give a relational se-
mantics directly, without first building a non-parametric model. This represents a considerable
simplification of the metatheory: we only need one semantics, rather than two.

Both Vytiniotis and Weirich [27] and Atkey [4] give parametric models of F,,, which is
equivalent to the calculus of constructions minus dependency. The work in [27] also gives
a term model, and as such they need to prove a coherence theorem for the interpretation
of kinds. In contrast, Atkey [4] does not need to prove such a coherence theorem, since he
defines his relation over extensional semantic objects. He does, however, need to prove the
identity extension lemma, to connect his base semantics with his relational semantics.

The way we set things up means our proofs are overall a bit easier than either of these
two approaches (modulo the additional overhead imposed by type dependency). In [27],
great care is taken to ensure that their relations only mention well-formed type constructors.
We do not bother maintaining this invariant: since the operational semantics never examines
a type argument, there is no need for the model to worry if a type argument is well formed
or not. By moving to a realizability-based view, we also make it possible to add realizable
azioms: we can add any axioms we want, as long as those axioms have (possibly syntactically
ill-typed) lambda terms as realizers for their computational behavior.

Even stating the identity extension property for higher kinds requires equipping each
kind with a distinguished notion of identity relation, to connect the base and relational
interpretations. We do not need to do this, since we only have a relational semantics. We
still need to ensure that our interpretation of higher kinds respects the equalities (quasi-PER)
on types, but found this easier to work with than identity extension, since we only need to
consider the base kind.

Concurrently with our work, Atkey, Ghani and Johann [3] have extended the reflexive
graph model of parametricity to a model of dependent types using the families fibration
over Set. This approach naturally handles parametricity properties for indexed data types,
something we have not yet looked at in our model. A natural next step would be to redo
their construction using relations over terms rather than sets, which would permit a direct
comparison of quasi-PERs with the standard model of parametricity.
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6.3 Internalizations of Parametricity

In recent work, Bernardy et al. [6] demonstrate how to generalize Reynolds’ relational
interpretation to systems of dependent types, and show that for sufficiently rich type theories,
the image of the relational interpretation lies within the original type theory. This gives a
syntax-directed embedding of a parametric interpretation of type theory into itself.

The translational approach is wholly syntactic, as opposed to our more semantic approach.
One benefit of their method is that it yields concrete proof terms for parametricity properties.
The two principal limitations of the translational approach are that (1) parametricity
properties only apply to closed terms, and (2) there is no way to use parametricity to
internalize program equivalences as equalities.

In [7], Bernardy and Moulin relax the first restriction by extending the syntax of type
theory with operators to represent appeals to parametricity. Though the syntactic modific-
ations they make to type theory are quite complex, the fundamental idea is quite simple:
they are using indices to indicate the “color” of different subterms [8], and parametricity
lets them show that different colors do not interfere with one another. However, the second
restriction remains, and intentionally so. They support inductive definitions in the style of
Coq and Agda, which permits internalizing the conversion relation by defining the Martin-Lof
identity type as an inductive type. This inherently limits what equality can contain: the
Church booleans cannot be shown to be equal to true or false, unless the conversion relation
contains it. This approach might be described as “Strachey-style” [25], where the uniformity
of parametric computations allows deriving powerful and elegant erasure properties.

The strengths and weaknesses of our approach are reversed. We do not give full proof
terms, due to our use of equality reflection, but we can support parametricity arguments for
open terms, and can internalize parametric program equivalences as equalities. Our approach
can be viewed as “Reynolds-style” parametricity, where the emphasis is on the relational
character of parametricity, leading to a focus on representation independence and eta-laws.
A natural question is whether it is possible to combine the strengths of these two approaches,
and gain the decidability advantages of their approach while retaining the simple interface to
parametricity we can support.
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A Appendix

A.1 Typing Rules

In this section, we give the full typing rules for the language we consider. In Figures 9 and 10,
we give the well-formedness conditions for contexts, kinds, types, and terms. In Figures 11
and 12, we give the equality rules for kinds, types, and terms.

A.2 Metatheory

In this section, we give the full statements of the omitted lemmas needed to prove the

fundamental theorem (Section 4.2). Their full proofs are given in the online extended

appendix. These lemmas build up to proving the well-definedness, coherence, weakening,

and substitution properties of context, kind, and type interpretations, starting with their

pre-interpretations.
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Since the pre-interpretation is defined solely on syntax, we can prove the following two
lemmas about it:

» Lemma 9 (Kind Pre-interpretations Ignore Term Substitutions).
For all kinds k and terms e, ||k| = ||[e/x]&]|.

» Lemma 10 (Kind Pre-interpretations Ignore Type Substitutions).
For all kinds k and types A, ||| = ||[A/a]k]-

This implies the following trivial coherence property.
» Theorem 11 (Kind Coherence). IfT'F k = &' : kind, then ||s| = ||&'||.

Once we have this property in place, we can prove the following well-definedness conditions
for the interpretations of the context, kind, and type judgements.

» Theorem 12 (Well-Definedness).

1. If D :: T ok, then [D] € P(||IT]]).

2. If DT+ £k : kind, then [D] € ||| = P(||]])-
3. If DT+ Ak, then [D] € ||T]| — ||x]-

Now that we know that we have a well-formed definition, we can prove coherence property
for the kind and type interpretations.

» Theorem 13 (Coherence for Kind and Type Interpretations).
1. If D:TF k:kind and D' :: T+ £ : kind and v € ||T'||, then [D] v = [D'] 7.
2. IfD:THA:kand D' : T+ A: k' and v € ||, then [D] v=[D'] ~.

This immediately implies the following corollary:

» Corollary 14 (Coherence for Context Interpretation).
If D ::T ok and D' :: T ok, then [D :: T ok] = [D’ :: T ok].

Now we can prove weakening and substitution.

» Theorem 15 (Weakening of Kinding and Typing).
1. If D :: Ty, T's  k : kind then there exists D’ :: Tg,I'1,T's F k : kind such that
for all (y0,71,72) € ||IT0,T'1, T2, we have [D] (y0,72) = [D'] (70,71, 72)-
2. If D :: T, I's = A : k then there exists D' :: T, T'1,To = A : k such that
for all (y0,71,72) € ||IT0,T'1, 2|, we have [D] (y0,72) = [D'] (70,71, 72)-

» Theorem 16 (Substitution in Pre-Contexts).
L IfTF e X, and (v,7(e)/2,7') € [Tz : X, T'|, then (v,7') € |IT, e/l
2. T F Ak, and (7, (4(A), )/, 7") € [0 5,17, then (v,7) € [T, [A/a]"].

» Theorem 17 (Substitution of Terms).

Suppose that T' ke : X and (v,v(e)/z,y') € [T,z : X,I”|. Then:

1. Forall D :: T,z : X,T" F Ko : kind, there exists D' :: T, [e/x]T" I [e/x]kKo : kind
such that [D] (v,1(e)/z, ) = [D'] (7).

2. Forall D =T,z : X, T+ C : ko, there exists D' :: T, [e/z]I" F [e/x]C : [e/x]ko
such that [D] (v,1(e)/z,4) = [D'] (77).

» Theorem 18 (Substitution of Types).

Suppose that Dy :: T+ A : k and (v, (v(4),[D1] v)/a,7') € IT,a : &, T||. Then:

1. Forall D :: T, : k,I" F ko : kind, there exists D' :: T, [A/a|T" F [A/a]kg : kind
such that [D] (3, (1(A), [D1] 1)/asr’) = [D'] (7, 7).

2. Forall D ::T,a: k, I F C : ko, there exists D' :: T, [A/a]I" F [A/a]C : [A]a]ko
such that [D] (3, (+(A), [D1] 7)/asn’) = [D'] (7, 7).
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I" ok
I" ok 'HX:x I" ok I'+ Kk : kind
- ok I'x: X ok I'a: k ok
I'F & : kind
' X:x I'z: XF k:kind I'F & : kind I'a:x k& :kind
'« : kind 'z : X.  : kind I'To: k. & : kind

Figure 9 Context and Kind Well-formedness.

I'F & : kind TNa:kFY %
I'-Mla:k. Y @ x

I'EX:x Ne: XEFY :x I'Fe: X ke : X

I'FIx: X.Y : % FFe=xc¢e :x
a:kel ' X:x z: XFA:k 'k :kind IMa:kk-A:x
I'Fa:k TFXe: X.A:Tlz: X. & I'Xa:k A:la: k. K
I'FA:Ilx: X. Kk I'Fe: X I'A:la: k. & A :k
I'Ae:le/z]r I'EAA:[A )oK

TFA: K I'x=&k":kind

'HA:k
z: Xel I'kFe:Y r'EX=Y:x
T'Fz: X 'Fe: X
'k : kind lNa:kkFe:Y I'kte:lla:k. Y I'HA:k
F'Fla:k. e:Ha:k Y 'keA:[A/a]Y
I'e: XFe:Y I'Fe:Tlz: X.Y e : X
F'FX:X.e:llz: X.Y Fkee :[e/x]Y
I'kFep=ey: X

I'krefl:eg =x e

Figure 10 Type and Term Well-formedness.
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’FF/{EH':kind‘

'FA=A":x I''a: k& :kind

'k [A/a]k’ = [A"/a]k : kind

F'Fe=¢:X I'z:XF k:kind
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Figure 11 Kind and Type Equality.
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Figure 12 Term Equality.
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