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Abstract
We consider partially observable Markov decision processes (POMDPs) with ω-regular conditions
specified as parity objectives. The qualitative analysis problem given a POMDP and a parity
objective asks whether there is a strategy to ensure that the objective is satisfied with probability 1
(resp. positive probability). While the qualitative analysis problems are known to be undecidable
even for very special cases of parity objectives, we establish decidability (with optimal EXPTIME-
complete complexity) of the qualitative analysis problems for POMDPs with all parity objectives
under finite-memory strategies. We also establish optimal (exponential) memory bounds.
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1 Introduction

Partially observable Markov decision processes (POMDPs). Markov decision processes
(MDPs) are standard models for probabilistic systems that exhibit both probabilistic and
nondeterministic behavior [16]. MDPs have been used to model and solve control prob-
lems for stochastic systems [13]: nondeterminism represents the freedom of the controller
to choose a control action, while the probabilistic component of the behavior describes the
system response to control actions. In perfect-observation (or perfect-information) MDPs
(PIMDPs) the controller can observe the current state of the system to choose the next
control actions, whereas in partially observable MDPs (POMDPs) the state space is parti-
tioned according to observations that the controller can observe i.e., given the current state,
the controller can only view the observation of the state (the partition the state belongs
to), but not the precise state [22]. POMDPs provide the appropriate model to study a wide
variety of applications such as in computational biology [12], speech processing [21], software
verification [6], robot planning [17], to name a few. In verification of probabilistic systems,
MDPs have been adopted as models for concurrent probabilistic systems [10], under-specified
probabilistic systems [4], and applied in diverse domains [3, 18]. POMDPs also subsume
many other powerful computational models such as probabilistic automata [25, 23] (since
probabilistic automata are a special case of POMDPs with a single observation).
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166 What is Decidable about POMDPs with omega-Regular Objectives

The class of ω-regular objectives. An objective specifies the desired set of behaviors (or
paths) for the controller. In verification and control of stochastic systems an objective
is typically an ω-regular set of paths. The class of ω-regular languages extends classical
regular languages to infinite strings, and provides a robust specification language to express
all commonly used specifications [28]. In a parity objective, every state of the MDP is
mapped to a non-negative integer priority (or color) and the goal is to ensure that the
minimum priority (or color) visited infinitely often is even. Parity objectives are a canonical
way to define such ω-regular specifications. Thus POMDPs with parity objectives provide
the theoretical framework to study problems such as the verification and control of stochastic
systems.
Qualitative and quantitative analysis. The analysis of POMDPs with parity objectives
can be classified into qualitative and quantitative analysis. Given a POMDP with a parity
objective and a start state, the qualitative analysis asks whether the objective can be ensured
with probability 1 (almost-sure winning) or positive probability (positive winning); whereas
the quantitative analysis asks whether the objective can be satisfied with probability at least
λ for a given threshold λ ∈ (0, 1).
Importance of qualitative analysis. The qualitative analysis of MDPs is an important
problem in verification that is of interest independent of the quantitative analysis problem.
There are many applications where we need to know whether the correct behavior arises
with probability 1. For instance, when analyzing a randomized embedded scheduler, we
are interested in whether every thread progresses with probability 1 [11]. Even in settings
where it suffices to satisfy certain specifications with probability λ < 1, the correct choice
of λ is a challenging problem, due to the simplifications introduced during modeling. For
example, in the analysis of randomized distributed algorithms it is quite common to require
correctness with probability 1 (see, e.g., [24, 27]). Furthermore, in contrast to quantitative
analysis, qualitative analysis is robust to numerical perturbations and modeling errors in
the transition probabilities. Thus qualitative analysis of POMDPs with parity objectives is
a fundamental theoretical problem in verification and analysis of probabilistic systems.
Previous results. On one hand POMDPs with parity objectives provide a rich framework
to model a wide variety of practical problems, on the other hand, most theoretical results
established for POMDPs are negative (undecidability) results. There are several deep unde-
cidability results established for the special case of probabilistic automata (that immediately
imply undecidability for the more general case of POMDPs). The basic undecidability res-
ults are for probabilistic automata over finite words (that can be considered as a special
case of parity objectives). The quantitative analysis problem is undecidable for probabilistic
automata over finite words [25, 23]; and it was shown in [19] that even the following approx-
imation version is undecidable: for any fixed 0 < ε < 1

2 , given a probabilistic automaton
and the guarantee that either (a) there is a word accepted with probability at least 1− ε; or
(ii) all words are accepted with probability at most ε; decide whether it is case (i) or case (ii).
The almost-sure (resp. positive) problem for probabilistic automata over finite words re-
duces to the non-emptiness question of universal (resp. non-deterministic) automata over
finite words and is PSPACE-complete (resp. solvable in polynomial time). However, an-
other related decision question whether for every ε > 0 there is a word that is accepted with
probability at least 1 − ε (the value 1 problem) is undecidable for probabilistic automata
over finite words [14]. Also observe that all undecidability results for probabilistic automata
over finite words carry over to POMDPs where the controller is restricted to finite-memory
strategies. In [20], the authors consider POMDPs with finite-memory strategies under ex-
pected rewards, but the general problem remains undecidable. For qualitative analysis of
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POMDPs with parity objectives, deep undecidability results were shown for very special
cases of parity objectives (even in the special case of probabilistic automata). It was shown
in [2] that the almost-sure (resp. positive) problem is undecidable for probabilistic automata
with coBüchi (resp. Büchi) objectives which are special cases of parity objectives that use
only two priorities. In summary the most important theoretical results are negative (they
establish undecidability results).

Our contributions. The undecidability proofs for the qualitative analysis of POMDPs with
parity objectives crucially require the use of infinite-memory strategies for the controller. In
all practical applications, the controller must be a finite-state controller to be implementable.
Thus for all practical purposes the relevant question is the existence of finite-memory con-
trollers. The quantitative analysis problem remains undecidable even under finite-memory
controllers as the undecidability results are established for probabilistic automata over fi-
nite words. In this work we study the most prominent remaining theoretical open question
(that is also of practical relevance) for POMDPs with parity objectives that whether the
qualitative analysis of POMDPs with parity objectives is decidable or undecidable for finite-
memory strategies (i.e., finite-memory controllers). Our main result is the positive result
that the qualitative analysis of POMDPs with parity objectives is decidable under finite-
memory strategies. Moreover, for qualitative analysis of POMDPs with parity objectives
under finite-memory strategies, we establish optimal complexity bounds both for strategy
complexity as well as computational complexity. Our contributions are as follows (summar-
ized in Table 1):
1. (Strategy complexity). Our first result shows that belief-based stationary strategies are

not sufficient (where a belief-based stationary strategy is based on the subset construction
that remembers the possible set of current states): we show that there exist POMDPs
with coBüchi objectives where finite-memory almost-sure winning strategy exists but
there exists no randomized belief-based stationary almost-sure winning strategy. All
previous results about decidability for almost-sure winning in sub-classes of POMDPs
crucially relied on the sufficiency of randomized belief-based stationary strategies that
allowed standard techniques like subset construction to establish decidability. However,
our counter-example shows that previous techniques based on simple subset construction
(to construct an exponential size PIMDP) are not adequate to solve the problem. Before
the result for parity objectives, we consider a slightly more general form of objectives,
called Muller objectives. For a Muller objective a set F of subsets of colors is given and
the set of colors visited infinitely often must belong to F . We show our main result
that given a POMDP with |S| states and a Muller objective with d colors (priorities), if
there is a finite-memory almost-sure (resp. positive) winning strategy, then there is an
almost-sure (resp. positive) winning strategy that uses at most Mem∗ = 22·|S| · (22d)|S|
memory. Developing on our result for Muller objectives, for POMDPs with parity
objectives we show that if there is a finite-memory almost-sure (resp. positive) winning
strategy, then there is an almost-sure (resp. positive) winning strategy that uses at
most 23·d·|S| memory. Our exponential memory upper bound for parity objectives
is optimal as it is shown in [8] that almost-sure winning strategies require at least
exponential memory even for the very special case of reachability objectives in POMDPs.

2. (Computational complexity). We present an exponential time algorithm for the qualit-
ative analysis of POMDPs with parity objectives under finite-memory strategies, and
thus obtain an EXPTIME upper bound. The EXPTIME-hardness follows from [8] for
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168 What is Decidable about POMDPs with omega-Regular Objectives

Table 1 Strategy and computational complexity for POMDPs. UB:Upper bound; LB: Lower
bound. New results in bold fonts.

Objectives Almost-sure Positive

Inf. Mem. Fin. Mem. Inf. Mem. Fin. Mem.

Büchi
Strategy Exp . (belief) Exp . (belief) Inf. mem. UB: Exp. 26·|S|

LB: Exp. (belief not suf.)

Complexity EXP-c. EXP-c. Undec. EXP-c.

coBüchi
Strategy Inf. mem UB: Exp. 26·|S| UB: Exp. UB: Exp.

LB: Exp. (belief not suf.) LB: Exp. (belief not suf.) LB: Exp. (belief not suf.)

Complexity Undec. EXP-c. EXP-c. EXP-c.

Parity
Strategy Inf. mem UB: Exp. 23·d·|S|

Inf. mem UB: Exp. 23·d·|S|

LB: Exp. (belief not suf.) LB: Exp. (belief not suf.)

Complexity Undec. EXP-c. Undec. EXP-c.

the special case of reachability and safety objectives, and thus we obtain the optimal
EXPTIME-complete computational complexity result.1

Technical contributions. The key technical contribution for the decidability result is as fol-
lows. Since belief-based stationary strategies are not sufficient, standard subset construction
techniques do not work. For an arbitrary finite-memory strategy we construct a projected
strategy that collapses memory states based on a projection graph construction given the
strategy. The projected strategy at a collapsed memory state plays uniformly over actions
that were played at all the corresponding memory states of the original strategy. The projec-
ted strategy thus plays more actions with positive probability. The key challenge is to show
the bound on the size of the projection graph, and to show that the projected strategy, even
though plays more actions, does not destroy the structure of the recurrent classes of the ori-
ginal strategy. For parity objectives, we show a reduction from general parity objectives to
parity objectives with two priorities on a polynomially larger POMDP and from our general
result for Muller objectives obtain the optimal memory complexity bounds for parity ob-
jectives. For the computational complexity result, we show how to construct an exponential
size special class of POMDPs (which we call belief-observation POMDPs where the belief
is always the current observation) and present polynomial time algorithms for the qualitat-
ive analysis of the special belief-observation POMDPs of our construction. Full proofs are
available as technical report, Feb 20, 2013, https://repository.ist.ac.at/109/.

2 Definitions

In this section we present the basic definitions of POMDPs, strategies (policies), ω-regular
objectives, and the winning modes.
Notations. For a finite set X, we denote by P(X) the set of subsets of X (the power set of
X). A probability distribution f on X is a function f : X → [0, 1] such that

∑
x∈X f(x) = 1,

and we denote by D(X) the set of all probability distributions on X. For f ∈ D(X) we
denote by Supp(f) = {x ∈ X | f(x) > 0} the support of f .

I Definition 1 (POMDPs). A Partially Observable Markov Decision Process (POMDP) is a
tuple G = (S,A, δ,O, γ, s0) where: (i) S is a finite set of states; (ii) A is a finite alphabet of

1 Recently, Nain and Vardi (personal communication, to appear LICS 2013) considered the finite-memory
strategies problem for one-sided partial-observation games and established 2EXPTIME upper bound.
Our work is independent and establishes optimal (EXPTIME-complete) complexity bounds for POM-
DPs.

https://repository.ist.ac.at/109/
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actions; (iii) δ : S ×A→ D(S) is a probabilistic transition function that given a state s and
an action a ∈ A gives the probability distribution over the successor states, i.e., δ(s, a)(s′)
denotes the transition probability from state s to state s′ given action a; (iv) O is a finite
set of observations; (v) γ : S → O is an observation function that maps every state to an
observation; and (vi) s0 is the initial state.
Given s, s′ ∈ S and a ∈ A, we also write δ(s′|s, a) for δ(s, a)(s′). For an observation o, we
denote by γ−1(o) = {s ∈ S | γ(s) = o} the set of states with observation o. For a set U ⊆ S
of states and O ⊆ O of observations we denote γ(U) = {o ∈ O | ∃s ∈ U. γ(s) = o} and
γ−1(O) =

⋃
o∈O γ

−1(o). For technical convenience we consider that the initial state s0 has
a unique observation.
Plays, cones and belief-updates. A play (or a path) in a POMDP is an infinite sequence
(s0, a0, s1, a1, s2, a2, . . .) of states and actions such that for all i ≥ 0 we have δ(si, ai)(si+1) >
0. We write Ω for the set of all plays. For a finite prefix w ∈ (S ·A)∗ ·S of a play, we denote
by Cone(w) the set of plays with w as the prefix (i.e., the cone or cylinder of the prefix
w), and denote by Last(w) the last state of w. For a finite prefix w = (s0, a0, s1, a1, . . . , sn)
we denote by γ(w) = (γ(s0), a0, γ(s1), a1, . . . , γ(sn)) the observation and action sequence
associated with w. For a finite sequence ρ = (o0, a0, o1, a1, . . . , on) of observations and
actions, the belief B(ρ) after the prefix ρ is the set of states in which a finite prefix of a
play can be after the sequence ρ of observations and actions, i.e., B(ρ) = {sn = Last(w) |
w = (s0, a0, s1, a1, . . . , sn), w is a prefix of a play, and for all 0 ≤ i ≤ n. γ(si) = oi}. The
belief-updates associated with finite-prefixes are as follows: for prefixes w and w′ = w · a · s
the belief update is defined inductively as B(γ(w′)) =

(⋃
s1∈B(γ(w)) Supp(δ(s1, a))

)
∩γ−1(s).

Strategies. A strategy (or a policy) is a recipe to extend prefixes of plays and is a function σ :
(S·A)∗·S → D(A) that given a finite history (i.e., a finite prefix of a play) selects a probability
distribution over the actions. Since we consider POMDPs, strategies are observation-based,
i.e., for all histories w = (s0, a0, s1, a1, . . . , an−1, sn) and w′ = (s′0, a0, s

′
1, a1, . . . , an−1, s

′
n)

such that for all 0 ≤ i ≤ n we have γ(si) = γ(s′i) (i.e., γ(w) = γ(w′)), we must have σ(w) =
σ(w′). In other words, if the observation sequence is the same, then the strategy cannot
distinguish between the prefixes and must play the same. We now present an equivalent
definition of strategies such that the memory is explicit.
I Definition 2 (Strategies with memory and memoryless strategies). A strategy with memory
is a tuple σ = (σu, σn,M,m0) where: (i) (Memory set). M is a denumerable set (finite
or infinite) of memory elements (or memory states). (ii) (Action selection function). The
function σn : M → D(A) is the action selection function that given the current memory
state gives the probability distribution over actions. (iii) (Memory update function). The
function σu : M × O × A → D(M) is the memory update function that given the current
memory state, the current observation and action, updates the memory state probabilist-
ically. (iv) (Initial memory). The memory state m0 ∈ M is the initial memory state. A
strategy is a finite-memory strategy if the set M of memory elements is finite. A strategy
is pure (or deterministic) if the memory update function and the action selection function
are deterministic. A strategy is memoryless (or stationary) if it is independent of the his-
tory but depends only on the current observation, and can be represented as a function
σ : O → D(A).
I Remark. It was shown in [7] that in POMDPs pure strategies are as powerful as randomized
strategies, hence in sequel we omit discussions about pure strategies.
Probability measure. Given a strategy σ, the unique probability measure obtained given
σ is denoted as Pσ(·). We first define the measure µσ(·) on cones. For w = s0 we have
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170 What is Decidable about POMDPs with omega-Regular Objectives

µσ(Cone(w)) = 1, and for w = s where s 6= s0 we have µσ(Cone(w)) = 0; and for w′ =
w ·a · s we have µσ(Cone(w′)) = µσ(Cone(w)) ·σ(w)(a) · δ(Last(w), a)(s). By Caratheódary’s
extension theorem, the function µσ(·) can be uniquely extended to a probability measure
Pσ(·) over Borel sets of infinite plays [5].
Objectives. An objective in a POMDP G is a measureable set ϕ ⊆ Ω of plays. For a play
ρ = (s0, a0, s1, a1, s2 . . .), we denote by Inf(ρ) = {s ∈ S | ∀i ≥ 0 · ∃j ≥ i : sj = s} the set of
states that occur infinitely often in ρ. We consider the following objectives.

Reachability and safety objectives. Given a set T ⊆ S of target states, the reachability
objective Reach(T ) = {(s0, a0, s1, a1, s2 . . .) ∈ Ω | ∃k ≥ 0 : sk ∈ T } requires that
a target state in T is visited at least once. Dually, the safety objective Safe(T ) =
{(s0, a0, s1, a1, s2 . . .) ∈ Ω | ∀k ≥ 0 : sk ∈ T } requires that only states in T are visited.
Büchi and coBüchi objectives. Given a set T ⊆ S of target states, the Büchi objective
Buchi(T ) = {ρ ∈ Ω | Inf(ρ)∩T 6= ∅} requires that a state in T is visited infinitely often.
Dually, the coBüchi objective coBuchi(T ) = {ρ ∈ Ω | Inf(ρ) ⊆ T } requires that only
states in T are visited infinitely often.
Parity objectives. For d ∈ N, let p : S → {0, 1, . . . , d} be a priority function that maps
each state to a non-negative integer priority. The parity objective Parity(p) = {ρ ∈ Ω |
min{p(s) | s ∈ Inf(ρ)} is even} requires that the smallest priority that appears infinitely
often is even.
Muller objectives. Let D be a set of colors, and col : S → D be a color mapping function
that maps every state to a color. A Muller objective F consists of a set of subsets of colors
and requires that the set of colors visited infinitely often belongs to F , i.e., F ∈ P(P(D))
and Muller(F) = {ρ ∈ Ω | {col(s) | s ∈ Inf(ρ)} ∈ F}.

Given a set U ⊆ S we will denote by p(U) the set of priorities of the set U given by the
priority function p, i.e., p(U) = {p(s) | s ∈ U}, and similarly col(U) = {col(s) | s ∈ U}.
Büchi and coBüchi objectives are parity objectives with two priorities; and parity objectives
are a special case of Muller objectives. However, given a POMDP with a Muller objective
with color set D, an equivalent POMDP with |S| · |D|! states and a parity objective with
|D|2 priorities can be constructed with the latest appearance record (LAR) construction
of [15].
Winning modes. Given a POMDP, an objective ϕ, and a class C of strategies, we say
that: a strategy σ ∈ C is almost-sure winning (resp. positive winning) if Pσ(ϕ) = 1 (resp.
Pσ(ϕ) > 0); and a strategy σ ∈ C is quantitative winning, for a threshold λ ∈ (0, 1), if
Pσ(ϕ) ≥ λ. We first precisely summarize related works in the following Theorem.

I Theorem 3 (Previous results [25, 23, 2, 26, 8]). The following assertions hold for POMDPs
with the class C of all infinite-memory (randomized or pure) strategies: (1) The quantitative
winning problem is undecidable for safety, reachability, Büchi, coBüchi, parity, and Muller
objectives. (2) The almost-sure winning problem is EXPTIME-complete for safety, reach-
ability, and Büchi objectives; and undecidable for coBüchi, parity, and Muller objectives.
(3) The positive winning problem is PTIME-complete for reachability objectives, EXPTIME-
complete for safety and coBüchi objectives; and undecidable for Büchi, parity, and Muller
objectives.

Explanation of the previous results and implications under finite-memory strategies. All the
undecidability results follow from the special case of probabilistic automata: the undecid-
ability of the quantitative problem for probabilistic automata follows from [25, 23, 9]. The
undecidability for positive winning for Büchi and almost-sure winning for coBüchi objectives
was established in [1, 2]. For the decidable results, the optimal complexity results for safety
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objectives can be obtained from the results of [26] and all the other results follow from [8, 2].
If the classes of strategies are restricted to finite-memory strategies, then the undecidability
results for quantitative winning still hold, as they are established for reachability objectives
and for reachability objectives finite-memory suffices. The most prominent and important
open question is whether the almost-sure and positive winning problems are decidable for
parity and Muller objectives in POMDPs under finite-memory strategies.

3 Strategy Complexity

In this section we will first show that belief-based stationary strategies are not sufficient for
finite-memory almost-sure winning strategies in POMDPs with coBüchi objectives; and then
present the upper bound on memory size required for finite-memory almost-sure and positive
winning strategies in POMDPs with Muller objectives, and finally for parity objectives. We
start with some basic results about Markov chains.
Markov chains, recurrent classes, and reachability. A Markov chain G = (S, δ) consists of a
finite set S of states and a probabilistic transition function δ : S → D(S). Given the Markov
chain, we consider the graph (S,E) where E = {(s, s′) | δ(s′ | s) > 0}. A recurrent class
C ⊆ S of the Markov chain is a bottom strongly connected component (scc) in the graph
(S,E) (a bottom scc is an scc with no edges out of the scc). We denote by Rec(G) the set
of recurrent classes of the Markov chain, i.e., Rec(G) = {C | C is a recurrent class}. Given
a state s and a set U of states, we say that U is reachable from s if there is a path from s

to some state in U in the graph (S,E). Given a state s of the Markov chain we denote by
Rec(G)(s) ⊆ Rec(G) the subset of the recurrent classes reachable from s in G. A state is
recurrent if it belongs to a recurrent class.

I Lemma 4. For a Markov chain G = (S, δ) with Muller objective Muller(F) (or parity
objective Parity(p)), a state s is almost-sure winning (resp. positive winning) if for all
recurrent classes C ∈ Rec(G)(s) (resp. for some recurrent class C ∈ Rec(G)(s)) reachable
from s we have col(C) ∈ F (min(p(C)) is even for the parity objective).

Markov chains G � σ under finite-memory strategies σ. We now define Markov chains
obtained by fixing finite-memory strategies in a POMDP G. A finite-memory strategy
σ = (σu, σn,M,m0) induces a finite-state Markov chain (S ×M, δσ), denoted G � σ, with
the probabilistic transition function δσ : S×M → D(S×M): given s, s′ ∈ S andm,m′ ∈M ,
the transition δσ

(
(s′,m′) | (s,m)

)
is the probability to go from state (s,m) to state (s′,m′)

in one step under the strategy σ. The probability of transition can be decomposed as follows:
(i) First an action a ∈ A is sampled according to the distribution σn(m); (ii) then the next
state s′ is sampled according to the distribution δ(s, a); and (iii) finally the new memory
m′ is sampled according to the distribution σu(m, γ(s′), a) (i.e., the new memory is sampled
according to σu given the old memory, new observation and the action). More formally, we
have: δσ

(
(s′,m′) | (s,m)

)
=
∑
a∈A σn(m)(a) · δ(s, a)(s′) · σu(m, γ(s′), a)(m′).

Belief-based stationary strategies not sufficient. For all previous decidability results for
almost-sure winning in POMDPs, the key was to show that belief-based stationary strategies
are sufficient. In POMDPs with Büchi objectives, belief-based stationary strategies are suf-
ficient for almost-sure winning, and we now show that in POMDPs with coBüchi objectives
finite-memory almost-sure winning strategies may exist whereas no belief-based stationary
ones.

I Example 5. We consider a POMDP G with state space {s0, X,X
′, Y, Y ′, Z, Z ′} and action

set {a, b}, and let U = {X,X ′, Y, Y ′, Z, Z ′}. From the initial state s0 all the other states
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X X ′

Y Y ′

Z Z ′

a

b

b

a

a

b

a
b

a,b a,b

a,b a,b

1
2

1
2

POMDP G

X X ′

Y Y ′

Z Z ′

1
2

1
2

MC G � σ1

Rec: {X,X ′, Y, Y ′, Z, Z ′}

X X ′

Y Y ′

Z Z ′

1
2

1
2

Rec: {X,X ′, Y, Y ′, Z, Z ′}

MC G � σ2

Figure 1 Belief is not sufficient.

are reached with uniform probability in one-step, i.e., for all s′ ∈ U = {X,X ′, Y, Y ′, Z, Z ′}
we have δ(s0, a)(s′) = δ(s0, b)(s′) = 1

6 . The transitions from the other states (shown in
Figure 1) are as follows: (i) δ(X, a)(X ′) = 1 and δ(X, b)(Y ) = 1; (ii) δ(X ′, a)(Y ′) = 1
and δ(X ′, b)(X) = 1; (iii) δ(Z, a)(Y ) = 1 and δ(Z, b)(Z ′) = 1; (iv) δ(Z ′, a)(Z) = 1
and δ(Z ′, b)(Y ′) = 1; (v) δ(Y, a)(X) = δ(Y, b)(X) = δ(Y, a)(Z) = δ(Y, b)(Z) = 1

2 ; and
(vi) δ(Y ′, a)(X ′) = δ(Y ′, b)(X ′) = δ(Y ′, a)(Z ′) = δ(Y ′, b)(Z ′) = 1

2 . All states in U have
the same observation. The coBüchi objective is given by the target set {X,X ′, Z, Z ′}, i.e.,
Y and Y ′ must be visited only finitely often. The belief initially after one-step is the set
U since from s0 all of them are reached with positive probability. The belief is always the
set U since every state has an input edge for every action, i.e., if the current belief is U
(i.e., the set of states that the POMDP is currently in with positive probability is U), then
irrespective of whether a or b is chosen all states of U are reached with positive probability
and hence the belief set is again U . There are three belief-based stationary strategies: (i) σ1
that plays always a; (ii) σ2 that plays always b; or (iii) σ3 that plays both a and b with
positive probability. For all the three strategies, the Markov chains obtained have the whole
set U as the recurrent class (see Figure 1 for the Markov chains G � σ1 and G � σ2), and
hence both Y and Y ′ are visited infinitely often with probability 1 violating the coBüchi
objective. The strategy σ4 that plays action a and b alternately gives rise to the Markov
chain G � σ4 shown in Figure 2 (i.e., σ4 has two memory states a and b, in memory state
a it plays action a and switches to memory state b, and in memory state b it plays action
b and switches to memory state a). The recurrent classes do not intersect with (Y,m) or
(Y ′,m), for memory state m ∈ {a, b}, and hence σ4 is a finite-memory almost-sure winning
strategy. J

Upper bound on memory. For the following of the section, we fix a POMDP G =
(S,A, δ,O, γ, s0), with a Muller objective Muller(F) with the set D of colors and a color
mapping function col. We will denote by D the powerset of the powerset of the set D of
colors, i.e., D = P(P(D)); and note that |D| = 22d , where d = |D|. Our goal is to prove
the following fact: given a finite-memory almost-sure (resp. positive) winning strategy σ

on G there exists a finite-memory almost-sure (resp. positive) winning strategy σ′ on G, of
memory size at most Mem∗ = 2|S| · 2|S| · |D||S|.
Overview of the proof. We first present an overview of our proof. (i) Given an arbitrary
finite-memory strategy σ we will consider the Markov chain G � σ arising by fixing the
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Xa X ′b

Y b Y ′a

Za Z ′b

Rec: {Xa,X ′b}

Zb Z ′a

Y ′bY a

X ′aXb

Rec: {Zb, Z ′a}

Figure 2 The Markov chain G � σ4.

strategy. (ii) Given the Markov chain we will define a projection graph that depends on
the recurrent classes of the Markov chain. The projection graph is of size at most Mem∗.
(iii) Given the projection graph we will construct a projected strategy with memory size at
most Mem∗ that preserves the recurrent classes of the Markov chain G � σ.
Notations. Given Z ∈ D|S| and given s ∈ S, we write Z(s) (which is in D = P(P(D))) for
the s-component of Z. For two sets U1 and U2 and U ⊆ U1 ×U2, we denote by Proji(U) for
i ∈ {1, 2} the projection of U on the i-th component.
Basic definitions for the projection graph. We now introduce notions associated with the
finite Markov chain G � σ that will be essential in defining the projection graph.

I Definition 6 (Recurrence set functions). Let σ be a finite-memory strategy with memory
M on G for the Muller objective with the set D of colors, and let m ∈M .

(Function set recurrence). The function SetRecσ(m) : S → D maps every state s ∈ S to
the projections of colors of recurrent classes reachable from (s,m) in G � σ. Formally,
SetRecσ(m)(s) = {col(Proj1(U)) | U ∈ Rec(G � σ)((s,m))}, i.e., we consider the set
Rec(G � σ)((s,m)) of recurrent classes reachable from the state (s,m) in G � σ, obtain
the projections on the state space S and consider the colors of states in the projected
set. We will in sequel consider SetRecσ(m) ∈ D|S|.
(Function boolean recurrence). The function BoolRecσ(m) : S → {0, 1} is such that for
all s ∈ S, we have BoolRecσ(m)(s) = 1 if there exists U ∈ Rec(G � σ)((s,m)) such that
(s,m) ∈ U , and 0 if not. Intuitively, BoolRecσ(m)(s) = 1 if (s,m) belongs to a recurrent
class in G � σ and 0 otherwise. In sequel we will consider BoolRecσ(m) ∈ {0, 1}|S|.

I Lemma 7. Let s, s′ ∈ S and m,m′ ∈ M be such that (s′,m′) is reachable from (s,m) in
G � σ. Then SetRecσ(m′)(s′) ⊆ SetRecσ(m)(s).

I Definition 8 (Projection graph). Let σ be a finite-memory strategy. We define the projec-
tion graph PrGr(σ) = (V,E) associated to σ as follows:

(Vertex set). The set of vertices is V = {(U,BoolRecσ(m),SetRecσ(m)) | U ⊆ S and m ∈
M}.
(Edge labels). The edges are labeled by actions in A.
(Edge set). Let U ⊆ S, m ∈ M and a ∈ Supp(σn(m)). Let U =

⋃
s∈U Supp(δ(s, a))

denote the set of possible successors of states in U given action a. We add the following
set of edges in E: Given (U ′,m′) such that there exists o ∈ O with γ−1(o) ∩ U =
U ′ and m′ ∈ Supp(σu(m, o, a)), we add the edge (U,BoolRecσ(m),SetRecσ(m)) a→
(U ′,BoolRecσ(m′),SetRecσ(m′)) to E. Intuitively, the update from U to U ′ is the update
of the belief, i.e., if the previous belief is the set U of states, and the current observation
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is o, then the new belief is U ′; the update of m to m′ is according to the support of the
memory update function; and the BoolRec and SetRec functions for the memories are
given by σ.
(Initial vertex). The initial vertex of PrGr(σ) is the vertex
({s0},BoolRecσ(m0),SetRecσ(m0)).

Note that V ⊆ P(S) × {0, 1}|S| ×D|S|, and hence |V | ≤ Mem∗. For the rest of the section
we fix a finite-memory strategy σ that uses memory M . We now define projected strategies:
intuitively the projected strategy collapses memory with same BoolRec and SetRec functions,
and at a collapsed memory state plays uniformly the union of the actions played at the
corresponding memory states.

I Definition 9 (Projected strategy proj(σ)). Let PrGr(σ) = (V,E) be the projection graph
of σ. We define the following projected strategy σ′ = proj(σ) = (σ′u, σ′n,M ′,m′0):

(Memory set). The memory set of proj(σ) isM ′ = V = {(U,BoolRecσ(m),SetRecσ(m)) |
U ⊆ S and m ∈M}.
(Initial memory). The initial memory state of proj(σ) is m′0 =
({s0},BoolRecσ(m0),SetRecσ(m0)).
(Memory update). Let m = (U,B,L) ∈ M ′, o ∈ O and a ∈ A. Then σ′u(m, o, a) is
the uniform distribution over the set {m′ = (U ′, B′, L′) ∈ M ′ | m a→ m′ ∈ E and U ′ ⊆
γ−1(o)}.
(Action selection). Given m ∈ M ′, the action selection function σ′n(m) is the uniform
distribution over {a ∈ A | ∃m′ ∈M ′ s.t. m a→ m′ ∈ E}.

Let (V,E) = PrGr(σ) be the projection graph, and let σ′ = proj(σ) be the projected strategy.
The chain G � σ′ is a finite-state Markov chain, with state space S ×M ′, which is a subset
of S × P(S)× {0, 1}|S| ×D|S|.
Random variable notations. For all n ≥ 0 we write Xn, Yn, Cn, Zn,Wn for the random
variables which correspond respectively to the projection of the n-th state of the Markov
chain G � σ′ on the S component, the P(S) component, the {0, 1}|S| component, the D|S|

component, and the n-th action, respectively.

Run of the Markov chain G � σ′. A run on G � σ′ is a sequence r = (X0, Y0, C0, Z0) W0→
(X1, Y1, C1, Z1) W1→ ... such that each finite prefix of r is generated with positive probab-
ility on the chain, i.e., for all i ≥ 0, we have (i) Wi ∈ Supp(σ′n(Yi, Ci, Zi)); (ii) Xi+1 ∈
Supp(δ(Xi,Wi)); and (iii) (Yi+1, Ci+1, Zi+1) ∈ Supp(σ′u((Yi, Ci, Zi), γ(Xi+1),Wi)).

In the following lemma we show that reachability in the Markov chain G � σ implies
reachability in the Markov chain G � σ′. Intuitively, the result follows from the fact that the
projected strategy σ′ plays in the collapsed memory state uniformly all actions that were
played at all the corresponding memory states of the original strategy σ.

I Lemma 10. Let σ′ = proj(σ) be the projected strategy of σ. Given s, s′ ∈ S and
m,m′ ∈ M , if (s′,m′) is reachable from (s,m) in G � σ, then for all Y ⊆ S such
that (s, Y,BoolRecσ(m),SetRecσ(m)) is a state of G � σ′, there exists Y ′ ⊆ S such
that (s′, Y ′,BoolRecσ(m′),SetRecσ(m′)) is reachable from (s, Y,BoolRecσ(m),SetRecσ(m))
in G � σ′.

Proof. Suppose first that (s′,m′) is reachable from (s,m) in G � σ in one step. Let
Y ⊆ S be such that (s, Y,BoolRecσ(m),SetRecσ(m)) is a state of G � σ′. Then there
exists an edge in the projection graph of σ from (Y,BoolRecσ(m),SetRecσ(m)) to an-
other vertex (Y ′,BoolRecσ(m′),SetRecσ(m′)). As a consequence, there exists Y ′ ⊆ S such
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that (s′, Y ′,BoolRecσ(m′),SetRecσ(m′)) is reachable from (s, Y,BoolRecσ(m),SetRecσ(m))
in G � σ′.

We conclude the proof by induction: if (s′,m′) is reachable from (s,m) in G � σ, then
there exists a sequence of couples (s1,m1), (s2,m2), ..., (si,mi) such that (s1,m1) = (s,m),
(si,mi) = (s′,m′), and for all j ∈ {1, ..., i− 1} we have that (sj+1,mj+1) is reachable from
(sj ,mj) in one step. Using the proof for an elementary step (or one step) inductively on
such a sequence, we get the result. J

In the following lemma we establish the crucial properties of the Markov chain obtained
from the projected strategy.

I Lemma 11. Let X0 ∈ S, Y0 ∈ P(S), C0 ∈ {0, 1}|S| and Z0 ∈ D|S|, and let
r = (X0, Y0, C0, Z0) W0→ (X1, Y1, C1, Z1) W1→ ... be a run on G � σ′ with a starting state
(X0, Y0, C0, Z0). Then for all n ≥ 0 the following assertions hold:

Xn+1 ∈ Supp(δ(Xn,Wn)).
Zn(Xn) is not empty.
Zn+1(Xn+1) ⊆ Zn(Xn).
(Yn, Cn, Zn) Wn→ (Yn+1, Cn+1, Zn+1) is an edge in E, where (V,E) = PrGr(σ).
If Cn(Xn) = 1, then Cn+1(Xn+1) = 1.
If Cn(Xn) = 1, then |Zn(Xn)| = 1; and if {Z} = Zn(Xn), then for all j ≥ 0 we have
col(Xn+j) ∈ Z.

Proof. We prove the last point. Suppose (Xn, Yn, Cn, Zn) is such that Cn(Xn) = 1. Let
m ∈M be an arbitrary memory state such that Cn = BoolRecσ(m) and Zn = SetRecσ(m).
By hypothesis, since Cn(Xn) = 1, it follows that (Xn,m) is a recurrent state in the Markov
chain G � σ. As a consequence, only one recurrent class R ⊆ S ×M of G � σ is reachable
from (Xn,m), and (Xn,m) belongs to this class. Hence Zn(Xn) = {col(Proj1(R))}, and
thus |Zn(Xn)| = 1. It also follows that all states (X ′,m′) reachable in one step from
(Xn,m) also belong to the recurrent class R. It follows that Xn+1 ∈ Proj1(R) and hence
col(Xn+1) ∈ col(Proj1(R)). By induction for all j ≥ 0 we have col(Xn+j) ∈ col(Proj1(R)).
The desired result follows. J

We now introduce the final notion that is required to complete the proof. The notion
is that of a pseudo-recurrent state. Intuitively a state (X,Y,C, Z) is pseudo-recurrent if Z
contains exactly one recurrent subset, X belongs to the subset and it will follow that for
some memory m ∈M (of certain desired property) (X,m) is a recurrent state in the Markov
chain G � σ. The important property that is useful is that once a pseudo-recurrent state is
reached, then C and Z remain invariant (follows from Lemma 11).

I Definition 12 (Pseudo-recurrent states). Let X ∈ S, Y ⊆ S, C ∈ {0, 1}|S|, and Z ∈ D|S|.
Then the state (X,Y,C, Z) is called pseudo-recurrent if there exists Z∞ ⊆ D such that:
(i) Z(X) = {Z∞}, (ii) col(X) ∈ Z∞, and (iii) C(X) = 1.

I Lemma 13. Let (X,Y,C, Z) be a pseudo-recurrent state. If (X ′, Y ′, C ′, Z ′) is reach-
able from (X,Y,C, Z) in G � σ′, then (X ′, Y ′, C ′, Z ′) is also a pseudo-recurrent state and
Z ′(X ′) = Z(X).

We establish the following key properties of pseudo-recurrent states with the aid of the
properties of Lemma 11. Firstly, with probability 1 a run of a Markov chain G � σ′ reaches
a pseudo-recurrent state.

CSL’13



176 What is Decidable about POMDPs with omega-Regular Objectives

I Lemma 14. Let X ∈ S, Y ∈ P(S), C ∈ {0, 1}|S|, and Z ∈ D|S|. Then almost-surely (with
probability 1) a run on G � σ′ from any starting state (X,Y,C, Z) reaches a pseudo-recurrent
state.

Proof. We show that given (X,Y,C, Z) there exists a pseudo-recurrent state (X ′, Y ′, C ′, Z ′)
which is reachable from (X,Y,C, Z) in G � σ′. First let us consider the Markov chain G � σ
obtained from the original finite-memory strategy σ with memory M . Let m ∈ M be
such that C = BoolRecσ(m) and Z = SetRecσ(m). We will now show that the result is
a consequence of Lemma 10. First we know that there exists t ∈ S and m′ ∈ M such
that (t,m′) is recurrent and reachable from (X,m) with positive probability in G � σ. Let
R ⊆ S ×M be the unique recurrent class such that (t,m′) ∈ R, and Z∞ = {col(Proj1(R))}.
By Lemma 10, this implies that from (X,Y,C, Z) we can reach a state (X ′, Y ′, C ′, Z ′) such
that (i) X ′ = t; (ii) Z ′(X ′) = {Z∞}; (iii) col(X ′) ∈ Z∞; and (iv) C ′(X ′) = 1. Hence
(X ′, Y ′, C ′, Z ′) is a pseudo-recurrent state. This shows that from all states with positive
probability a pseudo-recurrent state is reached, and since it holds for all states with positive
probability, it follows that it holds for all states with probability 1. J

Moreover, for every projection ZB of a reachable recurrent class in the Markov chain
G � σ, there exists a pseudo-recurrent state (X ′, Y ′, C ′, Z ′) reachable in G � σ′ such that
Z ′(X ′) = {ZB}.

I Lemma 15. Let (X,Y,C, Z) be a state of G � σ′, and let ZB ∈ Z(X). Then there exists
a pseudo-recurrent state (X ′, Y ′, C ′, Z ′) which is reachable from (X,Y,C, Z) and such that
Z ′(X ′) = {ZB}.

Finally, if we consider a pseudo-recurrent state, and consider the projection on the state
space of the POMDP G of the recurrent classes reachable and consider the colors, then they
coincide with Z(X).

I Lemma 16. Let (X,Y,C, Z) be a pseudo-recurrent state, then we have Z(X) =
SetRecσ′(m′)(X), where m′ = (Y,C, Z).

Proof. Let (X,Y,C, Z) be a pseudo-recurrent state, and let Z∞ be such that Z(X) = {Z∞}.
First, by Lemma 13, we know that if (X ′, Y ′, C ′, Z ′) is reachable from (X,Y,C, Z) in G � σ′,
then col(X ′) ∈ Z∞. This implies that for all ZB ∈ SetRecσ′(m′)(X), where m′ = (Y,C, Z),
we have ZB ⊆ Z∞. Second, by Lemma 10, if (X ′, Y ′, C ′, Z ′) is reachable from (X,Y,C, Z) in
G � σ′ and ` ∈ Z∞, then there exists (X ′′, Y ′′, C ′′, Z ′′) reachable from (X ′, Y ′, C ′, Z ′) such
that col(X ′′) = `. This implies that for all ZB ∈ SetRecσ′(m′)(X), where m′ = (Y,C, Z),
we have Z∞ ⊆ ZB . Thus, SetRecσ′(m′)(X) = {Z∞} = Z(X). J

With the key properties we prove the main lemma (Lemma 17) which shows that the
color sets of the projections of the recurrent classes on the state space of the POMDP
coincide for σ and σ′ = proj(σ). Lemma 17 and Lemma 4 yield Theorem 18.

I Lemma 17. Consider a finite-memory strategy σ = (σu, σn,M,m0) and the pro-
jected strategy σ′ = proj(σ) = (σ′u, σ′n,M ′,m′0). Then we have SetRecσ′(m′0)(s0) =
SetRecσ(m0)(s0); i.e., the colors of the projections of the recurrent classes of the two
strategies on the state space of the POMDP G coincide.

Proof. For the proof, let X = s0, Y = {s0}, C = BoolRecσ(m0), Z = SetRecσ(m0). We
need to show that SetRecσ′(m′0)(X) = Z(X), where m′0 = (Y,C, Z). We show inclusion in
both directions.
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First inclusion:(Z(X) ⊆ SetRecσ′(m′0)(X)). Let ZB ∈ Z(X). By Lemma 15, there exists
(X ′, Y ′, C ′, Z ′) which is reachable in G � σ′ from (X,Y,C, Z), which is pseudo-recurrent,
and such that Z ′(X ′) = {ZB}. By Lemma 16, we have Z ′(X ′) = SetRecσ′(m′)(X ′) where
m′ = (Y ′, C ′, Z ′). By Lemma 7, we have SetRecσ′(m′)(X ′) ⊆ SetRecσ′(m′0)(X). This proves
that ZB ∈ SetRecσ′(m′0)(X).
Second inclusion: (SetRecσ′(m′0)(X) ⊆ Z(X)). Conversely, let ZB ∈ SetRecσ′(m′0)(X).
Since G � σ′ is a finite Markov chain, there exists (X ′, Y ′, C ′, Z ′) which is reachable from
(X,Y,C, Z) in G � σ′ and such that:
{ZB} = SetRecσ′(m′)(X ′), where m′ = (Y ′, C ′, Z ′).
For all (X ′′, Y ′′, C ′′, Z ′′) reachable from (X ′, Y ′, C ′, Z ′) in G � σ′ we have {ZB} =
SetRecσ′(m′′)(X ′′) where m′′ = (Y ′′, C ′′, Z ′′).

The above follows from the following property of a finite Markov chain: given a state s of
a finite Markov chain and a recurrent class R reachable from s, from all states t of R the
recurrent class reachable from t isR only. The condition is preserved by a projection on colors
of states in R. By Lemma 14, there exists a pseudo-recurrent state (X ′′, Y ′′, C ′′, Z ′′) which
is reachable from (X ′, Y ′, C ′, Z ′,W ′) in G � σ′. By Lemma 16, we know that Z ′′(X ′′) =
SetRecσ′(m′′)(X ′′) where m′′ = (Y ′′, C ′′, Z ′′). Since SetRecσ′(m′′)(X ′′) = {ZB}, and since
by Lemma 11 (third point) we have Z ′′(X ′′) ⊆ Z ′(X ′) ⊆ Z(X), we get that ZB ∈ Z(X). J

I Theorem 18. Given a POMDP G and a Muller objective Muller(F) with the set D of
colors, if there is a finite-memory almost-sure (resp. positive) winning strategy σ, then
the projected strategy proj(σ), with memory of size at most Mem∗ = 22·|S| · |D||S| (where
D = P(P(D))), is also an almost-sure (resp. positive) winning strategy.

Büchi and coBüchi objectives are parity (thus Muller) objectives with 2 priorities (or colors)
(i.e., d = 2), and from Theorem 18 we obtain an upper bound of 26·|S| on memory size for
them. However, applying the result of Theorem 18 for Muller objectives to parity objectives
we obtain a double exponential bound. We establish Theorem 19: for item (1), we present a
reduction (details in appendix) that for almost-sure (resp. positive) winning given a POMDP
with |S| states and a parity objective with 2 · d priorities constructs an equivalent POMDP
with d · |S| states with coBüchi (resp. Büchi) objectives (and thus applying Theorem 18 we
obtain the 23·d·|S| upper bound); and item (2) follows from Example 5 (and [8] for lower
bounds for reachability and safety objectives).

I Theorem 19. Given a POMDP G and a parity objective Parity(p) with the set D of d
priorities, the following assertions hold: (1) If there is a finite-memory almost-sure (resp.
positive) winning strategy, then there is an almost-sure (resp. positive) winning strategy with
memory of size at most 23·d·|S|. (2) Finite-memory almost-sure (resp. positive) winning
strategies require exponential memory in general, and belief-based stationary strategies are
not sufficient in general for finite-memory almost-sure (resp. positive) winning strategies.

4 Computational Complexity

We will present an exponential time algorithm to solve almost-sure winning in POMDPs
with coBüchi objectives under finite-memory strategies (and our polynomial time reduction
for parity objectives to coBüchi objectives for POMDPs allows our results to carry over to
parity objectives). The results for positive Büchi is similar. The naive algorithm would be
to enumerate over all finite-memory strategies with memory bounded by 26·|S|, this leads
to an algorithm that runs in double-exponential time. Instead our algorithm consists of
two steps: (1) given a POMDP G we first construct a special kind of a POMDP Ĝ such
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that there is a finite-memory winning strategy in G iff there is a randomized memoryless
winning strategy in Ĝ; and (2) then show how to solve the special kind of POMDPs under
randomized memoryless strategies in time polynomial in the size of Ĝ. We introduce the
special kind of POMDPs which we call belief-observation POMDPs which satisfy that the
current belief is always the set of states with current observation.

I Definition 20. A POMDP G = (S,A, δ,O, γ, s0) is a belief-observation POMDP iff for
every finite prefix w = (s0, a0, s1, a1, . . . , sn) with the observation sequence ρ = γ(w), the
belief B(ρ) is equal to the set of states with the observation γ(sn), i.e., B(ρ) = {s ∈ S |
γ(s) = γ(sn)}.

POMDPs to belief-observation POMDPs. We will construct a belief-observation POMDP Ĝ

from a POMDP G for almost-sure winning with coBüchi objectives. Since we are interested
in coBüchi objectives, for the sequel of this section we will denote byM = 2S×{0, 1}|S|×D|S|,
i.e., all the possible beliefs B, BoolRec and SetRec functions (recall that D is P(P({1, 2}))
for coBüchi objectives). If there exists a finite-memory almost-sure winning strategy σ, then
the projected strategy σ′ = proj(σ) is also a finite-memory almost-sure winning strategy
(by Theorem 18) and will use memory M ′ ⊆ M . The size of the constructed POMDP
Ĝ will be exponential in the size of the original POMDP G and polynomial in the size of
the memory set M (and |M | = 26·|S| is exponential in the size of the POMDP G). We
define the set McoBuchi ⊆ M as the memory elements, where for all states s in the belief
component of the memory, the set SetRec(s) contains only a set with priority two, i.e., there
is no state with priority 1 in the reachable recurrent classes according to SetRec. Formally,
McoBuchi = {(Y,B,L) ∈ M | ∀s ∈ Y,L(s) = {{2}}}. The POMDP Ĝ is constructed
such that it allows all possible ways that a projected strategy of a finite-memory almost-
sure winning strategy could play in G. Informally, since beliefs are part of states of Ĝ
it is belief-observation; and since possible memory states of projected strategies are part
of the state space, we only need to consider memoryless strategies. We will now present
a polynomial time algorithm for the computation of the almost-sure winning set for the
belief-observation POMDP Ĝ with state space Ŝ for coBüchi objectives under randomized
memoryless strategies.
Almost-sure winning observations. For an objective ϕ, we denote by Almost(ϕ) = {o ∈ O |
there exists a randomized memoryless strategy σ such that for all s ∈ γ−1(o). Pσs (ϕ) = 1}
the set of observations such that there is a randomized memoryless strategy to ensure winning
with probability 1 from all states of the observation. Also note that since we consider
belief-observation POMDPs we can only consider beliefs that correspond to all states of an
observation.
Almost-sure winning for coBüchi objectives. We show that the computation can be achieved
by computing almost-sure winning regions for safety and reachability objectives. The steps
of the computation are as follows: (Step 1). Let F ⊆ Ŝ be the set of states of Ĝ where some
actions can be played consistent with a projected strategy of a finite-memory strategy, and
we first compute Almost(Safe(F )). (Step 2). Let Ŝwpr ⊆ Ŝ denote the subset of states that
intuitively correspond to winning pseudo-recurrent (wpr) states, i.e., formally it is defined
as follows: Ŝwpr = {(s, (Y,B,L)) | B(s) = 1, L(s) = {{2}} and p̂(s) = 2}. In the POMDP
restricted to Almost(Safe(F )) we compute the set of observationsW2 = Almost(Reach(Ŝwpr)).
We show that W2 = Almost(coBuchi(p̂−1(2))), and then show that in belief-observation
POMDPs almost-sure safety and reachability sets can be computed in polynomial time (and
thus obtain Theorem 23).

I Lemma 21. Almost(coBuchi(p̂−1(2))) = W2.
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Proof. We prove the inclusion W2 ⊆ Almost(coBuchi(p̂−1(2))). Let o ∈ W2 be an observa-
tion in W2, and we show how to construct a randomized memoryless almost-sure winning
strategy ensuring that o ∈ Almost(coBuchi(p̂−1(2))). Let σ be the strategy produced by
the computation of Almost(Reach(Ŝwpr)). We will show that the same strategy ensures also
Almost(coBuchi(p̂−1(2))). As in every observation o the strategy σ plays only a subset of
actions that are available in the POMDP restricted to Almost(Safe(F ) (to ensure safety in
F ), where F = Ŝ \ ŝb, the loosing absorbing state ŝb is not reachable. Intuitively, the state
ŝb is reached whenever a strategy violates the structure of a projected strategy. Also with
probability 1 the set Ŝwpr is reached. We show that for all states (s, (Y,B,L)) ∈ Ŝwpr that
all the states reachable from (s, (Y,B,L)) have priority 2 according to p̂. Therefore ensuring
that all recurrent classes reachable from Ŝwpr have minimal priority 2. In the construc-
tion of the POMDP Ĝ, the only actions allowed in a state (s, (Y,B,L)) satisfy that for all
states ŝ ∈ Y if B(ŝ) = 1, L(ŝ) = {Z∞} and p̂(s) ∈ Z∞ for some Z∞ ⊆ {1, 2}, then for
all states ŝ′ ∈ Supp(δ(s, a)) we have that p(ŝ′) ∈ Z∞. As all states in (s, (Y,B,L)) ∈ Ŝwpr
have L(s) = {{2}}, it follows that any state reachable in the next step has priority 2.
Let (s′, Y ′, (Y,B,L), a) be an arbitrary state reachable from (s, (Y,B,L)) in one step. By
the previous argument we have that the priority p̂((s′, Y ′, (Y,B,L), a)) = 2. Similarly the
only allowed memory-update actions (Y ′, B′, L′) from state (s′, Y ′, (Y,B,L), a) satisfy that
whenever ŝ ∈ Y and B(ŝ) = 1, then for all ŝ′ ∈ Supp(δ(ŝ, a)), we have that B′(ŝ′) = 1
and similarly we have that L′(s′) is a non-empty subset of L(s), i.e., L′(s′) = {{2}}.
Therefore the next reachable state (s′, (Y ′, B′, L′)) is again in Ŝwpr . In other words, from
states (s, (Y,B,L)) in Ŝwpr in all future steps only states with priority 2 are visited, i.e.,
Safe(p̂−1(2)) is ensured which ensures the coBüchi objective. As the states in Ŝwpr are
reached with probability 1 and from them all recurrent classes reachable have only states
that have priority 2, the desired result follows. J

I Lemma 22. For T ⊆ S and F ⊆ S, the set Y ∗ = Almost(Safe(F )) can be computed in
linear time; and the set Z∗ = Almost(Buchi(T )) and Almost(Reach(T )) can be computed in
quadratic time for belief-observation POMDPs.

I Theorem 23. (1) Given a POMDP G with |S| states and a parity objective with d

priorities, the decision problem of the existence (and the construction if one exists) of a
finite-memory almost-sure (resp. positive) winning strategy can be solved in 2O(|S|·d) time.
(2) The decision problem of given a POMDP and a parity objective whether there exists a
finite-memory almost-sure (resp. positive) winning strategy is EXPTIME-complete.

Concluding remarks. Our EXPTIME-algorithm for parity objectives, and the LAR reduction
of Muller objectives to parity objectives [15] give an 2O(d!·d2·|S|) time algorithm for Muller
objectives with d colors for POMDPs with |S| states, i.e., exponential in |S| and double
exponential in d. Note that the Muller objective specified by the set F maybe in general
itself double exponential in d.
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