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Abstract
The closure ordinal of a formula of modal µ-calculus µXϕ is the least ordinal κ, if it exists, such
that the denotation of the formula and the κ-th iteration of the monotone operator induced by
ϕ coincide across all transition systems (finite and infinite). It is known that for every α < ω2

there is a formula ϕ of modal logic such that µXϕ has closure ordinal α [3]. We prove that
the closure ordinals arising from the alternation-free fragment of modal µ-calculus (the syntactic
class capturing Σ2 ∩ Π2) are bounded by ω2. In this logic satisfaction can be characterised in
terms of the existence of tableaux, trees generated by systematically breaking down formulæ into
their constituents according to the semantics of the calculus. To obtain optimal upper bounds
we utilise the connection between closure ordinals of formulæ and embedded order-types of the
corresponding tableaux.
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1 Introduction

Modal µ-calculus is often referred to as the “mother of all temporal logics”. Indeed the
majority of temporal logics, including LTL (Linear Time Logic), CTL (Computational Tree
Logic) and their various extensions, can be easily interpreted and analysed in µ-calculus
making the study of this logic of high interest in the research community. The defining
feature of the modal µ-calculus is the expression of fixpoints. In this calculus the syntax
of modal logic is extended by least and greatest fixpoint quantifiers (µ and ν) that bind
propositional variables. The formulæ µXϕ and νXϕ are interpreted respectively as the
least and greatest fixpoints of the monotone operator induced by ϕ. In analogy to the
hierarchies defined in second order logic, one can alternate the fixpoint quantifiers to define
a hierarchy of formulæ. Although we have a relatively good understanding of least and
greatest fixpoints, when nested their meaning and behaviour is easily lost. As a result many
fundamental properties of this calculus have remained unanswered even after decades of
attention from logicians and computer scientists.

An interesting open problem for µ-calculus is that of closure ordinals, the number of
iterations required for a fixpoint to close across all structures. Given an arbitrary formula,
its closure ordinal may not exist, such as in the case of µX2X. On the other hand mere
syntactic analysis suggests that the fixpoint iterations in this context cannot exhaust the
power of ordinals beyond certain levels. Hence one may ask the following question.
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For which ordinals α is there a formula of modal µ-calculus with closure ordinal α?

In the case of finite ordinals the formulæ µX. (3X ∧ 2n⊥) ∨ 2⊥, which express that
all paths in a model of the formula have length at most n, are guaranteed to close across
all structures after n iterations. By expressing the existence of arbitrarily long finite paths,
through the formula µX.3X ∨ 2⊥ for example, transfinite closure ordinals are obtained.
In fact it is known that for every α < ω2 there is a formula ϕ of modal logic such that µXϕ
has closure ordinal α [3].

In this paper we establish optimal upper bounds on closure ordinals, showing that no
formula of the alternation-free fragment can have a closure ordinal equal or greater than
ω2, even if iterations of all quantifiers occurring in the formula are taken into account. We
begin with a syntactic analysis on a fragment of the Σ1-formulæ in section 2. This study,
despite applying only to operators induced by particular formulæ of modal logic, provides
the motivation for the general solution. The main result of the paper is given in section
3 and consists of a semantic analysis of the problem by means of tableaux constructions.
We present a strong characterisation of closure ordinals in terms of order-types of tableaux
for formulæ without genuine dependencies between their alternating fixpoint quantifiers.
This correspondence will prove sufficient to bound closure ordinals of these formulæ by their
logical complexity.

1.1 Syntax and semantics of modal µ-formulæ
Let Var be an infinite set of propositional variables and Prop an infinite set of propositional
constants. The set of µ-formulæ is defined inductively as follows.

ϕ := p | p̄ | X | ϕ ∧ ϕ | ϕ ∨ ϕ | 2ϕ | 3ϕ | µX ϕ | νX ϕ

where p ∈ Prop and X ∈ Var. Also define ⊥ := p∧ p̄ and > := p∨ p̄ for some propositional
constant p. A variable X in ϕ is called a µ-variable (respectively, ν-variable) if the quantifier
µX (resp. νX) occurs in ϕ. We assume that all quantifiers occur uniquely. This can be
achieved through implicit α-conversion.

A transition system is a tuple T = (S,→, λ) where (S,→) is a directed graph and
λ : S → P(Prop) is an assignment of propositional constants to states. Given a transition
system T = (S,→, λ) and a valuation V : Var → P(S) of free variables, the set of states
satisfying a formula ϕ, denoted by ||ϕ||TV , is defined inductively as follows.

||p||TV = {x ∈ S : p ∈ λ(x)}
||p̄||TV = {x ∈ S : p 6∈ λ(x)}
||X||TV = V(X)
||ϕ ∧ ψ||TV = ||ϕ||TV∩||ψ||TV
||ϕ ∨ ψ||TV = ||ϕ||TV ∪ ||ψ||TV
||2ϕ||TV = {x ∈ S : ∀y(x→ y ⇒ y ∈ ||ϕ||TV )}
||3ϕ||TV = {x ∈ S : ∃y(x→ y ∧ y ∈ ||ϕ||TV )}
||µXϕ(X)||TV =

⋂
{U ⊆ S : ||ϕ||TV[X 7→U ] ⊆ U}

||νXϕ(X)||TV =
⋃
{U ⊆ S : U ⊆ ||ϕ||TV[X 7→U ]}

In the above V[X 7→ U ] is the valuation that maps X into U and agrees with V on all
other variables. Note that a formula ϕ gives rise to a function fϕ : P(S) → P(S) given by
U 7→ {x ∈ S : x ∈ ||ϕ(X)||TV[X 7→U ]}. As fϕ is a monotone function on the powerset lattice
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32 On closure ordinals for the modal µ-calculus

〈P(S),⊆〉, by the Knaster-Tarski Theorem its least (and greatest) fixpoint exists, and is
equal to the least prefixed point (resp. greatest postfixed point) of fϕ, the set ||µXϕ||TV
(resp. ||νXϕ||TV ).

1.2 Alternation-free fragment

The alternation of fixpoint quantifiers is the major source of potency, and a fundamental
measure of logical strength in the study of fragments of µ-calculus. The number of genuine
alternations between least and greatest fixpoint quantifiers is called the depth of the formula.
Bradfield [1] showed that there are modal fixpoint properties which require arbitrarily large
depth, and hence the modal µ-calculus alternation hierarchy is strict. Formally, the Niwiński
hierarchy is defined as follows. A formula ϕ is in the classes Π0 and Σ0 if it contains no
fixpoint quantifiers, i.e. it is a formula of modal logic. The class Σn+1 (Πn+1) is the closure
of Σn ∪Πn under the following rules.

If ϕ,ψ ∈ Σn+1 (Πn+1), then ϕ ∧ ψ,ϕ ∨ ψ,2ϕ,3ϕ ∈ Σn+1 (Πn+1).
If ϕ ∈ Σn+1 (Πn+1), then µXϕ ∈ Σn+1 (νXϕ ∈ Πn+1).
If ϕ,ψ ∈ Σn+1 (Πn+1), then ϕ(ψ) ∈ Σn+1 (Πn+1), provided the free variables of ψ do
not become bound by quantifiers in ϕ.

In comparison the alternation-free fragment of the modal µ-calculus is the class of for-
mulæ with no real dependencies between alternating fixpoint quantifiers. This fragment is
the closure of Σ1 ∪ Π1 under Boolean and modal operators and substitutions that preserve
the alternation depth. Despite the restrictions imposed, this class of properties still forms
a remarkably expressive fragment encompassing the majority of logics used in the verific-
ation of systems. It is known that this class coincides with the collection of all formulæ
semantically equivalent to both a Σ2-formula and a Π2-formula [5]. Moreover, this fragment
is the limit of the weak index hierarchy as introduced in [6]; thus, the languages defined by
alternation-free formulæ are also referred to as weakly definable languages.

1.3 Trees

A tree is a pair t = (V,→) with a distinguished node ρt such that (V,→) is a connected
directed graph, there are no transitions into ρt and for every v ∈ V \ {ρt} there is exactly
one v0 ∈ V such that v0 → v. The node ρt is referred to as the root of the tree and any
node without outgoing transitions is called a leaf. For a tree t and a node v in t, we write
t�v to denote the sub-tree rooted at v. If there is no cause for confusion we identify a tree
with its domain. Tree t0 = (V0,→0) is a pruning of t = (V,→) if V0 ⊆ V , →0=→ ∩V 2

0 and
if u→ v /∈ V0 then {w ∈ V0 : u→0 w} = ∅.

A path through a tree t = (V,→) is an enumerable set P ⊆ V such that ρt ∈ P, if
v0 → v ∈ P then v0 ∈ P, and for every v ∈ P either v is a leaf or there exists exactly one
u ∈ V such that v → u and u ∈ P. For a path P given by a sequence ρt = v0 → v1 →
v2 → . . . → vn → . . ., we write P(n) to denote vn. For nodes u, v ∈ t we write u <t v

(resp. u ≤t v) if for some path P through t and i < j (resp. i ≤ j), P(i) = u and P(j) = v.
A tree transition system (TTS) is a transition system T = (S,→, λ) for which (S,→) is

a tree. We say a TTS T satisfies ϕ, written T |= ϕ, if ρT ∈ ||ϕ||TV . In this case T is a model
of ϕ and ϕ is satisfiable. Note that modal µ-calculus has the tree model property, namely
every satisfiable formula has a model which is a TTS (see e.g. [2]).
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1.4 Closure ordinals
The definition of semantics for µ-formulæ can be generalised to also take into account ap-
proximations to fixpoint variables. For each formula ϕ, set of bound variables X occurring in
ϕ and ordinal α, we define a set ||ϕα||TV by induction on α. Let T = (S,→, λ) be a transition
system and V a valuation on T . For every α, define

||pα||TV = ||p||TV
||p̄α||TV = ||p̄||TV
||Zα||TV = V(Z)
||(ϕ ∧ ψ)α||TV = ||ϕα||TV ∩ ||ψα||TV
||(ϕ ∨ ψ)α||TV = ||ϕα||TV ∪ ||ψα||TV
||(2ϕ)α||TV = {x ∈ S : ∀y(x→ y ⇒ y ∈ ||ϕα||TV )}
||(3ϕ)α||TV = {x ∈ S : ∃y(x→ y ∧ y ∈ ||ϕα||TV )}

||(µXϕ)α||TV =
{⋃

γ<α ||ϕ[µXϕ/X]γ ||TV , if X ∈ X ,
||µXϕα||TV , otherwise.

||(νXϕ)α||TV =
{⋂

γ<α ||ϕ[νXϕ/X]γ ||TV , if X ∈ X ,
||νXϕα||TV , otherwise.

For every formula ϕ there exists an ordinal κ such that ||ϕ||TV = ||ϕκ||TV = ||ϕκ+1||TV .
The least such κ is called the closure ordinal of ϕ with respect to T and X and is denoted
COT,X (ϕ). Note that a formula may have different closure ordinals depending on the trans-
ition system on which it is evaluated as well as the particular collection of variables analysed.
For example the formula µX2X is satisfied by all well-founded trees; its closure ordinal with
respect to {X} in each case is the order-type of the tree.
I Definition 1.1 (Closure Ordinal). The closure ordinal of a closed formula ϕ with respect to
a non-empty set X of variables, denoted by COX (ϕ), is the ordinal supT COT,X (ϕ), if this
ordinal exists.

2 Syntactic analysis

Let Prop := {p̄ : p ∈ Prop} and P1, P
′
1, P2, P

′
2, . . . , Pn, P

′
n be finite subsets of Prop∪Prop.

Each such set, when referred to as a formula, denotes the conjunction of its elements. We
say a formula of modal logic is primary if it is of the form

(P1 ∧2P ′1 ∧∇1X) ∨ (P2 ∧2P ′2 ∧∇2X) ∨ . . . ∨ (Pn ∧2P ′n ∧∇nX) ∨2⊥ (1)

where ∇i ∈ {3,2} for each i. Czarnecki’s analysis in [3] establishes that every ordinal below
ω2 is the closure ordinal of the least fixpoint of some primary formula. In this section we
establish a strong converse: if the primary formula given in (1) has closure ordinal α, then
α < ω.(n+ 1). For the following let ψ denote the formula in (1) and ϕ = µXψ.
I Lemma 2.1. Fix a transition system T and a valuation V. Suppose κ is a limit ordinal. If
x ∈ ||ϕκ+1||TV \ ||ϕκ||TV , then there is no j ≤ n such that x ∈ ||Pj ∧2P ′j ∧∇jϕκ||TV and ∇j = 3.

Proof. Suppose T = (S,→, λ) and let ||ϕα|| abbreviate ||ϕα||TV . Suppose x ∈ ||ϕκ+1|| \ ||ϕκ||.
By way of contradiction suppose also x ∈ ||Pj ∧ 2P ′j ∧ ∇jϕκ|| and ∇j = 3 for some j ≤ n.
If {y ∈ S : x → y} = ∅ then x ∈ ||ϕ1|| ⊆ ||ϕκ|| which cannot be, so let x → y be such that
y ∈ ||ϕκ||. Thus there exists γ < κ such that y ∈ ||ϕγ ||, and hence x ∈ ||ϕγ+1|| ⊆ ||ϕκ|| yielding
a contradiction. J
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(0, 1) Q1

(0, 2) Q2

...

(0, k) Qk

(α+ 1, 1) Q1

(α+ 1, 2) Q2

...

(α+ 1, k) Qk

Tα

(α, 1) Q1

(α, 2) Q2

...

(α, k) Qk

Tα1 Tα2 Tαi

Figure 1 T0, Tα+1 and Tα (in the case α = supi αi) in the proof of lemma 2.3.

I Corollary 2.2. If ∇i = 3 for every i ≤ n then the closure ordinal of µXψ exists and is no
greater than ω.
I Lemma 2.3. Suppose there exist consistent sets of propositions Q1, Q2,. . .,Qk+1 and num-
bers i1, i2, . . . , ik < n such that Pij ∧ 2P ′ij ∧ ∇ijX is a subformula of ψ with Pij ⊆ Qj and
P ′ij ⊆ Qj+1 for each j ≤ k. Furthermore, suppose ∇ik = 2 and there is no j ≤ n such that
Pj ⊆ Qk, P ′j ⊆ Qk+1 and ∇j = 3. If Qk+1 = Q1, then µXψ does not have a closure ordinal.

Proof. Let λ : On × {i : i ≤ k + 1} → P(Prop), where On is the class of all ordinals, be
defined by p ∈ λ((α, j)) if and only if p ∈ Qj . Furthermore, let Tα0 = (Sα0 ,→α

0 , λ) be the
TTS where

Sα0 = {(α, j) : 0 < j ≤ k},
→α

0 = {((α, j), (α, j + 1)) : 0 < j < k}.

For each countable ordinal α we define a tree Tα as follows. Let T0 = T 0
0 and Tα+1 =

(Sα+1,→α+1, λ) where Sα+1 = Sα+1
0 ∪ Sα and →α+1=→α+1

0 ∪ →α ∪{((α + 1, k), (α, 1))}.
If α is a limit ordinal, then Sα = Sα0 ∪

⋃
β<α Sβ and →α=→α

0 ∪
⋃
β<α →β ∪{(α, k), (β, 1)) :

β < α}.
Let f be the function κ 7→ k.κ. We will show that for each κ ≤ α and 0 ≤ j < k,

(κ, k − j) ∈ ||ϕf(κ)+j+1||TαV \ ||ϕ
f(κ)+j ||TαV (2)

whereby it will be clear that the formula ϕ does not possess a closure ordinal. The argument
proceeds by transfinite induction on κ ≤ α with an auxiliary induction on j < k. If j 6= 0
then (2) follows from the fact that (κ, k − (j − 1)) is the unique successor of (κ, k − j) and
the definition of λ. Thus suppose j = 0, whence three sub-cases manifest:

κ = 0. Then f(κ) = 0 and (κ, k) is a leaf of Tα, so (2) trivially holds.
κ = κ′+ 1. By the definition of Tα, (κ, k) has a unique successor, namely (κ′, 1), whence
(2) follows from the induction hypothesis
κ limit. The successors of (κ, k − j) in this case are the nodes (γ, 1) for γ < κ. By the
induction hypothesis we know (γ, 1) ∈ ||ϕf(γ+1)||TαV \||ϕf(γ)+k−1||TαV for each γ < κ. Notice
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that ||ϕf(κ)||TαV =
⋃
γ<κ ||ϕf(γ)||TαV . Since Pik ⊆ Qk, P ′ik ⊆ Q1 and ∇ik = 2, it follows

that (κ, k) ∈ ||ϕf(κ)+1||TαV . If, however, (κ, k) ∈ ||ϕf(κ)||TαV , then (κ, k) ∈ ||ϕf(γ)+k||TαV for
some γ < κ. But then (γ, 1) ∈ ||ϕf(γ)+k−1||TαV by the assumption on ϕ. J

I Proposition 2.4. The closure ordinal of ϕ is strictly less than ω2.

Proof. Let α be the closure ordinal of ϕ and suppose α ≥ ω2. Fix N ≥ 2|ϕ|+1 where
|ϕ| denotes the number of symbols occurring in ϕ. Let T be a TTS such that for every
i ≤ N , ||ϕω.i||TV is a proper subset of ||ϕω.i+1||TV . Then there exists a path P through T ,
mN < mN−1 < · · · < m0 < ω and a function f : ω × ω → ω such that for every i ≤ N and
j < mi −mi+1, f(i, j) ≤ n and

P(mi − j) ∈ ||Pf(i,j) ∧2P ′f(i,j) ∧∇f(i,j)ϕ
ω.i+j ||TV \ ||ϕω.i+j ||TV .

Define for each j < ω, Qj = λT (P(j)) ∪ {p̄ : p /∈ λT (P(j))}. For some i0 < i1 ≤ N it must
be the case that

Qmi0 ∩Propϕ = Qmi1 ∩Propϕ
where Propϕ =

⋃
i≤n(Pi∪P ′i ). The sequence Qmi1 , . . . , Qmi0 therefore fulfils the hypothesis

of lemma 2.3 whence, contrary to our assumption, ϕ does not have a closure ordinal. J

The above analysis can also be applied to formulæ of the form

(ψ1 ∧∇1X) ∨ (ψ2 ∧∇2X) ∨ . . . ∨ (ψn ∧∇nX) ∨2⊥ (3)

where ψ1, . . . , ψn are closed formulæ of modal logic. Replacing literals with arbitrary modal
formulæ in each disjunct alters the “proposition paths” that can occur. Therefore, in order
to find a repetition as in the proof of proposition 2.4, one will need to look at larger segments
of a suitable model. As such a proof would be technically cumbersome, in the next section
we will employ a semantic analysis which will include (3) and extend the bounds to formulæ
of the alternation-free fragment of µ-calculus.

3 Semantic analysis

For the remainder of the paper, formulæ are assumed to be closed and guarded unless
otherwise stated. A formula ϕ is guarded if in every subformula σZ.ψ of ϕ, every occurrence
of the bound variable Z in ψ appears within the scope of a modal operator. The restriction
to the guarded fragment is not significant as every formula is equivalent to one in guarded
form (see e.g. [7]). Moreover, by following the approach of [4] it is possible to carry out the
analysis below for unguarded formulæ.1

Upper-case Greek letters such as Γ and ∆ denote sequents, finite sets of formulæ. 2Γ
abbreviates the set {2ϕ : ϕ ∈ Γ} and 3Γ is defined analogously. We write Γ, ϕ for Γ∪ {ϕ},
and Γ,∆ to denote Γ ∪∆. The Fischer-Ladner closure of a formula ϕ, denoted by FL(ϕ),
is the smallest set such that

ϕ ∈ FL(ϕ),
if ψ0 ◦ ψ1 ∈ FL(ϕ) where ◦ ∈ {∨,∧} then ψ0, ψ1 ∈ FL(ϕ),
if ∇ψ ∈ FL(ϕ) where ∇ ∈ {3,2} then ψ ∈ FL(ϕ),
if σXψ ∈ FL(ϕ) where σ ∈ {µ, ν} then ψ[σXψ/X] ∈ FL(ϕ).

Note that |FL(ϕ)| ≤ |ϕ| where |ϕ| denotes the number of symbols occurring in ϕ. For a
sequent Γ we set FL(Γ) =

⋃
γ∈Γ FL(γ).

1 We would like to thank the anonymous referee for drawing our attention to [4].
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3.1 Tableaux

I Definition 3.1. Given a TTS T and a sequent Γ, a pre-tableau for (T,Γ) is a tree t = (V,→)
together with functions τt : t→ T and λt : t→ P(FL(Γ)) such that the following conditions
are satisfied.

τt(ρt) = ρT and λt(ρt) = Γ.
If v ∈ t is a leaf then λt(v) = 2Ξ,Θ where Θ ⊆ Prop∪Prop, and either Ξ = ∅ or τt(v)
is a leaf of T .
If τt(u) = τt(v) then either u ≤t v or v ≤t u.
For every v ∈ t, λt(v) ∩Prop ⊆ λT (τt(v)) ⊆ {p ∈ Prop : p̄ /∈ λt(v)}.
For every v0 → v1 ∈ t with τt(vi) = xi and λt(vi) = Γi, one of the following conditions
hold.

(∧) x0 = x1 and there are formulæ ϕ0, ϕ1 such that ϕ0 ∧ ϕ1 ∈ Γ0 and Γ1 = (Γ0 \ {ϕ0 ∧
ϕ1})∪{ϕ0, ϕ1}. The formula ϕ0∧ϕ1 is called active at v0 and both ϕ0 and ϕ1 residual
at v1.

(∨) x0 = x1 and there are formulæ ϕ0, ϕ1 such that ϕ0 ∨ ϕ1 ∈ Γ0 and Γ1 = (Γ0 \ {ϕ0 ∨
ϕ1}) ∪ {ϕi}. The formula ϕ0 ∨ ϕ1 is called active at v0 and ϕi residual at v1.

(σX) x0 = x1 and there is a formula ϕ and σ ∈ {µ, ν} such that σXϕ ∈ Γ0 and Γ1 =
(Γ0 \ {σXϕ}) ∪ {ϕ[σXϕ/X]}. The formula σXϕ is called active at v0 and ϕ(σXϕ)
residual at v1.

(mod) x0 →T x1 and Γ0 = 2Ξ,3∆,Θ with Θ ⊆ Prop ∪ Prop and Ξ ⊆ Γ1 ⊆ Ξ ∪ ∆. All
formulæ in Γ0 are considered active at v0 and all formulæ in Γ1 residual at v1.

In the cases (∧), (∨) and (σX) above, |{u : v0 → u}| = 1, while in the case of (mod),⋃
v0→u λt(u) = Ξ ∪∆ and {τt(u) : v0 → u} = {y : x0 →T y}.

I Remark 3.2. Exactly one of the four conditions (∧), (∨), (σX) and (mod) can apply to a
non-leaf node of a pre-tableau; henceforth we will refer to them as tableaux rules. Note that
in a pre-tableau branching only occurs at a (mod)-rule and may be infinite.

Suppose t is a pre-tableau for (T,Γ) and Ψ = {(ψi, vi) : i ∈ I} ⊆ FL(Γ)× t where I is an
initial segment of natural numbers. Ψ is called a trace from (ψ, v) if (ψ0, v0) = (ψ, v) and
there exists a path P in t and natural number n such that for every i ∈ I,

vi = P(n+ i),
ψi ∈ λt(vi),
if vi is a leaf or ψi ∈ Prop ∪Prop is active at vi then i+ 1 /∈ I,
if i + 1 ∈ I and ψi is active at vi then ψi+1 is an immediate subformula of ψi that is
residual at vi+1,
if i+ 1 ∈ I and ψi is not active at vi then ψi+1 = ψi.

In each infinite trace (i.e. if I is infinite) there exists a variable that appears infinitely
often and subsumes all other infinitely occurring variables. If this unique variable is a
µ-variable then the trace is called a µ-trace; otherwise it is a ν-trace.

I Definition 3.3. A pre-tableau for (T,Γ) is a tableau if every infinite trace is a ν-trace.

The following theorem which provides a characterisation of satisfaction in terms of the
existence of tableaux is folklore; see for example [7].

I Theorem 3.4. T |=
∧

Γ if and only if there is a tableau for (T,Γ).
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3.2 Order-types of tableaux
Fix a TTS T and a sequent Γ. To each tableau for (T,Γ) and set of µ-variables X one can
assign an order-type with respect to X in a natural way. The order-type of ψ at a node v,
denoted by αψ,v,X , is defined recursively as follows. If there exists a trace Ψ = {(ψi, vi) : i ∈
I} from (ψ, v) such that for infinitely many i ∈ I, ψi has the form µXψ′ for some X ∈ X ,
or there are no traces Ψ = {(ψi, vi) : i ∈ I} from (ψ, v) for which ψi has the form µXψ′ for
some i ∈ I and X ∈ X , then αψ,v,X = 0. Otherwise,

if ψ = µXψ′ is active at v and X ∈ X then αψ,v,X = αψ′,u,X + 1 where u is the unique
successor of v in the tableau,
if ψ is not of the form µXψ′ for some X ∈ X or not active at v then αψ,v,X is the
supremum of αψ1,v1,X for which there exists a trace Ψ = {(ψi, vi) : i ∈ I} from (ψ, v).

I Definition 3.5. The order-type with respect to X of a tableau t for (T,Γ) is the ordinal
sup{αϕ,ρt,X : ϕ ∈ Γ}. A tableau is an α-tableau with respect to X if its order-type with
respect to X is no greater than α.

To establish the connection between the closure ordinal of a formula and order-types of
the corresponding tableaux we show that if ϕ is alternation-free and X a set of µ-variables,

x ∈ ||ϕα||TV iff there exists an α-tableau for (T �x , ϕ) with respect to X .

We will prove the result for X = {X}; the above statement is a direct generalisation of the
next lemma.
I Lemma 3.6. Suppose ψ(Y ) is a formula with at most Y free and X a variable not occurring
in ψ. Let X = {X} and T be a TTS. Then x ∈ ||ψ(µXϕ)α||TV if and only if there exists an
α-tableau for

(
T �x , ψ(µXϕ)

)
with respect to X .

Proof. By transfinite induction on α. For the base case suppose α = 0. We want to show

x ∈ ||ψ(Z)||TV[Z 7→∅] iff there exists a 0-tableau
(
T �x , ψ(µXϕ)

)
.

Notice x ∈ ||ψ(Z)||TV[Z 7→∅] if and only if there is a tableau for
(
T �x , ψ(⊥)

)
. Consider

a tableau for
(
T �x , ψ(⊥)

)
. Since ⊥ cannot appear in the label of any node, this tableau

can be used to create a tableau for
(
T �x , ψ(µXϕ)

)
in a trivial way: replace ⊥ by µXϕ at

relevant positions. The order-type of the emerging tableau is 0 as µXϕ can never appear in
any trace. Conversely, since a tableau of order-type 0 means the (µX)-rule is never applied,
replacing occurrences of µXϕ by ⊥ in a tableau for

(
T �x , ψ(µXϕ)

)
yields a tableau for

ψ(⊥).
For the successor case we want to show

x ∈ ||ψ(µXϕ)α+1||TV iff there exists an (α+ 1)-tableau
(
T �x , ψ(µXϕ)

)
.

Note that x ∈ ||ψ(µXϕ)α+1||TV if and only if x ∈ ||(ψ ◦ ϕ)(µXϕ)α||TV , if and only if there
exists an α-tableau for

(
T �x , (ψ ◦ ϕ)(µXϕ)

)
by the induction hypothesis. Hence it suffices

to show how to construct an (α + 1)-tableau for
(
T �x , ψ(µXϕ)

)
from an α-tableau for(

T �x , ψ ◦ϕ(µXϕ)
)
and vice versa. Given an α-tableau t for

(
T �x , ψ ◦ϕ(µXϕ)

)
, along every

path look for the first node v with λt(v) = Γ, ϕ(µXϕ) for some Γ, and replace all occurrences
of ϕ(µXϕ) by µXϕ in nodes u ≤t v. The sequent at v has therefore become Γ, µXϕ.
Between v and its successors, insert a new node labelled by Γ, ϕ(µXϕ). The added transition
is a valid (µX)-rule so the resulting tableau is readily seen to be a tableau for

(
T �x , ψ(µXϕ)

)
.

Moreover, all traces from (µXϕ, v) have order-type at most α + 1 and indeed, the tableau
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for
(
T �x , ψ(µXϕ)

)
has order-type α + 1. Similarly, by replacing occurrences of µXϕ by

ϕ(µXϕ) at the relevant nodes in an (α+1)-tableau for
(
T �x , ψ(µXϕ)

)
and removing the first

application of a (µX)-rule on every trace one obtains an α-tableau for
(
T �x , ψ ◦ ϕ(µXϕ)

)
.

For the limit case suppose x ∈ ||ψ(µXϕ)α||TV . Let q be a fresh proposition and T q a new
TTS obtained by adjusting the labelling so that q holds at all nodes belonging to ||(µXϕ)α||TV
i.e.

λT q (x) =
{
λT (x) ∪ {q}, if x ∈ ||(µXϕ)α||TV ,
λT (x), otherwise.

Since ||ψ(µXϕ)α||TV = ||ψ(q)||T qV and ψ(q) is closed, there is a tableau t for (T q�x , ψ(q)) of
order-type 0. It is possible that there are nodes of this tableau at which q is active. The key
to obtaining a tableau for

(
T �x , ψ(µXϕ)

)
lies in replacing the occurrences of q at these nodes

by tableaux for µXϕ of the relevant order-type. Suppose λt(v) = 2Γ,3∆,Θ, q, τt(v) = y, q
is active at v and for no u <t v is q active at u. Let β < α be such that y ∈ ||(µXϕ)β ||TV . By
the main induction hypothesis there is a β-tableau for (T �y , µXϕ). We can combine this
tableau with the sub-tableau t�v to obtain a β-tableau tv for (T q�y ,2Γ,3∆,Θ, µXϕ). Now
we replace t�v by tv in t, substitute each occurrence of q by µXϕ in the trace from the root
to (q, v) and repeat the procedure. In the limit a tableau for (T �x , ψ(µXϕ)) is obtained.
Moreover, the order-type of this tableau can be no greater than α.

The converse direction is equally straight forward. J

I Corollary 3.7. Suppose ϕ is a closed formula and X a set of µ-variables occurring in ϕ. For
an arbitrary TTS T , set αT to be 0 if T 6|= ϕ, and otherwise the infimum of the order-types
of all possible tableaux for (T, ϕ) with respect to X . Then COX (ϕ) = sup{αT : T a TTS}.

With corollary 3.7 in mind, in order to rule out certain ordinals being closure ordinals
we require a notion of minimality of order-types for tableaux.
I Definition 3.8. A tableau t for (T,Γ) is minimal if there are no tableau for (T,Γ) with
smaller order-type, and absolutely minimal if for every node v ∈ t, t�v is a minimal tableau
for (T �τt(v) , λt(v)).
I Remark 3.9. If T |= ϕ then a minimal tableau t for (T, ϕ) exists. Moreover, as T �τt(v) |=∧
λt(v) for each v ∈ t, the existence of an absolutely minimal tableau for (T, ϕ) is also

guaranteed.
As a refinement of lemma 3.6 for limit ordinals we have the following.

I Proposition 3.10. Suppose ϕ is a formula with closure ordinal ω.α > 0 with respect to a
set X of µ-variables. Then there exists a TTS T and a minimal tableau for (T,2ϕ) with
order-type ω.α with respect to X .

Proof. By corollary 3.7, for every β < ω.α there exists a TTS Tβ such that every tableau for
(Tβ , ϕ) has order-type greater than β. Let T be the TTS obtained by extending the disjoint
union of {Tβ : β < ω.α} by a fresh node ρT whose immediate successors are {ρTβ : β < ω.α}.
As T |= 2ϕ, there exists a tableau for (T,2ϕ). Moreover, every minimal tableau for (T,2ϕ)
has order-type ω.α with respect to X . J

3.3 Closure ordinals for the alternation-free fragment
In this section we determine upper bounds on the closure ordinals of alternation-free formulæ.
The analysis breaks into two parts. First we prove that if an alternation-free formula ϕ has
closure ordinal strictly less than ω2 with respect to its external µ-variables, then this ordinal
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is bounded by ω.22|ϕ|+2 . Although primary formulæ can yield ordinals arbitrary close to ω2

(from below), in the second part we show that the closure ordinal of any alternation-free
formula is strictly less than ω2.

We need only consider order-types for tableaux with respect to particular classes of µ-
variables. Given a formula ϕ, a set of variables X of ϕ is called principal if whenever X ∈ X
appears within the scope of a quantifier σY in ϕ, also Y ∈ X . Let Xϕ denote the largest
principal set containing only µ-variables of ϕ.

An ordinal assignment on a tree t is a function o : t→ On such that if x, y are nodes in
t and x ≤t y then o(y) ≤ o(x). A tableau t for (T,Γ) induces a natural ordinal assignment
on itself, denoted ot, setting ot(u) = sup{αψ,u,XΓ : ψ ∈ λt(u)} for every u ∈ t, where
XΓ =

⋃
ϕ∈Γ Xϕ. Furthermore, the same tableau induces an ordinal assignment on T , also

denoted ot, by defining ot(x) = sup{ot(u) : u ∈ t∧τt(u) = x} for each x ∈ T . The order-type
of a tableau t, denoted o(t), is the ordinal ot(ρt). A tableau is an α-tableau if its order-type
is no greater than α.
I Lemma 3.11. If T |= ϕ is a TTS with an infinite path x1 <T x2 <T · · · then there exists
k such that for every Γ ⊆ FL(ϕ), every absolutely minimal tableau t for (T,Γ) and every
l > k, ot(xl) = 0.

Proof. Suppose the contrary, namely for every i there exists Γi ⊆ FL(ϕ) and absolutely
minimal tableau ti for (T,Γi) such that oti(xi) > 0. For each m and i, let ∆m

i ⊆ P(FL(ϕ))
be the collection of sequents that are associated with xm by ti,

∆m
i = {∆ : ∃u ∈ ti(τti(u) = xm ∧ λti(u) = ∆)}.

For each m, there exists an infinite set I ⊆ ω with ∆m
i = ∆m

j for every i, j ∈ I. Thus it
is possible to define a sequence (Sm)n∈ω such that for each m,
1. Sm is an infinite set,
2. Sm+1 ⊆ Sm,
3. for every i, j ∈ Sm, ∆m

i = ∆m
j .

As for each i the tableau ti is absolutely minimal, we have in fact

∀i, j ∈ Sm oti(xm) = otj (xm)

for every m. Let f : ω → S0 be a strictly increasing function such that f(m) ∈ Sm for every
m and set αm = otf(m)(xm). Then the sequence (αm)m∈ω is a weakly decreasing sequence
of ordinals as

αm+1 = otf(m+1)(xm+1)
≤ otf(m+1)(xm), since xm <T xm+1,
= otf(m)(xm), since Sm+1 ⊆ Sm,
= αm.

As f(m) ≥ m, we also have that αm = otf(m)(xm) ≥ otf(m)(xf(m)) > 0. Thus, the
sequence (αm.|ϕ|)m∈ω forms an infinite, strictly decreasing sequence of ordinals. J

Given T , Γ and a non-empty collection S of tableaux for (T,Γ), we define the S-pruning
of T to be the TTS T ′ that alters T by setting, for each propositional constant q not
appearing in Γ, q 6∈ λT ′(x) iff for some s ∈ S and all y <T x, os(y) > 0. If S is the collection
of all absolutely minimal tableaux for (T,Γ), we write Γ ? T for the S-pruning of T .
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I Lemma 3.12 (Well-foundedness lemma). If T is a TTS, Γ is a finite set of formulæ all satisfied
by T and q is a propositional constant not occurring in Γ then {x ∈ Γ ? T : q 6∈ λΓ?T (x)}
forms a well-founded initial sub-tree of T .

Proof. Immediate consequence of lemma 3.11. J

The next three lemmata relate tableaux on Γ ? T and T . Let T be a TTS, Γ a sequent
and q a propositional constant not occurring in Γ.
I Lemma 3.13. If y ∈ T and os(y) ≤ α for every absolutely minimal tableau s for (T,Γ)
then the set {x ∈ Γ ? T : q 6∈ λΓ?T (x) ∧ y ≤T x} forms a well-founded tree of order-type no
greater than |Γ|.(1 + α).

Proof. By transfinite induction on α. Notice that if τs(u) = y and os(u) > 0 then every
trace in s�u must pass through a (µX)-rule for which µXϕ is active, within the first |Γ|
occurrences of a (mod)-rule. J

I Lemma 3.14. If {x ∈ Γ ? T : q 6∈ λΓ?T (x) ∧ y ≤T x} forms a non-empty (well-founded)
tree of order-type ω.α then
1. for every ∆ ⊆ Γ and every absolutely minimal tableau t for (T,∆), ot(y) ≤ ω.α,
2. there exists an absolutely minimal tableau s for (T,Γ) such that os(y) = ω.α.

Proof. 1 can be proved via transfinite induction, noting that since Γ is a set of guarded
formulæ, between any two applications of the (σY )-rule on the same trace, the (mod)-rule
must have been applied.

We prove 2. Suppose, in search of a contradiction, that for every absolutely minimal
tableau s for (T,Γ), os(y) < ω.α. Consider the ordinal

δ = sup{os(y) : s is an absolutely minimal tableau for (T,Γ)}.

By lemma 3.13 it must be the case that δ = ω.α. But then for every β < α there exists
an absolutely minimal tableau s for (T,Γ) such that β < os(y) < δ; contradiction. J

For a formula ϕ ∈ Γ, let ϕq denote the formula resulting from replacing in ϕ each X ∈ Xϕ
by q̄ ∧X, and set Γq = {ϕq : ϕ ∈ Γ}.
I Lemma 3.15. There exists an α-tableau for (T,Γ) iff there is an α-tableau for (Γ ? T,Γq).

Proof. Suppose t is an α-tableau for (T,Γ). Then there exists an absolutely minimal tableau
t′ for (T,Γ) with o(t′) ≤ α. An o(t′)-tableau for (Γ ? T,Γq) can be readily constructed from
t′. For the converse, let t be a tableau for (Γ ?T,Γq). By the definition of Γq, it follows that
if ot(y) > 0 then y ∈ {x ∈ Γ ? T : q 6∈ λΓ?T (x)} whence t can be modified to yield a tableau
for (T,Γ) with the same order-type. J

Lemma 3.15 together with lemma 3.14 provide immediate upper bounds on the order-
types of sub-tableaux for (Γ ? T,Γq). We can now expand on these properties to obtain a
more fine-grained version of lemma 3.14.

If B is a collection of nodes in a tableau s, ee write v ≤s B if for some u ∈ B, v ≤s u.
Let s be an arbitrary tableau, s0 a pruning of s and suppose A ⊆ s0 is the collection of
leaves of s0 that are inner nodes of s. A filter over (s, s0) is a set B ⊆ A such that for every
v ≤s B if {u : v →s u and u ≤s A} is infinite, so is {u : v →s u and u ≤s B}. An ordinal
for the filter B is any α such that for every v ≤s B, if {u : v ≤s u ∈ A} is infinite then for
every β < α there is w ∈ A such that v ≤s w and β ≤ os(w). It follows that for any tableau
s and pruning s0:
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F t
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c(v3)

Figure 2 Tableaux t and t̂ in the proof of lemma 3.18.

I Lemma 3.16. If o(s) < α+ o(s0) then there is no filter over s with ordinal α+ ω.

I Lemma 3.17. If every ordinal for every filter over s is bounded by α, then o(s) ≤ α+o(s0).

Proof. Both lemmata are proved by transfinite induction on o(s). For the second lemma,
notice that for u ≤s B, if os0(u) = ω.β and for every v > u, os0(v) < ω.β, then for
os(u) > α+ os0(u) to be the case we must have os(v) > α+ os0(u) for some v ≥s0 u. J

We are now ready to prove the core lemma.

I Lemma 3.18. Let N = 22|ϕ|+2 . If there is a minimal tableau for (T, ϕ) of order-type
α ∈ [ω.N, ω2) then there exists a TTS T̂ and a minimal tableau for (T̂ , ϕ) with order-type
strictly greater than α.

Proof. Suppose α = ω.m1 + m2 and q is a constant not appearing in ϕ. Let T ′ = ϕ ? T .
For each i ≤ m1 define

Fi = {y ∈ T ′ : {x ∈ T : q /∈ λT ′(x) ∧ y ≤T x} is a tree of order-type ω.i}.

Since there is a minimal tableau for (T, ϕ) of order-type α ≥ ω.N , the set Fi is non-
empty for every i ≤ N . Moreover, by lemma 3.15 there exists a tableau for (T ′, ϕq) with
order-type precisely α. Denote this tableau by t and set F ti = {v ∈ t : τt(v) ∈ Fi}. Let

∆i = {∆ : there exists v ∈ F ti and an ω.i-tableau for (T ′�τt(v) ,∆q)}.

Notice ∆i is non-empty for each 0 < i ≤ N . Moreover, as ∆i ⊆ P(FL(ϕ)) and m1 ≥ N ,
there exists 0 < i < j ≤ m1 such that ∆3i = ∆3j and ∆3i−1 = ∆3j−1. To each v ∈ F t3i is
therefore associated a node c(v) ∈ F t3j such that for every ∆ ⊆ FL(ϕ),
1. there is a tableau for (T ′�τt(v) ,∆q) if and only if there is a tableau for (T ′�τt(c(v)) ,∆q),
2. there exists an ω.(3i−1)-tableau for (T ′�τt(v) ,∆q) if and only if there exists an ω.(3j−1)-

tableau for (T ′�τt(c(v)) ,∆q).

Let t̂ be the tableau obtained from t by replacing each node v ∈ F t3i by t�c(v). t̂ is a
tableau for (T̂ , ϕq) where T̂ is obtained from T ′ by replacing the sub-tree at each τt(v) ∈ F3i
by T ′�τt(c(v)). Denote by A the set of nodes of t̂ corresponding to this change.

Let ŝ be an absolutely minimal tableau for (T̂ , ϕ) and Â = {u ∈ ŝ : ∃v ∈ A τŝ(u) = τt̂(v)}.
It suffices to prove that o(ŝ) > α = ω.m1 + m2. Since (∆3i,∆3i−1) = (∆3j ,∆3j−1),
lemma 3.14 implies that for every u ∈ Â there is a tableau, say tu, for (T ′�τŝ(u) , λŝ(u)) with
o(tu) ≤ ω.3i, and o(tu) ≤ ω.(3i− 1) if oŝ(u) ≤ ω.(3j − 1). From ŝ we define a new tableau
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s for (T ′, ϕq) replacing the sub-tableau ŝ�u by tu for each u ∈ Â. We remark that s and ŝ
have a common initial part, namely the pruning s0 = s ∩ {v : v ≤s F3i}.

Assume o(ŝ) ≤ α. Every ordinal for a filter over (s, s0) is no greater than ω.3i by
lemma 3.14, so by lemma 3.17, o(s0) ≥ ω.(m1− 3i) +m2. Notice also that o(s0) < ω.(m1−
3i) +ω. But then o(ŝ) ≤ ω.m1 +m2 < ω.(3i+ 1) + o(s0) and lemma 3.16 implies that every
ordinal for a filter over ŝ is strictly below ω.(3i + 2). Since 3i + 2 ≤ 3j − 1, in forming s a
sub-tableau of order-type < ω.(3i+ 2) at A is replaced by a tableau of order-type ω.(3i−1).
Therefore every filter over (s, s0) has ordinal ≤ ω.(3i− 1), whence

o(s) ≤ ω.(3i− 1) + o(s0)
< ω.(3i− 1) + ω.(m1 − 3i) + ω ≤ α

Thus by lemma 3.15 there exists a tableau for (T, ϕ) with order-type β < α, yielding a
contradiction. J

I Corollary 3.19. Let ϕ be a closed formula of alternation-free µ-calculus. If ϕ has closure
ordinal α < ω2 with respect to Xϕ, in fact α < ω.N where N = 22|ϕ|+2 .

Proof. Suppose COXϕ(ϕ) = α ∈ [ω.N, ω2). Proposition 3.10 implies the existence of a TTS
T and an absolutely minimal tableau t for (T,2ϕ) with order-type α. By lemma 3.18 there
exists a TTS T̂ |= 2ϕ and a minimal tableau ŝ for (T̂ ,2ϕ) with order-type greater than α,
whence lemma 3.6 implies COXϕ(ϕ) ≥ COT̂ ,Xϕ(ϕ) > α. J

It remains to rule out closure ordinals of ω2 or greater. To achieve this a more general
version of the argument in the preceding proof is required.
I Lemma 3.20. If t is a minimal tableau for (T, ϕ) and o(t) ≥ ω2, then there exists a TTS
T̂ and a minimal tableau for (T̂ , ϕ) with order-type strictly greater than o(t).

Proof. Suppose t is a minimal tableau for (T, ϕ) and ω2 ≤ ω.αt ≤ o(t) < ω.(αt + 1).
Set T0 = ϕ ? T . Let q not appear in ϕ and for each k < ω let the set Fk be defined
analogously to the previous lemma as the collection of nodes in ϕ?T such that the sub-tree
{x ∈ T0 : q 6∈ λT0(y)∧y ≤T x} has order-type ω.k. Now Fk is non-empty for every k < ω, so
there exist infinitely many indices, 0 < i < j(1) < j(2) < . . . such that j(n+ 1) ≥ j(n) + 2
and (∆i,∆i−1) = (∆j(n),∆j(n)−1) for every n. Let cm : Fi → Fj(m) be the function such
that for each x ∈ Fi, ∆ ⊆ FL(ϕ) and every m < ω,
1. there is a tableau for (T0�x ,∆q) if and only if there is a tableau for (T0�cm(x) ,∆q),
2. there is a tableau for (T0�x ,∆q) with order-type ω.(i−1) if and only if there is a tableau

for (T0�cm(x) ,∆q) with order-type ω.(j(m)− 1).

Beginning with cm, one can define iterated versions, cαm for each α: for i ∈ Fk with k ≥ i,
c0m(x) = T0�x and c1m(x) is defined to be the result of replacing in T0�x each node y ∈ Fi by
the tree cm(y); cα+1

m (x) is the tree c1m(x) in which each node y ∈ Fi is replaced by cαm(y);
for a limit ordinal α, cαm(x) is the tree c1m(x) in which, given a bijection g0 : Fi → ω,

if α = ω.γ + ω then each node y ∈ Fi is replaced by the tree cω.γ+g0(y)
g0(y) (y),

if α = ω.α0, α0 is a limit ordinal and g1 : Fi → α0 is a bijection, then each node y ∈ Fi
is replaced by the tree cω.g1(y)

g0(y) (y).

The following two lemmata are obtained by generalising the argument in lemma 3.18
making essential use of lemmata 3.16 and 3.17.
I Sub-lemma 1. There exists a tableau for (cαm(x),∆q) if and only if there exists a tableau
for (T0�cm(x) ,∆q).
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I Sub-lemma 2. If x ∈ Fi and there exists a tableau for (cαm(x),∆q) with order-type < ω.α

then there exists an ω.(i− 1)-tableau for (T0�x ,∆q).
The construction of the trees cαm(x) and the two previous sub-lemmata suffice to prove

the main lemma. By lemma 3.15, t naturally induces an absolutely minimal tableau for
(T0, ϕq) of the same order-type. Let Tαt0 be the tree obtained by replacing each sub-tree
T0�y for y ∈ Fi by cαt+ωi (y). It is easy to see that Tαt0 |= ϕ ∧ ϕq.

Let ŝ be an arbitrary absolutely minimal tableau for (Tαt0 , ϕq) and s the collapse of ŝ to
a tableau for (T0, ϕq): on each path replace the first v ∈ ŝ such that Tαt0 �τŝ(v) = cαt+ωi (y)
for some y ∈ Fi by the tableau for (T0�y , λŝ(v)) given by sub-lemma 2, if oŝ(v) < ω.αt + ω,
and by sub-lemma 1 otherwise. Let S0 denote the collection of absolutely minimal tableaux
for T0, and set S′0 to be the collection of tableaux for (T0, ϕq) that arise as the collapse, in
the manner described above, of an absolutely minimal tableau for (Tαt0 , ϕq). If there is a
minimal tableau for (Tαt0 , ϕq) with order-type strictly greater than o(t) then we are done.
Otherwise, for every r′ ∈ S′0 there exists r ∈ S0 such that for all x, if or′(x) = ω.i then
or(x) > ω.i. Now set T1 to be the S′0-pruning of T0. T1 has the same domain as T0 and
hence T . Moreover, if {z ∈ T1 : q 6∈ λT1(z) ∧ x ≤T z} has order-type ω.i then there exists
x <T y such that the tree {z ∈ T0 : q 6∈ λT0(z) ∧ y ≤T z} has order-type ω.i. Let the set
S1 comprise all absolutely minimal tableaux for (T1, ϕq). Any r ∈ S1 is also a tableau for
(T0, ϕq) and hence also for (T, ϕ). Thus consider tableaux for (Tαt1 , ϕq) and set S′1 to be the
collection of tableaux that are obtained from the collapse of absolutely minimal tableaux
for (Tαt1 , ϕq). Define S2 to be the set of absolutely minimal tableaux for the S′1-pruning
of T1. Similarly define S3, S4, etc. Every tableau in Sn+1 “moves” the ω.i-frontier of T
closer to the root. Thus, either for some n there exists a minimal tableau for (Tαtn , ϕq) with
order-type strictly greater than o(t), or for every n there exists x ∈ T and tableau sj ∈ Sj
for every j ≤ n such that osj (x) < osj+1(x). As the latter will yield a contradiction, we are
done. J

As a consequence of lemmata 3.18 and 3.20 the closure ordinals of µ-formulæ will be
sufficiently bounded.

I Theorem 3.21. Let X be a principal set of µ-variables for a closed and alternation-free
formula ϕ. Then the closure ordinal of ϕ with respect to X , if it exists, is strictly less than
ω.22|ϕ|+2 .

I Corollary 3.22. Suppose ϕ is a closed formula in the alternation-free fragment of the µ-
calculus and X is a principal set of ν-variables only. Then COX (ϕ) < ω.22|ϕ|+2 if the former
ordinal exists.

Proof. Let ϕ̄ denote the dual of ϕ and let X be a set of ν-variables principal in ϕ. That
COX (ϕ) = COX (ϕ̄) follows from the dual semantics of the µ-calculus, whence theorem 3.21
implies COX (ϕ) < ω.22|ϕ|+2 . J

I Theorem 3.23. Let ϕ be a closed alternation-free formula in guarded form and let X be
the set of variables occurring in ϕ. If COX (ϕ) exists then COX (ϕ) < ω2.

Proof sketch. Suppose ϕ ∈ Σn+1 in the weak hierarchy has closure ordinal κ with respect
to the set of all variables in ϕ. By theorem 3.21 all µ-variables that do not appear under
the scope of a ν-variable close off at some ordinal α < ω2. Moreover, the structure of ϕ
will induce, for each closed weak Πn sub-formula ψ, a particular class of transition systems,
say T , such that ψ has closure ordinal κ with respect to trees in T . In the case n = 1, by
relativising the previous arguments to the class T , one may deduce ψ has closure ordinal,
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say αψ, strictly less than ω2 with respect to T . As the closure ordinal of ϕ is no greater
than the sum of α and ordinals αψ, COX (ϕ) < ω2. J

A profound consequence of lemma 3.20 and corollary 3.22 and one that also applies
to theorem 3.23, is that there is no essential dependency between closure ordinals and
alternation depth for the alternation-free fragment: the choice of N in these results depends
only on the logical complexity of ϕ and the dependency on the alternation depth of ϕ is
essentially trivial, necessitating a smaller increase in bounds than for the connectives and
quantifiers. Whether this remains the case for formulæ outside the alternation-free fragment
is unclear.
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