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—— Abstract

This paper describes the authors’ experience with static analysis of both WCET and stack usage
of a satellite on-board software subsystem. The work is a continuation of a previous case study
that used a dynamic WCET analysis tool on an earlier version of the same software system. In
particular, the AbsInt aiT tool has been evaluated by analysing both C and Ada code generated
by Simulink within the UPMSat-2 project. Some aspects of the aiT tool, specifically those dealing
with SPARC register windows, are compared to another static analysis tool, Bound-T. The results
of the analysis are discussed, and some conclusions on the use of static WCET analysis tools on
the SPARC architecture are commented in the paper.
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1 Introduction

UPMSat-2 is a project aimed at developing an experimental micro-satellite that can be used
as a technology demonstrator for several research groups at UPM, the Technical University
of Madrid.!

The software for the mission is being developed by the Real-Time Systems Group at UPM
(STRAST)?, using a model-driven approach [1] that enables auto-generated functional code
from different modelling tools, including Simulink,? to be included as source code modules.
The software structure supporting the concurrency and real-time aspects of the system is also
automatically generated from high-level models using a pattern-based approach [3, 12, 11].
The resulting source code is written in Ada 2005 [9] with the Ravenscar profile restrictions [4].
Functional C code is integrated with the Ada code using the standard Ada support for C
interfacing.

The hardware platform is based on a LEON computer board [7]. The executable code is
generated by means of the GNATforLEON compilation chain [13], which includes the ORK
real-time kernel [5].

European software standards for space systems require schedulability analysis to be
carried out on on-board real-time systems [6]. The Ravenscar profile enables such analysis
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to be statically performed using well-known response-time analysis methods [10, 2], which
require the worst case execution time (WCET) of each task to be known. Since WCET
analysis may be complex and the choice of the best approach is not straightforward [15], a case
study was chosen in order to assess the suitability of some available tools. The worst-case
execution time of one of the UPMSat2 subsystems, ADCS (Attitude Determination and
Control Subsystem) was first analysed with RapiTime,* a dynamic analysis tool, and the
results were presented in a previous paper [8].

This paper describes further work in analysing the ADCS subsystem using a static WCET
analysis tool, the aiT tool by AbsInt, which is part of the a3 analysis toolchain.? The results
of the analysis are discussed and compared with those obtained with RapiTime.

The paper is organised as follows: Section 2 describes the UPMSat-2 platform, and
the relevant architectural characteristics for the rest of the paper. Section 3 describes the
SPARC register windows and the way the AbsInt tools deal with them. The approach is
compared to that of Bound-T, another static analysis tool. The a3 tools are described in
some detail in section 4. Section 4.2 presents the results obtained from the static analysis,
which are compared with those obtained from the dynamic analysis tool. Section 5 presents
an alternative approach to modelling the SPARC register window, and its application to
three different scenarios. Finally, section 6 presents the conclusions of the analysis.

2 UPMSAT-2 platform

2.1 Computer board

The engineering model used for this study is the same as in [8]. It is based on a GR-XC3S1500
Spartan3 development board® with a LEON2 processor” at 40 MHz with a 5-stage pipeline
and 64 MB of SDRAM.

2.2 SPARC architecture

SPARC (Scalable Processor ARChitecture) is a reduced instruction set architecture (RISC)
originally developed by Sun Microsystems [14]. The LEON family of processors is a 32-bit
synthesizable VHDL processor core that implements the SPARC V8 architecture. The first
LEON processors were originally developed by the European Space Agency in order to
provide a stable architecture for European space projects. The aim of the architecture is to
provide a platform for which compiler optimization can be easily performed, so that short
time-to-market development schedules can be achieved. To this end, the architecture has
been simplified with some special characteristics, such as a reduced set of instruction formats,
all 32 bits wide and with only two addressing modes, and a separated and configurable
floating-point register file. Other relevant aspects of the architecture include a big endian
byte ordering, a vectored trap table, as well as separated coprocessor, multiprocessor and
floating-point instruction sets.

One of the most distinctive features of the architecture is the use of register windows for
handling local storage areas and parameter passing. This feature has a strong influence on
the WCET, as discussed in the next section.

http://www.rapitasystems.com/rapitime
http://www.absint.com/a3/
http://www.pender.ch/products_xc3s.shtml
http://www.gaisler.com/leonmain.html
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3 SPARC register windows

3.1 Overview

The SPARC architecture defines two types of registers: general-purpose registers and con-
trol/status registers. At any given time, 32 registers of 32 bits are provided for the programmer
use. They are logically divided into four sets of 8 registers each: global, in, local, and out
registers. Physically, they are divided into a set of 8 global registers and an implementation-
dependent number of 16-register sets. Each 16-register set is in turn logically divided into
8 in registers and 8 local registers. The remaining 8 registers, the out registers, overlap with
the in registers of the adjacent register set, thus making them accessible from the current
set. Each set of 32-bit registers that can be identified in the processor is called a register
window (see [14] for a detailed description).

The four register sets in a register window are used as follows:

Global registers are shared by all routines.

In registers are used to receive the arguments from the calling routine and return the

result at the end of the current routine execution.

Local registers are used to store partial results during the current routine execution.

Out registers used to pass arguments to called functions and receive return values from

them.

The aim of this division is to provide a higher number of registers and provide isolation
for the local registers in each function. A register window mimics the top of the stack for the
currently running routine, thus saving stack access time.

The number of register windows or register sets is implementation-dependent and ranges
from 2 to 32. If the nesting level is deep enough, after a sequence of calls, the callee may
not have a free register window to use. In that case, a register overflow trap occurs, and the
run-time kernel is responsible for providing a new register window to the routine. To this
end, a circular buffer of the register windows is commonly used, as shown in figure 1. In
order to make space, an implementation-dependent number of register windows are saved
in the stack by the overflow trap routine. After that, the call instruction can be resumed
and executed successfully. In the same way, it may happen that the previous window is not
available when it has to be restored after a chain of routine returns. This situation results in
a register window underflow trap, which is handled by the kernel in a similar way.

The SPARC register windows mechanism is useful for reducing the average execution
time of a program, but it introduces additional difficulties for computing the WCET of code
sections. The reason for it is that register windows introduce a performance dependence on
the execution history, in a similar way as cache memories do. The next paragraphs discuss
the modelling approach that some static analysis tools currently take in order to deal with
this mechanism. An enhanced approach is proposed in section 5.

3.2 Register windows in aiT

The aiT approach to modelling the SPARC register windows is overly simplistic. It assumes
that the processor can create an unlimited number of register windows. Consequently, a new
window can never overlap the first one, and the tool does not make use of information on
window overflows or underflows. Therefore, aiT results are only correct if the code being

analysed does not create more windows than available, i.e. if there are no window overflows.

On the other hand, the number of register windows created by the code can be calculated

by carrying out a stack analysis with an appropriate tool, e.g. the AbsInt StackAnalizer.
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Figure 1 SPARC register window schema. In this example 8 windows are shown, but this is an
implementation-dependent value that ranges between 2 and 32. Reproduced from [14].

The tool calculates a range of minimum and maximum register windows used by the code,
and this information can be useful to get a better estimation of execution time. However,
this is not enough to compute accurate WCET values, since more detail on the total number
of windows used, and the times when they are opened or closed, is required for this purpose.

3.3 Comparison with the Bound-T approach

Bound-T?® is another tool for static analysis of WCET. It provides an upper bound on
execution time and stack usage, as well as control flow graphs and call trees, for a variety
of processor architectures, including ERC32.? Although it does not fully supports LEON
processors, it still can be used in a limited way to provide some useful information for this
architecture. In particular, Bound-T uses an approach to modelling window registers that is
of great interest. It is not only aware of the possibility of an overflow or underflow on each
call or restore instruction, but it also offers the possibility to make assertions on the number
of register windows that are in use at the entry point of each routine. This feature allows for
a better analysis and understanding of the behaviour of the code with respect to register
windows. A proposal on how to use Bound-T register window support to complement aiT
results is described in section 5.

4 Methodological approach

4.1 Overview of the a3 toolchain

The aiT tool is integrated in the AbsInt Advanced Analyzer (a3) toolchain,'® which also
includes tools for stack analysis, value analysis, and other kinds of static analysis. The tools

8 See http://www.bound-t.com and http://www.tidorum.fi/
9 ERC32 is a predecessor of the LEON processor series, based on the SPARC V7 architecture.
Onttp://www.absint.com/a3


http://www.bound-t.com
http://www.tidorum.fi/
http://www.absint.com/a3

J. Garrido, J. Zamorano, and J.A. de la Puente

work on binary executable files, and the results are thus in principle independent of the
compiler and source code language. In practice, a wide range of compilers is supported by a3
for each target.

Static analysis tools are strongly dependent on hardware models, and thus have to be
carefully configured in order to get accurate results. Apart from some processor specific
features, such as pipeline behaviour, that are already included in the tool, there are other
such as FPU, cache and main memory characteristics, which have to be defined by the user.

The a® WCET tool (aiT) generates a call graph where the nodes are labelled with their
relative execution times, as shown in figure 2. In order to provide a better human interface,
the labels are drawn in different colours, depending on whether they lie in the worst-case
path or not. Additionally, it outputs a table with detailed information, including self and
global WCET, infeasible sections of code, and different context values. An XML output is
also provided in order to facilitate further processing of the results by third party tools or
scripts.

4.2 ADCS case study

The controller module of the UPMSat2 Attitude Determination and Control System (ADCS)
has been used as a case study for static WCET analysis with the a® tools. The code is
the same that was previously used in an experiment on dynamic analysis carried out with
RapiTime [8].

The ADCS controller code has a linear structure, and it mostly consists of arithmetic
operations on vectors. In spite of its simplicity, however, the execution times of the floating-
point operations is highly variable, and depends on the input values that are read by attitude
sensors and processed by the control algorithm.

Computed Worst-Case Execution Time: 72336 cycles = 1.809 ms

_fpadd_parts l—tl _fpadd_parts.L1 (loop) l-‘[ _fpadd_parts.L2 (loop)
|——] [— R [ ————————
__muldf3.L2 (loop)
{——
__muldf3.L1 {loop)
_

__unpack_d.L1 (loop)

control_step [

Figure 2 UPMSat-2 ADCS controller worst case execution path graph. As the controller code is
linear, all the blocks are in the worst case path.

The results obtained by the a® tools for the controller module are shown in figure 2. The
estimated WCET value is 72366 cycles, equivalent to 1.809 ms on the target platform. This
result is compared with that obtained with RapiTime in table 1. It can be seen that the
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Table 1 Comparison between Rapitime and a® results.

Tool WCET (cycles)
Rapitime 8400

a® 72366

a® with real inputs 45000

estimated WCET value is an order of magnitude higher when the static tool, a3, is used.
This could be expected to some extent, taking into account that a® computes its results
from a model of the computer, whereas RapiTime relays on measurements. However, even
considering the different approaches of both tools, the difference between the WCET values
seems to be too large.

One of the main reasons for this difference are the different ways that the values of input
variables are obtained. In the Rapitime experiment, values of the Earth magnetic field coming
from an accurate simulation model are used (see [8] for a description of the testbench). On
the contrary, in the a® experiment input values are automatically generated within the whole
double float range. The actual range of possible values is much more restrictive, but a3 does
not provide a mechanism for imposing such restriction on this data type (although it can be
done for other data types). It should be taken into account that the target LEON computer
does not have an FPU, and thus the floating-point operations are implemented in software,
thus making their execution time highly dependent on the operand values.

In order to compensate for this deviation from the real behaviour, the static analysis
experiment has been repeated using a subset of the magnetic field input data values obtained
from the simulation model. The values have been included in the model by calling the
controller from a wrapper function with the simulation values declared locally. Asserting this
function as an entry point, different WCET values are computed for each call. This technique
provided a tighter WCET estimation, down to 45000 cycles as shown in the third row of
table 1. Notice that this value has been obtained only for comparison purposes, and can
not be taken as a real measure of WCET in any case. Moreover, overheads due to register
window overflows and underflows have not been taken into account, which surely results in
further inaccuracies. An enhanced approach including overflow and underflow overheads is
developed in the next section.

5 Modelling register windows

5.1 Register windows and execution time

The fact that a3 tools do not take into account the register windows overflows and underflows
makes the WCET analysis optimistic with respect to this aspect of the SPARC architecture.
In order to obtain more accurate WCET estimations, the effect of the overhead incurred by
these operations on the execution time has to be appropriately modelled and accounted for
in the analysis.

The first step is to get a value for the WCET of the routine that handles register window
overflows and underflows, WCET. This value can be measured directly on the platform
using a hardware monitor such as GRMON.'! The CPU cycles gap between the first and

YUnttp://www.gaisler.com/index . php/products/debug-tools/grmon
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second call or restore instruction provides such a measurement, including memory accesses.

Since the handling routines are linear, there is no cache, and further traps are disabled during
their execution, we can safely assume that their execution times are constant.

The run-time kernel can deal with overflows and underflows in different ways. In particular,
the number of registers that are saved and restored when a overflow or underflows occurs
depends on the implementation, although it has been shown that saving and restoring one
window on each overflow/underflow trap is the best approach.

Another important topic is context switches between threads. For instance, some kernels
only restore the last window after a context switch. In this way, the context switch time is

minimized, but in a concurrent environment each restore can potentially lead to an underflow.

Moreover, each save can potentially lead to an overflow if the kernel only provides one valid
window to the scheduled thread and keeps the content belonging to the preempted thread in
the rest of windows. Therefore, in order to minimize the wort-case number of overflows and
underflows, the full content of the register windows should be restored.

In general, the execution time of the overflow/underflow handling routine has to be
multiplied by the worst-case number of overflows and underflows in the code, and the result
has to be added to the WCET computed by the analysis tool in order to obtain a better
estimate of the overall WCET of the code being analysed. The total overhead that can be
computed in different situations is discussed in the next paragraphs. Sections 5.2 and 5.3
analyse the cases when only one window is restored or saved by the trap routines, whereas
section 5.4 analyses the situation when more windows are restored or saved.

5.2 One window, no full context restore

The stack analysis tool provides the minimum and maximum number of register windows
that can be used and the number of overflow/underflow traps that can occur in a single
execute of a function f. Let this number be T, and let ny be the number of times f is called
in the worst-case path. The total worst-case number of traps occurring in f is thus

Nf =nyg X Tf
The total number of traps in the worst-case path is
N=> Ny

feF

where F' is the set of functions.
Finally, the total worst-case overhead is

WCOH = N x WCETr

where WCET7 is the worst-case execution time of the trap handler routines.

Applying this technique to the case study, Bound-T reports a total of six functions causing
overflows, with a total number of overflow traps No = 25 and a similar number of underflow
traps, Ny = 25. The WCET is not the same for overflow and underflow traps, and the
respective values are WCET o = 156 and WCETy = 188 cycles. Hence the total overhead
caused by the overflow and underflow traps is

WCOH = 25 x 156 + 25 x 188 = 8600 cycles

This value is significant, as it amounts to an 11.56 % of the WCET computed by a® and
a 102.38 % of that computed by Rapitime.
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5.3 One window, full context restore

The ORK kernel used in the UPMSat-2 software saves and restores only one window per
trap, as previously considered, but in this case the full state of the registers is restored on
each context switch. Therefore, the worst-case number of overflows in a code section equals
the maximum depth of register windows it can create. This number is usually much lower
than that obtained in the previous situation. Underflows can only occur if the depth of
windows saved in the stack is greater than the number of physical windows.

For the ADCS case study, both a3 and Bound-T reported a maximum register window
depth Dy = 3. This means that the maximum number of overflows is No = 3. Since the
LEON processor has 8 real register windows, no underflow can occur. The overhead is now

WCOH = 3 x 156 + 0 x 188 = 468 cycles

This value is much lower than the previous one. It amounts only to a 0.63 % of the a3
WCET value and a 5.57 % of the Rapitime value.

5.4 More than one window

The SPARC architecture enables from 2 to 32 register windows, and implementations can
restore between 1 and the total number of sets. This greatly increases the complexity of the
analysis, as the number of possible behaviour may become very high. A full study of all the
implementation possibilities is out of the scope of this paper, but previous versions of the
ORK kernel are discussed as an example.

In ORK 1.0 only the last window was restored after a context switch. This case is the
“one window with no restore” case, as any save and restore may cause a trap.

In later ORK versions, the full register set is left as it was before the context switch.
In order to achieve this result, the trap handling routines for register window overflow
and underflow save or restore the full set of windows. For example, on a processor with
8 register windows, there are 7 windows available to user software. Therefore, after 7
consecutive saves a window overflow occurs. In the worst case, user code may save and
restore windows in the edge of the window invalid mask,'? generating a trap on each save
or restore.

In the case study the worst case happens when the user function is called using the last
valid window, and thus every procedure call causes a window overflow. This includes all calls
to floating-point arithmetic routines, which are frequent. Similarly, every return from the
routines causes an underflow. Therefore the overhead is just one overflow and underflow less
than the “one window, no restore” case. i.e.

WCOH = 24 x 156 + 24 x 188 = 8256 cycles

Since more than one window is saved or restored on each overflow or underflow trap,
the execution time of the trap handling routines may increase. Therefore, the above values
should be taken as a lower bound.

In all cases, the computed overhead must be added to the WCET computed with the the
basic analysis of section 4.2. Table 2 summarizes the results compared to the basic analysis.

2 The window invalid mask is a bit map of valid windows [14].
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Table 2 Rapitime and a® results with register windows overhead (times in cycles).

Tool Basic analysis 1 w. full restore 1 w. no restore 7 w. full restore
Rapitime 8400 8868 (+5.57%) 17000 (4+102.38%) 16656 (+98.28%)
a® 72366 72834 (40.63%) 80966 (+11.56%) 80622 (+11.28%)

6 Conclusions

Modelling modern processors is a complex task, due to the wide range of hardware acceleration
features they include, such as cache memories, memory management units, coprocessors,
or multicore architectures. Although the SPARC v8 is far from new, modelling its set of
register windows is not trivial and indeed complicates the task of estimating execution times
on this kind of processors. In general, it can be said that the SPARC registers architecture
improves efficiency and reduces the overall execution time of the application code. However,
if not properly analysed, it can lead to imprecise, unsafe results.

Some software elements can also have an influence on the execution time of code running
on register window architecture. In particular, run-time kernels may deal with window
overflows and underflows in different ways. Such differences may result in different levels
of overheads on the WCET values, as shown in section 5. Other sources of inaccuracy may
arise that make it difficult for analysis tools to predict the execution behaviour of code. For
example, loop bounds may depend on input values that are unknown at the time of analysis.
A way to cope with this issue is to use assertions to restrict the number of possible execution
paths. However, assertions are often hard to establish and prone to errors, and thus unsafe.

The scenarios analysed in section 5 and summarized in table 2 show that different hardware
and software implementations of the SPARC register windows produce different levels of
overhead in the case execution time that must be taken into account for the estimation of
WCET.
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