
Upper-bounding Program Execution Time with
Extreme Value Theory
Francisco J. Cazorla1,2, Tullio Vardanega3, Eduardo Quiñones1, and
Jaume Abella1

1 Barcelona Supercomputing Center
2 Spanish National Research Council (IIIA-CSIC)
3 University of Padova

Abstract
In this paper we discuss the limitations of and the precautions to account for when using Extreme
Value Theory (EVT) to compute upper bounds to the execution time of programs. We analyse
the requirements placed by EVT on the observations to be made of the events of interest, and
the conditions that render safe the computations of execution time upper bounds. We also
study the requirements that a recent EVT-based timing analysis technique, Measurement-Based
Probabilistic Timing Analysis (MBPTA), introduces, besides those imposed by EVT, on the
computing system under analysis to increase the trustworthiness of the upper bounds that it
computes.

1998 ACM Subject Classification D.2.4 Software Engineering: Software/Program Verification

Keywords and phrases WCET, Extreme Value Theory, Probabilistic, Deterministic

Digital Object Identifier 10.4230/OASIcs.WCET.2013.64

1 Introduction

Extreme Value Theory (EVT) can be regarded as the counterpart of Central Limit Theory [7]:
where the latter studies the bulk of the population of a given distribution, EVT studies the
tail of it, in other words the extreme deviations from the median of probability distributions.
By analysing a sample of observations of a given random variable, EVT determines the
probability of extreme events to occur, where “extreme” refers to either end of the range
of the value domain of those events. EVT is widely used in many disciplines, ranging from
structural engineering to Earth sciences.

EVT has also been used to provide estimates of average-case execution time [17][16] and
Worst-Case Execution Time (WCET) of software programs [8][5], which is the focus of this
paper. In contrast to classic static WCET analysis, EVT computes a cumulative distribution
function, or probabilistic WCET (pWCET) function, that upper-bounds the execution time
of the program, guaranteeing that it only exceeds the given bound with a probability lower
than some threshold (e.g., 10−15 per run).

EVT is applied in for measurement based timing analysis (MBTA). In MBTA, execution
time measurements of the timing behaviour of the program of interest are processed by
specialised EVT-based analysis to generate pWCET bounds for the program that should
hold at deployment time.

In order for sound results to be obtained from the application of EVT it must hold
that the observations of the events of interest can be regarded as random variables that
are independent and identically distributed (i.i.d.). When this property cannot be asserted
a-priori, it can be verified a-posteriori by suitable statistical tests [7]. However, EVT has

© Francisco J. Cazorla, Tullio Vardanega, Eduardo Quiñones, and Jaume Abella;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 64–76

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917903?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.WCET.2013.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 65

nothing to say on the representativeness of those data, that is, on the safeness of the pWCET
estimate that is computed from them. Representativeness is determined by the quality of
the data passed to EVT, or analogously, by relevant properties of the environment that
generated those data. The pWCET estimates obtained with EVT are therefore valid only for
the data population sampled for the analysis or, by extension, for the operating conditions
subsumed by those data.

If representativeness is low, the pWCET bounds obtained with EVT do not provide
any trustworthy prediction on the timing behaviour of the program on the target platform,
but rather a description of the extreme timing behaviour that the program might have
in the execution conditions exercised during the observation runs. If representativeness is
high instead, more general conclusions can be drawn on the computed pWCET when the
program is run on the target platform under execution conditions beyond those exercised
during the analysis. The primary goal of MBTA techniques is to provide pWCET estimates
that hold under execution conditions that may occur during the operation of the system:
whereas those conditions may not be exactly identical to those captured by the observation
runs made at analysis time, they should still represent them probabilistically. How this
critical property can be asserted is the subject of this paper. This ability solves one of
the key problems that real-time system designers have in trying to determine the timing
behaviour of a real-time system. In this regard we show the benefits that can be achieved in
terms of representativeness when using a time-randomised execution platform like the one
proposed in the PROARTIS project [3][10][13], in contrast to conventional time-deterministic
architectures1.

In this paper we discuss the requirements on the use of EVT in computing pWCET
bounds and the representativeness of the pWCET estimates. We show that increasing
representativeness requires: (1) controlling the execution conditions at analysis time; and (2)
understanding the representativeness of the analysis-time execution conditions with respect
to those that may occur during operation. We discuss how measurement-based probabilistic
timing analysis (MBPTA) based on EVT [5] reduces the burden placed on the user of the
method for controlling the execution conditions. To that end, MBPTA requires that the
effects that can be exercised by the execution conditions on the observation runs made during
analysis are: either (1) bounded from above so that they represent worst-case effects; or (2)
time-randomised; or else (3) ensured to have exactly the same probabilistic distribution at
analysis and at deployment.

Contribution: This paper establishes the principles on which EVT can be used to derive
WCET estimates in time-deterministic and time-randomised architectures. In particular,
it helps WCET analysis community better understand the requirements, limitations and
benefits that EVT carries on the determination of pWCET bounds, also understanding the
requirements that MBPTA adds on top of EVT. This will set the baseline for future works
in this promising area of research.

2 An executive introduction to EVT

EVT provides a canonical theory for the (limit) distribution of normalised maxima of
independent, identically distributed random variables. EVT involves non-parametric statistics,

1 A system is time-deterministic when we can determine its state at any time t on the basis of the initial
state, inputs and the time cost of the state transition triggered by those inputs (read more on this in
Section 4).

WCET 2013



66 Upper-bounding Program Execution Time with EVT

that is, EVT does not rely on data (i.e. the population under study) belonging to any
particular distribution. EVT describes the behaviour of extremal events for stochastic
processes that evolve dynamically in time and space. It gives the user a methodology for
predicting the occurrence of rare events. Estimating distribution tails beyond the limit of
available data is a complex process that requires making mathematical assumptions on the
tail model. These assumptions are very difficult if at all possible to verify in practice. There
is thus intrinsic risk in choosing the tail model to fit the problem at hand, which is necessary
to correctly apply EVT.

We are interested in the high values that bound the pWCET, so we consider the EVT
prediction for maximal values of a set of observations. There are two main approaches
to EVT. The first, known as Peak over Threshold method [2], models a distribution of
excess over a given threshold: EVT shows that the limiting distribution of exceedance is
a Generalised Pareto Distribution or GPD. The second approach, which we use, known
as Block Maxima model (BMM) [7] considers the largest (smallest) observations obtained
from successive periods (blocks), where the selection of the block size is a critical parameter.
Under BMM the asymptotic distribution of the maxima (minima) is modelled and the
distribution of the standardised maxima is shown to follow one of the Gumbel, Frechet or
Weibull distributions [7]. The generalised extreme value distribution (GEV) is a standard
form of these three distributions.

3 Requirements on the use of EVT for WCET estimation

When used to predict the extreme (hence worst-case) timing behaviour of applications running
on a computing system (platform), EVT is given in input a number of observations taken
from real execution of the system of interest. In our case, these observations are execution
time measurements from runs of the program of interest, taken, under controlled execution
conditions (hence, during analysis) on the target platform. From these observations EVT
infers an approximation of the tail of the timing behaviour of the program that hold during
actual operation.

EVT requires observations coming from the system under study to be described math-
ematically as random variables that are i.i.d. [7]: Two random variables are said to be
independent if they describe two events such that the occurrence of one event does not
have any impact on the occurrence of the other event. Two random variables are said to
be identically distributed if they have the same probability distribution function. In our
application of EVT, identical distribution holds when those two random variables describe
the same system using the same set of parameters in the same way (whether deterministically
or probabilistically), for all inputs with influence on the timing behaviour of the program,
including input vectors and initial hardware and software state.

EVT does not describe how the input observations are made: it regards the system as a
black box of which it is only interested in considering the external manifestations (observation
of runs here) which have to be i.i.d. for theory to apply, see Figure 1(a). Observations
evidently describe some behaviour of the system: however, as argued in this paper, it must also
be ensured that the execution conditions under which those observations are taken at analysis
time, do represent the execution conditions that will occur at deployment time, for which the
computed pWCET estimates are required to provide a safe upper bound. This requirement
imposes significant overhead on the user in: (1) understanding the execution conditions
that the programs of interest may experience at deployment time; and (2) controlling the
execution conditions during analysis time so that they are significantly representative. If not



F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 67

(a) (b)

Figure 1 (a) system under analysis as assumed by EVT; (b) a computing system for analysis
with EVT.

fulfilled properly, these two obligations can make the whole approach of deriving estimates
based on EVT utterly misleading.

3.1 Defining the population under analysis
One of the most critical steps in applying EVT is understanding and capturing the population
(universe) to be analysed, including the features of that population that are relevant for the
analysis. In our case, the population is given by all the runs that the program of interest will
perform at deployment time, and the feature of interest is the execution time of those runs.
For instance, considering a program to be deployed on an aircraft, each run of that program
in it during its whole operational lifetime is an individual of the population of interest. If the
aircraft had a lifetime of 25 years, flying 80% of that time, and the program under analysis
had an execution period of 100 ms (i.e., 10 times per second), the total population would be
comprised of nearly 63× 108 elements.

In general, the total population of events in a real-world system is inordinately large and
hard to determine, so it cannot be fully enumerated at analysis time. User intervention is
therefore needed to cap the population of interest to a treatable dimension, in a trustworthy,
timely and cost-effective manner. This step requires understanding the sources of influence
on the feature of interest of the population, which means understanding what factors in the
system affect the execution time of any given run of the programs under study. We call those
factors: sources of execution time variability.

3.1.1 Sources of execution time variability

Figure 2 Main input components.

The execution time of a program is affected by
several main factors, namely, the input condi-
tions and the internal logic (state-dependent
behaviour) of the platform (i.e. its hardware
and software resources underneath the applic-
ation layer), see Figure 1(b). Those factors
represent what we call the Sources of Execu-
tion Time Variability (SETV ) of the program.
Each combination of values in the SETV

defines one particular execution condition un-
der which a given run of the program may occur.

In our discussion here “input conditions” are understood to refer to 3 main components,
see Figure 2: the input vector; the initial state of the software (for the program and the
operating system, OS, underneath it); and the initial state of the hardware. Let us look at
each of them in isolation.

WCET 2013



68 Upper-bounding Program Execution Time with EVT

int64 main () int64 main ()
{ {

... int v[];
a=atoi(argv[i]); init(&v);
if(a > 2){... a=atoi(argv[i]);
}else {...} x = v[a];
... ...

} }

(a) Path (b) Cache accesses (c) Initial software state (i.e. code alignment).
The instruction cache is 2-way.

Figure 3 Examples of sources of execution time variability: programs for which the input vector
affects: (a) the execution path; (b) the cache access pattern; (c) the cache jitter caused by the initial
program state.

Input vector is the complete description of all the input data passed to the program
which may affect the program execution behaviour. Input vectors may affect the hardware
and the software state in all resources that are sensitive to history of execution. At software
level, the most evident manifestation of the influence of input vectors is the execution path
taken by the program during a given run. This is shown in Figure 3(a) where a is an element
of the input vector. At hardware level, we find a variety of cases in which input vectors affect
the timing behaviour of some components: Figure 3(b) shows the case where the memory
address of a cache access (whose outcome may thus be a hit or a miss) depends on an input
value.

Software initial state includes the initial state of all the read-write (state-sensitive)
data structures used by the program directly or indirectly, the latter being those used by
the operating system underneath it. It also includes all external aspects of the program
that may have an influence on its execution-time behaviour: with processor resources such
as the cache, the location in memory of the program determines the cache placement and
the consequent cache conflicts of each memory access. Figure 3(c) shows a program using
some external software components such as libraries or OS structures. Those components
are allocated independently in memory and therefore, their relative alignment in cache can
vary. As shown, different memory allocations (left) may lead to different cache placements
(right). We show two particular cache placements: in the first one (top right) no cache set
requires more than two lines to store all code, whereas in the second one (bottom right) two
cache sets require up to 3 cache lines. Hence, if the instruction cache is 2-way set-associative,
the former allocation is likely to produce better performance than the latter.

Hardware initial state includes the initial state of all the hardware resources (e.g.,
cache state) used by the program or any other software invoked by the program. Those
states are important as the operation logic of many hardware and software components is
state-dependent. The authors of [12] show that the initial state of the cache can be exploited
to decrease WCET bounds by considering how cache contents may survive across subsequent
disjoint executions of the program of interest.



F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 69

3.1.2 Max population
We mentioned earlier that the execution time of a program is affected by several sources of
execution time variability: {SETV1, SETV2, ..., SETVj , ...SETVn}, where source j ∈ {1, ..n}
can take up to k distinct values, that is: SETVj = {vj}k = {vj

1, vj
2, ...vj

k}. Consider for
instance a multiplication unit whose response latency depends on its operands: the SETV

for this resource can take 2m values, where m is the number of multiplications that occur in
the program.

The sources of variability include all system inputs (input vectors, and SW and HW
initial conditions)2. Controlling all the SETV for each individual (i.e. measurement run) in
the population is unfeasible as the target population is given by all the runs of all calls of
the program under study that occur during operation.

The user has to derive a population of maxima (max population) that provides a safe
upper bound of the target population, see the top part of Figure 4(a). If that is granted,
then the execution times (i.e. individuals in the max population) safely upper bound the
execution times in the actual population. In principle this requires analysing in detail each
SETVj ,∀j ∈ {1, ..n}. For each SETVj = {vj}k the user has to derive a subset of values
max(SETVj) = max({vj

1, vj
2, ...vj

k}) = {mvj
1, mvj

2, ...mvj
mk}) = {mvj}mk. Eventually, based

on the simplifying assumption of independence, we would need max(SETVj) to contain only
its worst-case values. Identifying them may be so complex, however, that the user may have
to resort to safe upper bounds. Moreover, to make the problem tractable, mk < k should
also hold as using max(SETVj) in place of SETVj serves the purpose of decreasing the size
of the population of interest.

The actual cardinality of the max population is defined by the number of combinations of
the max values that each SETV can take during operation. If all SETV are independent of
one another, there is an individual in the max population for each element in the Cartesian
product of all max values of all SETV : {mv1}mk × {mv2}ml,×...× {mvn}mm. Therefore,
there is one execution time individual in the max population for a run under the execution
environment defined by each of the combinations of all SETV . Otherwise, if some SETV

are not independent, then unfeasible combinations should be removed from the Cartesian
product of all max values of all SETV . How to identify those combinations may be very
hard.

3.2 Achieving i.i.d. behaviour
Ensuring that the observations submitted to EVT fulfil the required i.i.d. properties is
only possible if the whole system behaves as a random process such that the observations
drawn from it exhibit those properties. Given that the execution times of the programs
under study are affected either by the input vectors passed to them or the internal logic
(state-dependent behaviour) of the platform, the required i.i.d. properties on the observations
drawn from the computing system must be obtained by: either (1) applying a random process
on the way inputs are selected; or (2) applying random processes in the internal behaviour
of the hardware/software (the platform). In both cases, WCET estimates are based on
measurements (observations) taken from the execution of the program under study on the
target platform. Hence, both approaches can be regarded as measurement-based rather than
static as it is the case with other timing analysis techniques [18].

2 For the purposes of this paper we assume SET V to operate independently of one another. Later in this
section we show how this simplifying assumption can be removed.

WCET 2013



70 Upper-bounding Program Execution Time with EVT

Next we discuss each of the two approaches in more detail, paying special attention to
the requirements they place on the user as well as on the execution platform itself.

4 Deriving WCET estimates on time-deterministic systems with EVT

(a)

(b)

Figure 4 Application of EVT (top) and MBPTA on a
time-randomised platform (down).

Current computing systems can
be regarded as time-deterministic.
Time-determinism is achieved when
we can determine the state of the
system at any time t on the basis
of the initial state, the inputs and
the time cost of the state transitions
triggered by those inputs. The prop-
erty of time determinism is disjoint
from that of functional determin-
ism in that a functional determin-
istic system can also be non time-
deterministic: consider for example
a system whose functionality can
be fully described by a finite state
machine. Further assume that the
transition time from any two states
S0 to S1 is a random value in the
range [t1:t2]. This system is func-
tionally deterministic in that it will
always finish in state S1 from state
S0, but it is not time-deterministic because we cannot determine the exact time at which the
transition from S0 to S1 will complete.

More specifically to our discussion, the execution time of a program on a time-deterministic
system is constant across different runs that occur under the same execution conditions, i.e.
the initial state in the hardware and software is fixed and the same input data are used
across runs.

The behaviour of the system (the program running on the computing system) should
behave like a random process, Xn, such that the i.i.d. statistical properties required for EVT
can be had. If EVT is applied to a COTS (commercial off-the-shelf) deterministic computing
system, the system cannot be changed for it to behave as Xn. In that case EVT conformance
can only be sought by operating on the inputs submitted to it, as captured in Figure 2, in
particular by randomising the selection of inputs using random sampling.

4.1 Random sampling

A sample is a set of individuals chosen from the population under study. A random sample
is a sample chosen by random sampling from the population.

Several unbiased sampling methods exist, e.g, simple random sampling (SRS) [4]. An
unbiased random selection of individuals is important so that, in the long run, the sample has
the same statistical properties as the population under study. With SRS, each individual is
chosen randomly and entirely by chance, hence providing independence between each picking
of an individual. Further, each individual has the same probability of being chosen and each



F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 71

subset of k individuals has the same probability of being chosen as any other subset of k

individuals. Hence, by construction, SRS constructs i.i.d. random samples.
However, as shown earlier, the target population under study cannot be fully constructed

in the general case, and therefore it cannot be sampled. The max population is sampled
instead. In our scenario this has an important corollary in the dimension of representativeness
of the WCET estimates computed with EVT. If and only if the max population is a safe
upper bound of the (deployment-time) target population, the WCET estimates that can be
obtained with EVT actually upper bound the timing behaviour of the program of interest
during operation. Hence, a critical step to achieve the required representativeness is to
understand the deployment-phase target population, correctly defining the max population.
Failing to do so would cause the WCET estimates obtained with EVT to lack any statistical
representativeness with respect to the deployment-phase population. Under that scenario,
the testing-time behaviour observed cannot be used by EVT to derive WCET estimates of
the deployment-time behaviour of the program on the target system.

4.2 Deriving a safe max population
This step is one of the most complex passages in the procedure of applying EVT to derive
pWCET estimates that hold at deployment time for the timing behaviour of the programs
of interest. This step requires analysing in detail each of the SETVj , ensuring that all
the components of max(SETVj) take their respective maximum value(s), or value(s) that
upper-bound their maximum. Indeed, it must be the case that the individuals leading to the
pWCET must be part of the combination of max(SETVj) values or the upper bounds thereof.
This condition holds if no timing anomalies occur across SETV , so that the combination
of local worst cases in max(SETVj) leads to the global worst case. Some SETV are well
understood by the user who can then control and bound them, either quantitatively or
qualitatively, as we discuss below. Others are harder to enumerate and consequently difficult
to bound from above.

Qualitatively-boundable SETV. The input vectors are the most challenging case of SETV,
for the effect they have on the execution paths taken by the program. A poor path coverage
may cause the results computed by EVT to miss the safeness quality required for worst-case
timing analysis. To use EVT the user should understand what the worst-case paths in the
program are and providing input vectors that exercise them. And the pWCET estimates
derived with EVT would only be valid for the paths observed during analysis.

Tool support may be available to compute the coverage obtained during observation runs
and report it back to the user. If a path that the tool deems possible is not yet covered in
the observation runs, the tool may request that the user either acknowledges the exclusion of
that path (which may be asserted as irrelevant for WCET estimation) or provides further
test cases to exercise that path. This is technically possible because full path coverage at
source level (possibly reduced to MC/DC [9]) is one of the prerequisites to be satisfied by
functional testing in certified systems. This type of timing analysis should thus be performed
in conjunction with the functional verification campaign.

Quantitatively-boundable SETV. The input vectors do not only affect the execution path
followed in a program, but may also influence other resources with jitter, hence creating
another SETV , causing an inordinate increase in their quantity. Returning to the multiplier
whose response latency depends on its input values, the user should provide input vectors
for each program path in which the distribution of multiplier input values upper-bounds

WCET 2013



72 Upper-bounding Program Execution Time with EVT

the one that can occur during operation. If for example the multiplier takes 1 cycle when
one operand is zero and 4 cycles otherwise, then the user is required to ensure that the
distribution of non-zero values in the analysis input vectors upper bounds the distribution
that may occur upon deployment.

Uncontrollable SETV. Controlling all SETV to a level in which all their values can be
known and a subset of them (max values) can be forced to occur in the computing system is
generally out of reach for the user. Assume for example that the only SETV is the location in
memory where objects are placed (e.g., the program data and instructions, libraries, OS data
and instructions, etc.) since this determines cache behaviour. In this scenario, enumerating
all combinations of object placements in memory is simply unfeasible. As shown in [11], the
number of memory alignments leading to different cache placements is snobj−1, where s is
the number of cache sets and nobj the number of memory objects. Moreover, the user has
limited control to force a given alignment. It therefore follows that some SETV are hard to
define, understand and control by the user.

4.3 Summary
EVT requires that the observations taken during analysis warrant independence and identical
distribution. For a population of maximum values on which SRS is applied, independence
can be preserved by controlling how experiments are made. This requires ensuring that: (1)
no source of dependence can exist between end-to-end runs; and (2) no state-dependent effect
occurs in the processor and no logical software-level state is allowed to pass between any
two runs. Whether that dependence may exist across events or instructions within a run is
irrelevant so long as observations are collected at the granularity of end-to-end runs.

The fact that each element (an individual in the max population) has the same probability
of being chosen and each subset of k individuals has the same probability of being chosen
for the sample as any other subset of k individuals, ensures identical distribution. However,
EVT by itself does not ensure the representativeness of the max population with respect to
the actual population, which may not be fully known by the user and hence not be sampled.
EVT makes no claim on how safe the selected “maximum population” is for the purposes of
upper-bounding the actual population of system events of interest.

Ensuring that the computed pWCET estimates are safe upper bounds of the target
population requires controlling all SETV . Our view here is that attempting to provide WCET
estimates on COTS deterministic systems is fatally limited by the intricate dependences of
the SETV and the hardware/software support to control SETV to a level in which all their
values can be known, the maximum can be identified and forced in the computing system
to carry out pertinent runs to feed EVT. There is therefore a risk of taking as valid for the
program EVT projections whose representativeness cannot be assessed beyond the particular
set of inputs used during the analysis. To apply EVT in MBTA, therefore, the user must be
provided with means to derive max population safely, timely and cost-effectively.

5 Deriving WCET estimates on time-randomised systems with EVT

In order to ensure that the computed pWCET estimates are safe upper bounds to the
execution time of the program at deployment time, MBPTA adds further constraints to
those imposed by EVT [5], see Figure 4(b). While the EVT requirements only concern the
nature of the observations, MBPTA requires controlling the inputs submitted to the program



F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 73

and the platform on which the runs occur, as shown in Figure 1(b). In particular, MBPTA
requires that all the SETV are “controlled” in one of the following ways.

1. Safe upper-bounding of SETV with no HW change. The user provides values
for each and every SETV to upper-bound the effect that those SETV can have on
the execution time of the program during operation. For instance, for “reasonable”
replacement policies, an empty initial cache state represents the worst-case state that
a program may find at start up. Similarly, for path-dependent effects, the user needs
to ensure that the paths of interest to pWCET estimation are traversed during the
observation runs.

2. Removal of SETV with HW change. Some SETV are hard, if at all possible, to be
effectively controlled by the user. For those SETV , the processor hardware, and to a
lesser extent, the software, should be redesigned such that the response time jitter of
the corresponding execution resources does not depend anymore on the relevant SETV .
This approach is tantamount to removing the SETV for those resources. We consider
two ways in which this can be had3:
a. Worst case timing behaviour. At software level this approach consists in forcing

relevant software components (e.g., methods, procedures) to always take the same time
to execute regardless of when they are called. This approach has been followed for
OS calls [1], where the jittery part of the required activity is deferred until after the
return from the call, in the interstices between the execution of application programs,
taking care to not incur disturbing perturbations to hardware state left on return.
At hardware level, the worst-case mode [15] is a feature forcing a hardware block to
take its worst delay even if a particular request finishes earlier. Both features make
the observations obtained at analysis time be a safe upper bound of the deploy-time
behaviour of the program.

b. Time randomisation. Forcing the worst-case response of some hardware/software
components to occur at all times may degrade performance significantly (e.g., consider-
ing all cache accesses as misses). Instead, randomising the timing behaviour of a given
resource, significantly improves performance of that resource and makes observations
taken at analysis time to be representative of the deployment time behaviour. If
enough observations of the execution of that resource are taken, the observed frequen-
cies converge to the actual probabilities. Further, randomisation may help removing
some of the SETV as shown in coming section.

5.1 How to achieve time randomisation
One of the main challenges in the context of MBPTA is understanding whether timing may
be randomised for some hardware resources, while of course leaving functional behaviour
unaffected. Time randomisation removes some of the SETV that affect the execution time
of programs, thereby reducing the burden on the user in applying EVT. For the sake of
illustration we focus on the case of the cache, though the principles we present apply to any
other resource.

We have seen earlier that the memory layout of program data and code is a SETV that
affects the program execution time. It is well known that the location in which program

3 A third way exists if the user can provide inputs that have the same distribution of values, with respect
to a given characteristic under analysis, as those that can appear during operation. This is possible but
exceedingly difficult.

WCET 2013



74 Upper-bounding Program Execution Time with EVT

data and code are placed in memory may vary across runs (or upon composition with other
software). This in turn means that the particular sets in which the different data/instructions
are located vary across runs. An important consequence of that phenomenon is that the
conflicts in cache that a program suffers and their effect on execution time may vary across
runs. This is illustrated in the example in Figure 3(c), which shows the case of the code
placement in memory and its effect on the instruction cache.

In a real-world scenario, expecting the user to control the way in which program data and
code are placed in memory is not practical: tools and methods exist to do so [14], but they
place some burden on the user. MBPTA can be facilitated by randomising the placement
policy, and optionally the replacement policy (which is not covered in this discussion), to
cause the effect of placement and replacement policies to become probabilistically analysable.
The basic idea is to break the causal dependence between the particular address in memory
in which a piece of data is, and the particular cache set in which it is allocated. This
dependence is broken by randomising the placement such that the index set of individual
data items is randomised and made vary across runs. In this way, making enough runs, hence
taking enough observations, is sufficient for the user to provide probabilistic evidence of the
effect of placement on execution time. And more importantly, in each run the user needs
not control the particular location in memory in which individual data items are located.
Random placement can be done at hardware level by changing the design of the cache [10]
or at software level by controlling the way data and code are loaded in memory [11].

Overall, in a MBPTA-compliant platform (i.e. one that conforms to the principles we
illustrated) all SETV are under control, whereby: (1) their effect on the execution time
observations taken from the program is known; (2) the representativeness of the observed
execution times of the program as affected by those SETV at analysis time is guaranteed
with respect to the execution times of the program at deployment time; and (3) the observed
execution times can be regarded as independent and identically distributed random variables
so that EVT can be meaningfully applied.

6 Related work

Extreme-value statistics are used in [6] to model the WCET. To select highest execution
times the cited authors use Block Maxima [7], for which instead the authors of [8] use the
Peak Over Threshold method. In [19] the authors apply EVT to the problem of computing
Worst-Case Response-Time (WCRT) of programs. Older papers focus on the application of
EVT on time-deterministic platforms but do not cover the representativeness of the result
obtained from EVT, that is the safeness of the pWCET estimate. The authors of those works
assume that the observations collected are representative of the target population. In this
paper we have shown the difficulties of achieving representativeness in time-deterministic
platforms.

The authors of [5] present MBPTA as well as the requirements that it imposes on the
hardware and software components of the system to increase the trustworthiness of the
upper bounds computed by MBPTA, primarily the time randomisation of certain processor
resources.

7 Conclusions

While EVT has been regarded as a powerful method to derive upper (lower) bounds on
arbitrary distributions, its utilisation for deriving WCET estimates has not been well



F.J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella 75

described yet. In this paper we review those characteristics of WCET estimation relevant
for the use of EVT. In particular, we present how the initial population for EVT should be
generated, including all sources of execution time variability (SETV), and how this process
can be hopeless on time-deterministic platforms. Conversely, we show that time-randomised
platforms enable an effective use of EVT by means of MBPTA by randomising and upper-
bounding the timing behaviour of some hardware and software resources so that some SETV
do not need to be described by the user while WCET estimates obtained are still sound.

Acknowledgements

The research leading to these results has received funding from the European Community’s Sev-
enth Framework Programme [FP7/2007-2013] under the PROARTIS Project (www.proartis-
project.eu), grant agreement no 249100. This work was partially supported by EU COST
Action IC1202 “Timing Analysis On Code-Level (TACLe)”, and by the Spanish Ministry
of Science and Innovation under grant TIN2012-34557. Eduardo Quiñones is partially fun-
ded by the Spanish Ministry of Science and Innovation under the Juan de la Cierva grant
JCI2009-05455.

References
1 A. Baldovin, E. Mezzetti, and T. Vardanega. A time-composable operating system. WCET

Workshop, 2012.
2 J. Beirlant, Y. Goegebeur, J. Segers, and J. Teugels. Statistics of Extremes: Theory and

Applications. 2004.
3 F.J. Cazorla, E. Qui nones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,

J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. Proartis:
Probabilistically analysable real-time systems. ACM TECS, 2012.

4 W.C. Cochran. Sampling Techniques. 1977.
5 L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,

E. Mezzeti, E. Quinones, and F.J. Cazorla. Measurement-based probabilistic timing ana-
lysis for multi-path programs. In ECRTS, 2012.

6 Edgar S and Burns A. Statistical analysis of WCET for scheduling. In the 22nd IEEE
Real-Time Systems Symposium (RTSS01), pages 215–225, 2001.

7 W. Feller. An introduction to Probability Theory and Its Applications. 1996.
8 J. Hansen, S Hissam, and G. A. Moreno. Statistical-based wcet estimation and validation.

In the 9th International Workshop on Worst-Case Execution Time (WCET) Analysis, 2009.
9 Hayhurst K.J., Veerhusen D.S., Chilenski J.J., and Rierson L.K. A practical tutorial on

modified condition/decision coverage. Technical report, 2001.
10 L. Kosmidis, J. Abella, E. Quinones, and F.J. Cazorla. A cache design for probabilistically

analysable real-time systems. In DATE, 2013.
11 L. Kosmidis, C. Curtsinger, E. Quinones, J. Abella, E. Berger, and F.J. Cazorla. Probab-

ilistic timing analysis on conventional cache designs. In DATE, 2013.
12 L. Kosmidis, E. Quinones, J. Abella, T. Vardanega, and F.J. Cazorla. Achieving timing

composability with measurement-based probabilistic timing analysis. In ISORC, 2013.
13 E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis. WCET Workshop,

2011.
14 E. Mezzetti and T. Vardanega. A rapid cache-aware procedure positioning optimization to

favor incremental development. In RTAS, 2013.
15 M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, and M. Valero. Hardware support for

WCET analysis of hard real-time multicore systems. In ISCA, 2009.

WCET 2013



76 Upper-bounding Program Execution Time with EVT

16 P. Radojković, P.M. Carpenter, M. Moretó, A. Ramirez, and F.J. Cazorla. Kernel Parti-
tioning of Streaming Applications: A Statistical Approach to an NP-complete Problem. In
MICRO, 2012.

17 P. Radojković, V. Čakarević, M. Moretó, J. Verdú, A. Pajuelo, F.J. Cazorla, M. Nemirovsky,
and M. Valero. Optimal Task Assignment in Multithreaded Processors: A Statistical
Approach. In ASPLOS, 2012.

18 Wilhelm R. et al. The worst-case execution-time problem overview of methods and survey
of tools. ACM Transactions on Embedded Computing Systems, 7:1–53, May 2008.

19 L. Yue, T. Nolte, I. Bate, and L. Cucu-Grosjean. A statistical response-time analysis of real-
time embedded systems. In the 33rd IEEE Real-time Systems Symposium. IEEE, December
2012.


	Introduction
	An executive introduction to EVT
	Requirements on the use of EVT for WCET estimation
	Defining the population under analysis
	Sources of execution time variability
	Max population

	Achieving i.i.d. behaviour

	Deriving WCET estimates on time-deterministic systems with EVT
	Random sampling
	Deriving a safe max population
	Summary

	Deriving WCET estimates on time-randomised systems with EVT
	How to achieve time randomisation

	Related work
	Conclusions

