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Abstract
Petri nets are a well-known model language for concurrent systems. The unfolding of a Petri net
is an acyclic net bisimilar to the original one. Because it is acyclic, it admits simpler decision
problems though it is in general larger than the net. In this paper, we revisit the problem
of efficiently constructing an unfolding. We propose a new method that avoids computing the
concurrency relation and therefore uses less memory than some other methods but still represents
a good time-space tradeoff. We implemented the approach and report on experiments.
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1 Introduction

Model checking is a practical way of ensuring the correctness of concurrent systems, but
suffers from the problem of state-space explosion (SSE). One source of SSE is the explicit
representation of concurrent actions by their interleavings. Petri nets are a model of concurrent
systems, and their unfoldings are an established approach for coping with this source of SSE.

An unfolding can be thought as a partial order that compactly represents the state space
of a Petri net. Roughly speaking, the unfolding of a net N is another acyclic net UN that
behaves like N . Actually, one is usually interested in a prefix PN of UN that represents
all reachable markings of a bounded net N . An unfolding can be seen as a time/space
tradeoff: problems such as coverability or deadlock checking are PSPACE-complete in N ,
but only NP-complete in PN . On the other hand, PN is usually rather larger than N but
often exponentially smaller than its reachability graph, and the aforementioned problems
can easily be encoded into SAT. Also, the same prefix can answer multiple queries once
constructed. See [2] for a survey on unfoldings. Tools like Mole [11] or Punf [6] efficiently
construct unfoldings of safe nets.

Unfoldings are built iteratively. The central challenge of their construction is to identify
the events of UN , which requires to find sets of concurrent conditions of UN . This is a
computationally difficult problem (NP-complete), and several approaches to it have been
proposed in the literature. In [3], the authors propose using a concurrency relation, i.e.,
determine for all pairs of conditions of UN whether they are part of some reachable marking.
This tends to be fast but memory-intensive. An orthogonal technique are prefix trees [7],
which try to reduce the combinatorial overhead associated to the search. These techniques
can be combined, for instance Punf implements them both.

In this paper, we propose an alternative to using concurrency relations for the case of safe
nets. Our contribution is an efficient traversal of the unfolding that detects concurrent pairs
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Figure 1 A Petri net N (a) and its unfolding UN (b) and associated labelling.

of conditions ‘on demand’, without computing or storing the entire concurrency relation.
In Sec. 2, we formally introduce Petri nets and unfoldings. The algorithm that constitutes

the main contribution of the paper is presented in Sec. 3. We implemented and tested the
approach and report on benchmarks in Sec. 4 and conclude in Sec. 5.

2 Unfoldings of Petri Nets

A Petri net, or just net, is a tuple N := 〈P, T, F,m0〉, where P and T are the places and
transitions, F is the flow relation, and m0 : P → N is the initial marking. Places and
transitions together are called nodes. Fig. 1 (a) shows the usual graphical representation of a
net with seven places and four transitions. The arrows depict the flow relation.

For any node x, let •x := { y ∈ P ∪ T : (y, x) ∈ F } be the preset, and x• := { y ∈
P ∪ T : (x, y) ∈ F } the postset of x. We lift these notions to sets of nodes in the expected
way. A marking is a function m : P → N that assigns tokens to every place. A transition
t is enabled at m if m(p) ≥ 1 for all p ∈ •t. Such t can fire, producing marking m′, where
m′(p) = m(p) − |{p} ∩ •t| + |{p} ∩ t•|. A sequence σ = t1 . . . tn ∈ T ∗ is a run leading to
marking m if t1 is enabled at m0, all ti, i ≥ 2, are enabled at the marking produced by ti−1,
and m is produced by tn. A marking m is reachable if some run σ leads to it. N is safe
if m(p) ≤ 1 for all reachable m and p ∈ P . In this paper we only consider safe nets, and
identify their markings with subsets of P . A set X ⊆ P of places is coverable if X ⊆ m for
some reachable marking m.

The unfolding of N is a net UN := 〈B,E,G, m̃0〉 equipped with a labelling h : (B ∪E)→
(P ∪ T ) that maps places and transitions of UN , called conditions and events, to places and
transitions of N , respectively. When h(x) = y, we say that x is a “copy” of y or that x is
y-labelled, and naturally extend h to sets and sequences. UN and h are defined inductively:

p ∈ m0

c := 〈⊥, p〉 ∈ B h(c) := p c ∈ m̃0
Ini

t ∈ T X ⊆ B h(X) = •t X is coverable
e := 〈X, t〉 ∈ E •e := X h(e) := t

Ev

e ∈ E h(e) = t t• = { p1, . . . , pn }
ci := 〈e, pi〉 ∈ B e• := { c1, . . . , cn } h(ci) := pi

Cond

Intuitively, UN is an acyclic version of N : One starts with a “copy” of marking m0, i.e. one
condition 〈⊥, p〉 ∈ m̃0 for each p ∈ m0 (see Ini). Then, whenever UN can reach a marking m̃
such that h(m̃) enables t, we attach a copy of t to UN (Ev). This copy, called e = 〈X, t〉
satisfies X = •e, h(X) = •t, and has ‘fresh’ copies of t• in its postset (Cond). Thus, UN
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is ‘acyclic’, and all conditions have at most one event in their preset. Fig. 1 (b) shows the
unfolding, and associated labelling, of the net shown in Fig. 1 (a).
UN has the same reachable markings and firing sequences as N , modulo h. In general,

UN is infinite, and applications usually compute a finite prefix PN of it that is complete
w.r.t. some application-dependent criterion, e.g., PN is called marking-complete when for all
reachable marking m in N there exists a reachable marking m̃ in PN with h(m̃) = m. The
details of such completeness criteria are beyond the scope of this exposition, see e.g. [4, 8].

For every pair of nodes x, y in UN exactly one of three cases holds [4]:
x and y are causally related, denoted x < y (or y < x), if there is a path of flow arcs from
x to y (resp. from y to x) in G. By construction, < is an irreflexive partial order; if x < y,
then x needs to occur before y in a finite firing sequence. We denote ≤ as reflexive closure
of <. The cone of node x contains the causal predecessors of x, i.e., [x] := { y : y ≤ x }.
x and y are in conflict, written x # y, if they compete for a token, i.e., # is the least
symmetric relation on nodes satisfying (1) e # e′ if e, e′ ∈ E with e 6= e′ and •e ∩ •e′ 6= ∅;
and (2) x # z if there is y ∈ B ∪E such that x # y and y < z. Intuitively, if x # y, then
no run fires or marks both x and y.
x and y are called concurrent, written x ‖ y, if they are neither causally related nor in
conflict. Thus, if x and y are conditions, then {x, y } is coverable.

The principal algorithmic challenge to construct a prefix of UN is to identify coverable
sets of conditions X in applying the rule Ev. Given a prefix PN of UN , it is NP-complete to
decide whether PN can be extended with another event [9]. The following approaches were
proposed and implemented in tools:

Since X is coverable iff c ‖ c′ for all c, c′ ∈ X, it is promising to construct the concurrency
relation ‖ restricted to conditions. In [3], it is shown how ‖ can be computed “on the fly”
while constructing PN . This approach is implemented in the tool Mole.
Eschewing the computation and storage of ‖, [7] proposes several techniques to optimize
the computations of relevant coverable sets using only memory linear in the size of PN ;
these techniques are implemented in Punf.

Experimentation over realistic benchmarks suggest that the first approach is usually faster
but also more memory-intensive, in the worst-case quadratic in |B|; the second approach
therefore succeeds to solve some big instances where the first runs out of memory. Punf
actually allows to switch from the first to the second after the unfolding exceeds a given size.

3 The Algorithm

In this section, we describe the contribution of this paper: a new way of computing the events
of UN . Like [7], this method does not employ the concurrency relation between conditions
and uses only a constant amount of memory per condition and event, yet it is orthogonal to
the tricks proposed in [7].

Before presenting the new contribution, we first describe a generic abstract algorithm
for building UN , used for instance in [3,7]. The algorithm maintains a set PE of so-called
possible extensions, i.e., events that may be added by applying rule Ev to the prefix PN

generated so far. Its steps are:
1. Start with m̃0, generated by the rule Ini, and fill PE with events 〈X, t〉 where X ⊆ m̃0.
2. As long as PE is non-empty, remove an event e from PE. Let P ′N be the prefix obtained

by adding e and its postset to PN , by means of rules Ev and Cond.
3. Identify and add to PE the set of possible extensions of P ′N that were not possible in
PN . For any such extension 〈X, t〉, X necessarily intersects e•.

4. Set PN := P ′N and continue at step 2.

FSFMA’13
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As mentioned in Sec. 2, this procedure may not terminate, and practical applications
usually truncate PN at certain cutoff points. This aspect is irrelevant to our contribution
and we do not discuss it, focusing instead on step 3, the only difficult one. For the rest of
this section, let e := 〈X, t〉 be the event in step 3. We proceed in two substeps:
3a. For each place p ∈ •(t••) \ t•, determine the set C(p, e) of p-labelled conditions 〈x, p〉

that are concurrent with e. For p ∈ t•, we set C(p, e) := {〈e, p〉}
3b. For all t′ ∈ t••, use the sets C(p, e) to discover new possible extensions, i.e., find coverable

subsets X ′ with h(X ′) = t′ and add these to PE.

While step 3a can be implemented in time linear in |PN |, it is known that step 3b is NP-
complete, even when the concurrency relation is given [5]. On the other hand, profiling on
many benchmarks (for instance, using Mole) suggests that step 3a is more expensive in
practice than step 3b.

On the one hand, [3] proposes to compute sets C(p, e) using the concurrency relation
and discusses the on-the-fly computation and maintenance of the latter, giving little detail
on step 3b. On the other hand, [7] presents heuristics for speeding up step 3b without
discussing step 3a in detail. We shall discuss a method for implementing step 3a efficiently
but without storing the concurrency relation and using only O(|PN |) memory. This method
can be combined with the optimizations of step 3b from [7].

We start with a series of simple observations, which are valid for unfoldings of safe Petri
nets. Let p be a place of N and h−1(p) the set of conditions labelled by p in UN . Since N is
safe, no two elements of h−1(p) can be concurrent. Thus, the causality relation <, restricted
to h−1(p), forms a forest where any pair of conditions c, c′ that are not causally related are
in conflict. Let us call this the p-forest. Now, let c, c′ ∈ h−1(p) and e an event. We observe
that (i) if c # e and c < c′ then c′ # e; (ii) if c < e and c′ < c then c′ < e; and in particular
in both cases c′ ‖ e does not hold. Moreover, let C ′ = h−1(p)∩ [e] for some event e. Then no
two elements of C ′ can be in conflict, and therefore (iii) C ′ must be totally ordered w.r.t. <.

Based on these observations, our algorithm for step 3a consists of the following steps:
I. We traverse the causal predecessors of e, i.e. the cone [e]. This serves two purposes:

Mark all elements of [e] with a special bit that allows to determine, in constant time,
whether any given node of PN belongs to [e];
Update the p-forest for all p ∈ t•: if C ′ := h−1(p) ∩ [e] is empty, then the condition
〈e, p〉 ∈ e• is a root of the p-forest, otherwise it is a child of the maximal element of
C ′, due to (iii).

The traversal takes linear time in |[e]|.1
II. Now, let p ∈ •(t••) \ t•. We determine C(p, e) ⊆ h−1(p) by traversing the p-forest in an

order that respects <, starting at the roots of the forest. Let c ∈ h−1(p).
if c < e (constant-time check due to I.), then c /∈ C(p, e); however, some of its children
in the p-forest may be, so we continue to explore those;
if c # e, then c /∈ C(p, e), and neither are any of its children in the p-forest, cf. (i).

To determine c # e, we traverse the cone [c] in reverse <-order. If we encounter an
event e′ < e, then no conflict can be detected by exploring e′ or its causal precedessors,
so we skip [e′]. But if we encounter a condition c′ < e in the traversal, then we can
conclude that c # e holds (because if e′ ∈ ([c] ∩ c′•) \ [e] is the event that led us to c′ in
the traversal, then c′ ∈ •e′ ∩ •e′′ for some e′′ ≤ e). If we find no such c′ in [c], then c ‖ e
holds.

1 Such a traversal is anyway necessary in most unfolding-based implementations to collect information
relevant for determining which events are cutoff points [3, 8], so this step comes at almost no extra cost.
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Table 1 Experimental results. Time and memory for Punf and Mole are ratios, see text.

Net Unfolding New Alg. Punf Mole
Name Events Cond. Time Mem Time (r) Time (r) Mem (r)
Dpd(7) 10457 30248 0.34 9 6.59 1.76 2.18
Ftp(1) 89046 178085 16.06 36 6.40 0.07 1.18
Byz 14724 42276 0.73 21 11.48 2.66 3.15
Q(1) 7469 20969 0.21 9 6.81 2.14 2.04
Elev(4) 16935 32354 0.50 9 5.06 0.24 1.08
Bds(1) 6330 12310 0.04 4 5.75 1.00 1.19
Dme(6) 1830 6451 0.04 6 4.50 3.50 2.66
Dme(7) 2737 9542 0.08 8 4.88 3.88 3.11
Dme(8) 3896 13465 0.13 12 5.92 4.54 3.37
Dme(9) 5337 18316 0.22 17 6.64 4.95 3.62
Dme(10) 7090 24191 0.34 24 7.50 5.47 3.93
Dme(11) 9185 31186 0.53 33 8.13 5.92 4.05
RW(1,2) 49179 147607 1.58 24 0.52 0.39 1.11
Rw(3,1) 15401 28138 1.04 9 3.85 0.16 1.18
Key(3) 6968 13941 0.23 5 2.52 0.30 1.03
Key(4) 67954 135914 15.94 33 2.34 0.06 1.08
Furn(3) 25394 58897 0.69 13 3.48 1.01 1.61
Furn(4) 146606 342140 25.75 75 3.02 0.67 1.76
Mmgt(3) 5841 11575 0.15 4 1.93 0.20 1.08
Mmgt(4) 46902 92940 9.95 18 1.68 0.06 1.18

Notice that step II is repeated for different places p and conditions c. We make some further
optimizations to avoid unnecessary repeated work during the computation for the same e:

If we conclude that c ‖ e holds for some c, we remember this information in the elements
of [c] (as a single bit), and any further conflict checks can safely skip [c].
If we conclude that c # e holds due to some condition c′ < e like above, then we propagate
this information along the trail of nodes that led us from c to c′. Any further conflict
checks that encounter one of those nodes can immediately stop and deduce a conflict, too.

4 Experiments

We experimentally compared our approach with other unfolding algorithms. Mole computes
a concurrency relation [3] and therefore uses quadratic memory in the worst-case. Punf,
when used with option -n=0, employs a linear-time exploration of PN for step 3a [7]. Our
implementation is based on Mole, but we replaced Mole’s concurrency relation by our
approach.

Tab. 1 summarizes our comparison on 20 classical benchmarks from the unfolding
literature. For every net, we present the unfolding size together with the time (in seconds)
and memory (in megabytes) of our approach, listed under ‘New Alg.’. For Punf and Mole,
the data is a ratio relative to our approach. Memory usage for Punf could not readily be
determined, but should be asymptotically the same as for our approach. The computed
unfolding is obviously the same for the three approaches.

Quite positively, our approach runs faster than Punf on all examples except one, with an
overall running time 3.6 times smaller than that of Punf. We interpret this as an encouraging
result for our approach. Remark that Punf implements an optimization called prefix trees in
step 3b, which is still missing in our implementation. This technique is actually orthogonal
to our contributions and seems to be particularly effective for Rw(1,2). We therefore expect
that our running times could be further improved in some cases by implementing prefix trees.

FSFMA’13
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Also positively, our implementation consumes in average 48% of the memory that Mole
uses and still runs faster than it on roughly one half of the cases. These cases notably include
all the instances of the Dme series, where we obtain improved running times of up to 6 times.
Here, the cost of computing the concurrency relation is actually larger than its benefit.

However, our approach is still overall slower than Mole. Our accumulated running
time is 2.3 times larger. The worst case seems to be Mmgt(4), where Mole runs 17 times
faster using roughly the same memory. The concurrency relation proves to be very effective
for this net, in average a condition is concurrent to only 0.2%� of the other conditions.
Compare this ratio with that of Dme(11), where our approach performs 6 times faster.
There, the aforementioned average is 38%�, making Mole’s approach inefficient. The same
analysis holds for Key(4), where Mole is 16 times faster than our approach, and where the
concurrency relation is even comparatively smaller than in Mmgt(4).

Overall, the new approach seems to present a practical tradeoff in terms of time. For
better comparison, we show only examples in which all tools terminated. However, it was
already pointed out in [7] that there exist cases where the concurrency relation becomes too
big to fit into memory, and approaches like Punf and ours succeed where Mole does not.

5 Conclusions

We presented an algorithmic improvement for the construction of Petri net unfoldings. While
our implementation is still preliminary, the experimental results are promising; its running
time beats the one of [7] (which also uses a linear amount of memory), and it represents an
acceptable time/memory trade-off compared with [3], which uses more memory; in some
instances it even performs faster.

For future work, it would be interesting to improve the implementation to incorporate the
tricks from [7], which should further improve the running time. Moreover, we are interested
in generalizing the approach to nets with read arcs, where it could be used as an alternative
to [1] within the tool Cunf [10].
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