
Analysis of Two-Layer Protocols: DCCP
Simultaneous-Open and Hole Punching
Procedures∗

Somsak Vanit-Anunchai

School of Telecommunication Engineering
Institute of Engineering
Suranaree University of Technology
Muang, Nakhon Ratchasima, Thailand
email:somsav@sut.ac.th

Abstract
The simultaneous-open procedure of the Datagram Congestion Control Protocol (DCCP), RFC
5596, was published in September 2009. Its design aims to overcome DCCP weaknesses when the
Server is behind a middle box, such as Network Address Translators or firewalls. The original
DCCP specification, RFC 4340, only allows the Client to initiate the call. The call request cannot
reach the Server behind the middle box. A widely used solution to address this problem is called
the “hole punching” technique. This technique requires the Server to initiate sending packets.
Using Coloured Petri Nets (CPN) this paper models and analyses the DCCP procedure specified
in RFC 5596. However, the difficulty is that detailed modelling of the address translation is also
required. This causes state space explosion. We alleviate the state explosion using prioritized
transitions and the sweep-line technique. Modelling and analysis approaches are discussed in the
hope that it is helpful for others who wish to analyse similar protocols. Analysis results are also
obtained for the simultaneous-open procedure specified in RFC 5596.

1998 ACM Subject Classification C.2.2 Network Protocols, D.2.2 Design Tools and Techniques,
D.2.4 Software/Program Verification

Keywords and phrases Network Address Translators, Coloured Petri Nets, Sweep-line Method,
Prioritized Transitions.

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.3

1 Introduction

The Datagram Congestion Control Protocol (DCCP) [18] is a transport protocol that
provides bidirectional flow of data for applications that prefer timeliness to reliability. It is
a connection-oriented protocol operating over the Internet between two entities, the Client
and the Server. Originally specified in RFC 4340, only the Client can initiate the connec-
tion while the Server passively listens to the incoming request. When the Server is located
in a private network or behind a Network Address Translator (NAT1), the first incoming
packet cannot reach the Server because address mapping in the NAT does not exist yet. To
overcome this problem, a simple solution widely used with other transport protocols (UDP,
TCP and SCTP) is known as the “hole punching” technique.

∗ This work is supported by Research Grant from the Thai Network Information Center Foundation and
the Thailand Research Fund.

1 NAT is a middlebox that maps private (IP addresses - port number) to public (IP addresses - port
number) and allows many hosts behind NAT to share the same public IPv4 address.

© Somsak Vanit-Anunchai;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 3–17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

4 Analysis of DCCP Simultaneous-Open Procedures

Internet

Server

(DCCP-B)
Client

(DCCP-A)

NAT-A

64.10.75.34

NAT-B

67.14.35.20

10.10.10.20

Rendezvous server

100.1.2.3

192.168.1.122
1

1

2

Fig. 1. Peer-to-peer communication with rendezvous server.

Internet

Server

(DCCP-B2)
Client

(DCCP-A2)

Src. Add. : 10.10.10.10::50

Dest. Add.: 67.14.35.20::81

64.10.75.34 67.14.35.20
Src. Add. : 10.10.10.20::50

Dest. Add.: 67.14.35.20::82

Host Private Public

 Source Address Source Address

A1 10.10.10.10::50 64.10.75.34::50

A2 10.10.10.20::50 64.10.75.34::51

Src. Add. : 64.10.75.34::50

Dest. Add.: 67.14.35.20::81

Src. Add. : 64.10.75.34::51

Dest. Add.: 67.14.35.20::82

NAT-A

Binding Table

Public Private Host

 Source Address Source Address

--.--.--.--::-- --.--.--.--::-- B1

67.14.35.20::82 192.168.1.123::80 B2

Client

(DCCP-A1)

Server

(DCCP-B1)

NAT-B

Binding Table

Src. Add. : 64.10.75.34::51

Dest. Add.: 192.168.1.123::80

192.168.1.122::80

Fig. 2. Binding tables in NAT-A and NAT-B.

The basic idea of hole punching consists of two phases, labeled 1 and 2,
as shown in Fig. 1. Firstly, DCCP-A and DCCP-B, which are located behind
NAT-A and NAT-B respectively, establish connections with a rendezvous server
at a well-known public IP address (100.1.2.3). Because DCCP entities initiate
the session via their NAT to the rendezvous server, the server can observe the
public IP addresses and port numbers assigned for both sessions. The server
then informs each entity of the public IP address and port number of its peer.
After receiving this information, the connection between DCCP-A and DCCP-
B can start. Illustrated in Fig. 2, when DCCP-A1 sends a packet to DCCP-B1, a
“binding table” (or a hole) in NAT-A is created. However the packet is blocked
by NAT-B because NAT-B has no binding for DCCP-B1 yet. Thus DCCP-B1
needs to send its packet to DCCP-A1 in order to create a binding table in
NAT-B. After a hole is punched in NAT-B, the public address (67.14.35.20::81)
associated with DCCP-B1 in the incoming packet will be translated to the
private address of DCCP-B (192.168.1.122::80) so that the packet can be locally
forwarded to DCCP-B1. In the hole-punching scenarios, the Client and the
Server initiate sending a packet at about the same time. This requires a new
simultaneous open procedure as described in RFC 5596 [8].

Previous work Since 2003 we have constructed, refined and analysed Coloured
Petri Net (CPN) [11] models of DCCP’s connection management procedure ac-
cording to RFC 4340, using Design/CPN [7]. In [17], we reported our experience

2

Figure 1 Peer-to-peer communication with rendezvous server.

Internet

Server
(DCCP-B)

Client
(DCCP-A)

NAT-A

64.10.75.34

NAT-B

67.14.35.20
10.10.10.20

Rendezvous server

100.1.2.3

192.168.1.1221
1

2

Fig. 1. Peer-to-peer communication with rendezvous server.

Internet

Server
(DCCP-B2)Client

(DCCP-A2)

Src. Add. : 10.10.10.10::50
Dest. Add.: 67.14.35.20::81

64.10.75.34 67.14.35.20
Src. Add. : 10.10.10.20::50
Dest. Add.: 67.14.35.20::82

Host Private Public
 Source Address Source Address

A1 10.10.10.10::50 64.10.75.34::50
A2 10.10.10.20::50 64.10.75.34::51

Src. Add. : 64.10.75.34::50
Dest. Add.: 67.14.35.20::81

Src. Add. : 64.10.75.34::51
Dest. Add.: 67.14.35.20::82

NAT-A
Binding Table

Public Private Host
 Source Address Source Address

--.--.--.--::-- --.--.--.--::-- B1
67.14.35.20::82 192.168.1.123::80 B2

Client
(DCCP-A1)

Server
(DCCP-B1)

NAT-B
Binding Table

Src. Add. : 64.10.75.34::51
Dest. Add.: 192.168.1.123::80

192.168.1.122::80

Fig. 2. Binding tables in NAT-A and NAT-B.

The basic idea of hole punching consists of two phases, labeled 1 and 2,
as shown in Fig. 1. Firstly, DCCP-A and DCCP-B, which are located behind
NAT-A and NAT-B respectively, establish connections with a rendezvous server
at a well-known public IP address (100.1.2.3). Because DCCP entities initiate
the session via their NAT to the rendezvous server, the server can observe the
public IP addresses and port numbers assigned for both sessions. The server
then informs each entity of the public IP address and port number of its peer.
After receiving this information, the connection between DCCP-A and DCCP-
B can start. Illustrated in Fig. 2, when DCCP-A1 sends a packet to DCCP-B1, a
“binding table” (or a hole) in NAT-A is created. However the packet is blocked
by NAT-B because NAT-B has no binding for DCCP-B1 yet. Thus DCCP-B1
needs to send its packet to DCCP-A1 in order to create a binding table in
NAT-B. After a hole is punched in NAT-B, the public address (67.14.35.20::81)
associated with DCCP-B1 in the incoming packet will be translated to the
private address of DCCP-B (192.168.1.122::80) so that the packet can be locally
forwarded to DCCP-B1. In the hole-punching scenarios, the Client and the
Server initiate sending a packet at about the same time. This requires a new
simultaneous open procedure as described in RFC 5596 [10].

2

Figure 2 Binding tables in NAT-A and NAT-B.

The basic idea of hole punching consists of two phases, labeled 1 and 2, as shown in Fig. 1.
Firstly, DCCP-A and DCCP-B, which are located behind NAT-A and NAT-B respectively,
establish connections with a rendezvous server at a well-known public IP address (100.1.2.3).
Because DCCP entities initiate the session via their NAT to the rendezvous server, the
server can observe the public IP addresses and port numbers assigned for both sessions.
The server then informs each entity of the public IP address and port number of its peer.
After receiving this information, the connection between DCCP-A and DCCP-B can start.
Illustrated in Fig. 2, when DCCP-A1 sends a packet to DCCP-B1, a “binding table” (or a
hole) in NAT-A is created. However the packet is blocked by NAT-B because NAT-B has no
binding for DCCP-B1 yet. Thus DCCP-B1 needs to send its packet to DCCP-A1 in order
to create a binding table in NAT-B. After a hole is punched in NAT-B, the public address
(67.14.35.20::81) associated with DCCP-B1 in the incoming packet will be translated to the
private address of DCCP-B (192.168.1.122::80) so that the packet can be locally forwarded
to DCCP-B1. In the hole punching scenarios, the Client and the Server initiate sending
a packet at about the same time. This requires a new simultaneous open procedure as
described in RFC 5596 [9].

1.1 Previous Work

Since 2003 we have constructed, refined and analysed Coloured Petri Net (CPN) [16] models
of DCCP’s connection management procedure according to RFC 4340, using Design/CPN [8].

S. Vanit-Anunchai 5

In [24], we reported our experience with the incremental enhancement and iterative mod-
elling of the connection management procedures as the DCCP specification was developed.
Insight into the decisions behind the modelling choices can also be found in [24]. The full
CPN specification of the connection management procedures can be found in Section 2
of [25]. Section 4 of [25] also explains the development of progress mappings for sweep-line
state space analysis [21] of DCCP. We have published an enhanced version of [24] which
also discusses a procedure-based model of DCCP’s connection management procedures [5].
In [6], we discuss how to embed a parameterised channel into CPN models of protocols,
using DCCP as an example.

1.2 Contributions
The contribution of this paper is two-fold. Firstly, we extend the Coloured Petri Net model
and analysis of the DCCP connection management procedure (RFC 4340) in [5,23] to include
the simultaneous open procedure (RFC 5596). Secondly, since embedding NAT with the
hole punching procedure as a channel module [6] leads to significant state explosion, we
demonstrate methods to circumvent the problem using prioritized transitions and the sweep-
line technique [7].

1.3 Organisation
This paper is organised as follows. Section 2 provides an overview of the DCCP simultaneous
open procedure. Modelling approach is discussed in Section 3. A description of the CPN
model of DCCP’s simultaneous open procedure is given in Section 4. Section 5 discusses
analysis approach. Section 6 presents the experimental results, with Section 7 providing
conclusions and future work.

2 DCCP Overview

2.1 Connection Management Procedures
The Datagram Congestion Control Protocol [17, 18] is a point-to-point transport protocol
operating over the Internet between two DCCP entities, the Client and Server. It provides
a bidirectional flow of data for applications, such as voice and video, that prefer timeliness
to reliability. DCCP is designed to provide congestion control for these applications [11]. Its
congestion control algorithms require statistics on packet loss because loss is related to the
level of congestion in the network. DCCP uses sequence and acknowledgement numbers in
packets to detect and report loss, and includes state variables in each protocol entity to keep
track of these numbers. State variables on both sides must be synchronised, otherwise DCCP
may misinterpret loss information. Thus DCCP needs mechanisms to set up, synchronise
and clear state variables in both the Client and Server. We refer to these mechanisms in
general as connection management (CM) procedures.

The CM procedures require packets to be exchanged between the Client and Server. RFC
4340 defines 10 different packet types for this purpose: Request, Response, Data, DataAck,
Ack, CloseReq, Close, Reset, Sync and SyncAck. Figure 3 is a state diagram illustrating
DCCP’s connection establishment and release procedures for both the Client and Server. It
is derived by combining the state diagrams in RFCs 4340 and 5596, with the dashed parts
of the diagram being added by RFC 5596. Ellipses in Fig. 3 represent states while arrows
represent state transitions. CLOSED is both an initial and a final state. The inscription
on each arrow describes the input and output actions, if any. For instance, the inscription

FSFMA’13

6 Analysis of DCCP Simultaneous-Open Procedures

CLOSED

OPEN

REQUEST

CLOSEREQ

LISTEN

PARTOPEN

CLOSING

RESPOND

TIMEWAIT

INVITED

1st Timer Expiry/
retransmit Listen

rcv Request/
snd Response

rcv Response/
snd Ack or
DataAck

rcv Ack or DataAck/

active open/
snd Request

2 MPL
timer expires

rcv packet/

rcv Reset
server active close/
snd CloseReq

active close or
rcv CloseReq/
snd Close

passive open(ur)
passive open(fsr)/
snd Listen

rcv Close/
snd Reset

rcv Request/
snd Response

2nd Timer Expiry/
retransmit Listen

3rd Timer Expiry/

indicate transitions related to a normal connection according to RFC 4340
indicate transitions related to simultaneous opening for the DCCP Server
according to RFC 5596

rcv Close/
snd Reset

Figure 3 DCCP state diagram.

on the arc from REQUEST to PARTOPEN is “rcv Response snd Ack or DataAck”. This
means that when the Client receives a DCCP-Response while in the REQUEST state, it
returns a DCCP-Ack or DataAck (if it has data to send) and moves to the PARTOPEN
state. The Client is identified by an “active open” from its application and passing through
the REQUEST state. On the other hand, the Server always receives a “passive open” and
passes through the LISTEN state. Applications on both sides can issue an “active close”
command but only the Server’s application can issue the “server active close” command.

RFC 5596 defines a new packet type called DCCP-Listen and two new states called
INVITED and LISTEN1. RFC 5596 differentiates between the cases when the Server con-
nection end point is partially specified (the remote address and port number are unknown)
and when it is fully specified. This corresponds to the commands “passive open(ur)” and
“passive open(fsr)” respectively, where ur is for ‘unspecified remote’ and fsr stands for ‘fully
specified remote’. After receiving a passive open(fsr), a DCCP-Listen packet is sent, a timer
is set and the Server transitions from CLOSED to INVITED. If a DCCP-request is not re-
ceived in time, the DCCP-Listen packet can be retransmitted up to two times before moving
to the LISTEN1 state. If the Server receives a DCCP-Request (in INVITED or LISTEN1),
it sends a DCCP-Response and transitions to RESPOND. Because the behaviour of DCCPs
in the LISTEN and LISTEN1 states are the same, to simplify the state diagram (Fig. 3),
we suggest2 to merge these two states. For more details of these procedures, see [9, 18].

2.2 Hole Punching Procedures
The message sequence chart in Fig. 4 provides an example of the hole punching procedure.
Prior to connection establishment, we assume that both the Client and Server know each
other’s public address via a well-known rendezvous server (Fig. 1) using another signalling
protocol such as the Session Description Protocol (SDP) [14]. As shown in Fig. 4, when the
Client sends the first DCCP-Request packet via NAT-A, NAT-A creates a binding table (a

2 This was suggested by Professor Jonathan Billington.

S. Vanit-Anunchai 7

src=A,dst=B,Request, seq = y

src=b,dst=A,Listen,
seq =0

DCCP-A
(Client)

 CLOSED
 active open
 REQUEST

src=B,dst=A,Listen, seq = 0

src=a,dst=B,Request,
seq = y

src=B,dst=a,Listen,
seq = 0

CLOSED
simultaneous open
INVITED

src=a,dst=B,Request,
seq = y + 1

src=A,dst=B,Request ,
seq = y + 1

src=A,dst=b,Request,
seq = y + 1

src=b,dst=A,Response,
seq =z, ack = y+1 INVITED

RESPOND

DCCP-B
(Server)NAT-BNAT-A

X

Figure 4 The hole punching procedure.

hole) and replaces the private source address “a” in the DCCP-Request with public source
address “A”. In this paper, a lower-case letter represents a private address and an upper-case
letter represents a public address. The private source address,“a”, in every outgoing packet
from NAT-A is replaced by the public source address, “A”. Similarly, the public destination
address “A” in every incoming packet is replaced by the private address “a”. However, since
no binding for DCCP-B exists in NAT-B, the DCCP-Request packet is blocked by NAT-B,
and discarded. In order to allow incoming packets to pass NAT-B and be delivered to DCCP-
B, another hole (binding table) is required at NAT-B. As a consequence of prior signalling
sessions via the Rendezvous server, DCCP-B sends a DCCP-Listen packet to indicate its
willingness to set up a connection with public destination address “A”. On receipt of the
Listen packet, NAT-B creates a binding table so that the private source address,“b”, in
every outgoing packet from NAT-B will be replaced by the public source address, “B”,
for every packet destined for “A”. Similarly, the public destination address “B” in every
incoming packet from public source address, “A”, will be replaced by the private address
“b”. Because the hole at NAT-A is already punched by the previous DCCP-Request packet,
the DCCP-Listen packet can get through NAT-A and arrives at DCCP-A. When DCCP-A,
in REQUEST, receives a DCCP-Listen packet, it retransmits the previous DCCP-Request
with its sequence number incremented by one. The DCCP-Request is now accepted by
NAT-B because “A” has the required entry in its binding table. NAT-B provides the address
translation to the private address. The DCCP-request arrives at DCCP-B which sends a
DCCP-Response packet and enters the RESPOND state. After that, the connection is
established according to the normal connection set up procedure described in RFC 4340.
Other scenarios are possible. For example, if the Listen packet is lost, DCCP-A will resend
its Request packet after a timeout. Thus it is not essential for Listen packet to be received
by DCCP-A, it just provides a speed-up if it gets through before the timeout occurs. It is
possible for the DCCP-Listen packet to be sent before the DCCP-Request packet. In this
case, the Listen packet will be blocked by NAT-A until it receives the Request packet from
DCCP-A.

FSFMA’13

8 Analysis of DCCP Simultaneous-Open Procedures

3 Modelling Approach

3.1 Layer Architecture
Protocols are often organized into a layered structure. Each layer represents a protocol
which provides a standard interface to the lower and higher layers. From it own point of
view, a specific layer may only observe the interaction at its interface so that the details of
the underlying network infrastructure are hidden. Despite the fact that data flows vertically
between layers at each end, we can consider that a specific layer horizontally conveys the
data between the peer entities at the same layer. Thus each protocol specification at each
layer needs to defines only its peer-to-peer behaviour. This peer-to-peer or end-to-end
principle3 abstracts away all lower layers and merges them into an underlying channel.
We observe that almost all CPN models of the Internet protocol e.g. [1, 3–5, 12, 13, 19,
20, 22], implicitly use the end-to-end principle and hide all other underlying layers into
two channel places. However, there are a few researchers who have investigated multi-
layer protocols. For example, [10] modelled and validated connection establishment in the
Generic Access Network which involves multiple layers of the protocol stacks. [10] suggested
that studying multi-layer protocols provide us insights and understanding how protocol
components interact to each other.

As the Internet technology has advanced considerably over recent years, we discover
that the end-to-end principle is often violated. For example, the cross-layer design modifies
interfaces to higher layers in order to provide performance optimization across layers. NAT
is another example that violates the end-to-end principle. Thus NAT can not be abstracted
away and its detailed model is required.

3.2 Embedding the NAT Functions in the CPN Models
Two approaches for embedding the underlying channel into a CPN protocol model have been
discussed in [6]. The first approach integrates the channel model with the protocol entities.
Applying this to our work, the channel model is the NAT functions that are implemented on
the output arc inscriptions of the protocol entities. Although this approach helps to reduce
the state space size, the model is subtle and tedious. The second approach embeds the
channel model or the NAT functions as a module implemented by a substitution transition
[15]. This is an elegant way of including NAT devices in the model. This modular approach
requires two more substitution transition instances (NAT) and four more buffer places than
the integrate approach does. As discussed in [6], from the analysis perspective, this modular
approach significantly suffers from state explosion. However for sake of modelling clarity we
have selected the modular approach.

4 DCCP Simultaneous Open CPN Model

DCCP simultaneous open CPN models have been developed using both CPN Tools and
Design/CPN. Prioritized transitions play an important role in this paper so this section
only examines the CPN Tools model. Since our model is extended from [5], this section
emphasises on the extension part of the model. For more details of the declarations and the
explanation of the previous work, see [5, 25]

3 “End-to-end principle is an assumption of the Internet property that all nodes can send packets to
other nodes of the network, without requiring intermediate network elements to further interpret them."

S. Vanit-Anunchai 9

NAT_B

NAT

NAT_A

NAT

DCCP_B

DCCP_functions

DCCP_A

DCCP_functions

Header_IP_S2C

header_S2C

SRC_DST

Ch_C2S

IP_PKT

Ch_S2C
IP_PKT

Header_IP_C2S

header_C2S

SRC_DST

NAT_A_TABLE

table_A

NAT_TABLE

NAT_B_TABLE

table_B

NAT_TABLE

Ch_L2U_B

PACKETS

Ch_U2L_B

PACKETS

App_Server

S_cmd

COMMAND

Server_State

init_S

CB

Client_State

init_C

CB

App_Client

C_cmd

COMMAND

Ch_U2L_A

PACKETS

Ch_L2U_A

PACKETS

DCCP_functions DCCP_functions

NAT NAT

Figure 5 DCCP Top level.

4.1 Model Overview
Our procedure based DCCP-CPN model from Section 4 of [5] has been extended to incorpor-
ate the network layer comprising two Network Address Translators (NATs). In spite of the
existence of many types of NAT, this paper investigates only “Address and Port-Dependent
Mapping4". Because the NATs are embedded as a module (substitution transition), another
type or combination of different types can be easily integrated in our model. Our proced-
ure based CPN model comprises five hierarchical levels. The complete model comprises 14
places, 68 executable transitions and 25 ML functions.

Figure 5 shows the top level of our CPN model. Two places, App_Client and App_Server,
typed by COMMAND (line 15 of Fig. 6), store tokens representing user commands. Substitu-
tion transitions, DCCP_A and DCCP_B, represent the DCCP procedures in the Client and
the Server, respectively. Substitution transitions, NAT_A and NAT_B, which link to the
second level CPN subpage, NAT, models the IP-Port address mapping procedure. Strictly
speaking, we do not actually model the hole punching procedure because the hole punching
behaviour automatically emerges from interactions among four component in the network:
DCCP-A, NAT-A, NAT-B and DCCP-B.

4.2 Declaration of State Variables
DCCP states and variables are stored in Places Client_State and Server_State typed by CB
(Control Block). Two new states: LISTEN1 and INVITED are specified by RFC 5596. Fig-
ure 6 defines CB (line 10) as the union of four colour sets: IDLE (for CLOSED, LISTEN,
LISTEN1 and TIMEWAIT states), RCNT (for INVITED state), RCNTxGSSxISSxlisten_flag

4 “ The NAT reuses the port mapping for subsequent packets sent from the same internal IP address
and port to the same external IP address and port" [2]

FSFMA’13

10 Analysis of DCCP Simultaneous-Open Procedures

1: (* Retransmit Counter *)
2: colset RCNT = int;
3: colset ACTIVE_STATE = with RESPOND | PARTOPEN | S_OPEN | C_OPEN
4: | CLOSEREQ | C_CLOSING |S_CLOSING;
5: colset IDLE = with CLOSED_I | LISTEN | TIMEWAIT | CLOSED_F | LISTEN1;
6: colset RCNTxGSSxISSxlisten_flag = product RCNT*SN48*SN48*BOOL;
7: colset GS = record GSS:SN48*GSR:SN48*GAR:SN48;
8: colset ISN = record ISS:SN48*ISR:SN48;
9: colset ActiveStatexRCNTxGSxISN = product ACTIVE_STATE*RCNT*GS*ISN;

10: colset CB = union IdleState:IDLE
11: + INVITED:RCNT
12: + ReqState:RCNTxGSSxISSxlisten_flag
13: + ActiveState:ActiveStatexRCNTxGSxISN;
14: (* User Command *)
15: colset COMMAND = with simu_Open | p_Open | a_Open | server_a_Close | a_Close;

Figure 6 The definition of CB (Control Block) and COMMAND.

(for REQUEST state), and ActiveStatexRCNTxGSxISN (for RESPOND, PARTOPEN, OPEN,
CLOSEREQ and CLOSING states). INVITED in the union coloured set CB (line 10) is dis-
tinguished from others because this state stores only a retransmission counter. LISTEN1
is declared in the colour set IDLE (line 5). The Client’s action, in the REQUEST state,
depends whether it has ever received a DCCP-Listen or not. Thus a boolean flag is added
in the state variables (line 6).

4.3 Declaration of DCCP and IP Packets
DCCP entities communicate with NATs via buffer places, Ch_L2U_A, Ch_U2L_A,
Ch_L2U_B and Ch_U2L_B typed by PACKETS. Two substitution transitions, NAT_A
and NAT_B, exchange IP packets via two buffer places, Ch_S2C and Ch_C2S, typed by
IP_PKT. Figure 7 declares PACKETS (line 22) as the union of four colour sets: SN48 (for
DCCP-Request), SN48 (for DCCP-Listen), SN (for DCCP-Data), Ack_DataAckPacket and
OtherPackets. The new packet type defined by RFC 5596 is DCCP-Listen which always has
the sequence number equal to zero. The Request, Listen and Data packets are distinguished
from the others by ML selectors of the same name as defined in line 22. Figure 7 declares
IP_PKT (line 28) as a record of three colour sets: IP (for source address), IP (for designation
address) and PACKETS (for DCCP packets). IP are defined as a product of five integers
instead of four integers because the port address is also included.

4.4 CPN Subpage NAT
Apart from input and output buffer places, subpage NAT comprises two places and two
transitions. Place src_dst typed by SRC_DST stores a record of private source address and
public designation address. Transition NAT_TX views the token {src=a, dst=B} together
with the token packet forming an incoming IP packet from the private network. Transitions
NAT_TX and NAT_RX the priority value, P_HIGH = 100, while P_NORMAL is equal to
1000. Place TABLE typed by NAT_TABLE stores binding tables used for address transla-
tions. NAT_TABLE is defined in Fig. 7 (line 26) as a record of three tuples: private source
address, public source address and public designation address. When creating a binding
table, function put(a) is used to set up the public source address.

4.5 Connection Establishment Pages
This section illustrates two CPN subpages which model connection establishment, the Server
and Client pages. Initially, both entities are CLOSED with a simultaneous open command

S. Vanit-Anunchai 11

1: (* Sequence and Acknowledgement Numbers *)
2: colset SN48 = int with 0..MaxSeqNo48;
3: colset SN24 = int with 0..max_seq_no24;
4: colset SN48_AN48 = record SEQ:SN48*ACK:SN48;
5: colset SN24_AN24 = record SEQ:SN24*ACK:SN24;
6: colset SN = union longSN:SN48 + shortSN:SN24
7: colset SN_AN = union longSA:SN48_AN48 + shortSA:SN24_AN24
8:
9: (* Sequence and Acknowledgement Variables *)
10: var sn:SN; var sn48:SN48; var sn24:SN24;
11: var sn_an:SN_AN; var sn48_an48:SN48_AN48; var sn24_an24:SN24_AN24;
12:
13: (* Define the DCCP Packet Structure *)
14: colset Ack_DataAckPktTypes = with Ack | DataAck;
15: var ack_dataack:Ack_DataAckPktTypes;
16:
17: colset OtherPktTypes = with Sync | SyncAck | Response | CloseReq | Close | Rst;
18: var p_type:OtherPktTypes;
19:
20: colset Ack_DataAckPacket = product Ack_DataAckPktTypes*SN_AN;
21: colset OtherPackets = product OtherPktTypes*SN48_AN48;
22: colset PACKETS = union Request:SN48 + Listen:SN48 + Data:SN
23: + Ack_DataAck:Ack_DataAckPacket + PKT:OtherPacket
24: (* Define the IP Packet Structure *)
25: colset IP = product INT*INT*INT*INT*INT;
26: colset NAT_TABLE = record local_src:IP*global_src:IP*global_dst:IP;
27: colset SRC_DST = record src:IP*dst:IP;
28: colset IP_PKT = record src_add:IP*dst_add:IP*dccp:PACKETS;
29: var packet:PACKETS;
30: var a, A, B, gb_src:IP;

Figure 7 The definition of DCCP PACKETS and IP_PKT.

{src = a ,dst =B}packet packet{src = a, dst = B}

1`{local_src = a,
global_src = A,
global_dst= B}

1`{local_src = a,
global_src =
(if gb_src = (0,0,0,0,0)
 then put(a)
 else gb_src),
global_dst=B}

1`{local_src = a,
global_src = gb_src,
global_dst= gb_dst}

1`{src_add = B,
dst_add = A,
dccp=packet}

1`{src_add =
(if gb_src = (0,0,0,0,0)
 then put(a)
 else gb_src),
dst_add = B,
dccp=packet}

NAT_RX NAT_TXTABLE

I/O
NAT_TABLE

Input
In IP_PKT

Output
Out IP_PKT

src_dst
I/O

SRC_DST

Ch_L2U
Out PACKETS

Ch_U2L
In

PACKETS
InOut

I/O

OutIn

I/O

P_HIGH P_HIGH

Figure 8 CPN Subpage NAT.

(1‘simu_Open) in Place App_Server and an active open command (1‘a_Open) in Place
App_Client.

4.5.1 Server Page
The part of Fig. 9 below App_Server, is the normal connection establishment specified in RFC
4340. The upper part is the standard simultaneous open procedure specified in RFC 5596.
With reference to Fig. 3, the occurrence of transition simuOpen (Fig. 9) transmits DCCP-
Listen and puts the Server in the INVITED state, waiting for DCCP-Request from the Client.

FSFMA’13

12 Analysis of DCCP Simultaneous-Open Procedures

PKT(Response,{SEQ=S_iss,
ACK=sn48})

PKT(Response,{SEQ=S_iss,ACK=sn48})

1`simu_Open

Request sn48ActiveState(RESPOND,0,{GSS=S_iss,
GSR=sn48,GAR=S_iss},
{ISS=S_iss,ISR=sn48})

IdleState LISTEN1

Request sn48ActiveState(RESPOND,0,{GSS=S_iss,
GSR=sn48,GAR=S_iss},
{ISS=S_iss,ISR=sn48})

INVITED rcnt

Listen 0

INVITED 0

IdleState CLOSED_I

Request sn48

Ack_DataAck(ack_dataack,sn_an)

Ack_DataAck(ack_dataack,
sn_an)

Ack_DataAck(ack_dataack,
SeqAckLS (LS, gGS g, sn_an))

Data(SeqLS(LS,g))

PKT(Response,{SEQ=S_iss,
ACK=sn48})

ActiveState(S_OPEN,0,
UpdateGS(g,SA sn_an),isn)

ActiveState(S_OPEN,0,
UpdateGS(g,SA sn_an),isn)

ActiveState(RESPOND,0,{GSS=S_iss,
GSR=sn48,GAR=S_iss},
{ISS=S_iss,ISR=sn48})

IdleState LISTEN

ActiveState(RESPOND,rcnt,g,isn)

ActiveState(RESPOND,rcnt,g,isn)

IdleState LISTEN

IdleState CLOSED_I

1`p_Open

LISTEN1rcvRequest

INVITEDrcvRequest

SimuOpen

RcvAckSndAck

[DataAckValid(sn_an,g,isn)]

RcvAckSndData

[DataAckValid(sn_an,g,isn)]

ListenrcvRequest

PassiveOpen

State
I/OCB

Input
In PACKETS

Output
Out PACKETS

App_Server
In COMMANDIn Out

In

I/O

Figure 9 DCCP Server.

After retransmitting twice , the Server enters the LISTEN1 state. These actions are modelled
in other CPN subpages: Retransmission and BackOffFails pages. When the Server, in either
INVITED, LISTEN1 or LISTEN, receives a DCCP-Request (transition INVITEDrcvRequest,
LISTEN1rcvRequest, LISTENrcvRequest) it replies with a DCCP-Response containing the
Server’s initial sequence number and an acknowledgement for the DCCP-Request. It enters
the RESPOND state and appropriately initialises its state variables. These upper three
transitions are directly related to the state diagram in Fig. 3.

4.5.2 Client Page
The transition RcvListen in Fig. 10 models actions specified by RFC 5596. On receipt of
the DCCP-Listen(seq=0), if the Client has never received DCCP-Listen, it replies with
DCCP-Request. If the Client has received DCCP-Listen before, it silently discards the
DCCP-Listen.

5 Analysis Approach

A typical approach to alleviate the state explosion problem is to make the number of gen-
erated states more compact. We observe that after writing the address translation table,
NAT in our specification model performs only two functions, reordering and forwarding the
packets. Intuitively the CPN model of the underlying layer and NAT can be combined and

S. Vanit-Anunchai 13

reduced into two channel places. Thus, the outgoing packet from a DCCP entity is imme-
diately the incoming packet to the other. However the NAT cannot be abstracted away
because its behaviour before writing the address translation table is different.

By separating the actions before and after writing the address translation table, we
suggest that transitions NAT_RX and NAT_TX in the NAT page should get the highest
priority. When NAT reorders packets, many sequences of these actions (reorder) lead to the
same markings. Analysis using prioritized transitions will keep one sequence but discard
the rest. Thus, the number of total states is significantly reduced and the safety properties
(terminal markings) are preserved.

5.1 CPN Tools versus Design/CPN
Previously, our model [25] was created and maintained using Design/CPN. Because
Design/CPN does not support prioritized transitions, we switch to CPN Tools instead.
Although using prioritized transitions can reduce the state space significantly, the CPN
Tools can generate full state spaces of our model for only a few scenarios. To gain more
confidence in the specification RFC 5596, analysis of more scenarios is required. A technique
that was successfully used to analyse the DCCP connection management CPN models in [25]
is the sweep-line technique. We also wish to apply the sweep-line technique to analyse the
DCCP simultaneous open properties. Unfortunately CPN Tools, which support prioritized
transitions, do not support sweep-line library. On the other hand, Design/CPN has the
sweep-line library but does not support prioritized transitions.

5.2 Prioritized Transitions versus Timed Models
To circumvent the problem in Design/CPN, prioritized transitions are imitated using a timed
token enabling all transitions in the DCCP layer. Enabling transitions in NAT layer does
not require a timed token. When any transition in the DCCP layer is fired, the time stamp

if lis_rcv = false then
ReqState(rcnt+1,incr(gss),iss, true)
else ReqState(rcnt, gss, iss, true)

Listen(0)

if lis_rcv = false
then 1`Request(incr(gss))
else empty

ReqState(rcnt,gss,iss,lis_rcv)

ActiveState(PARTOPEN,rcnt,g,isn)

ActiveState(PARTOPEN,rcnt,g,isn)

ReqState(rcnt,gss,iss, lis_rcv)

IdleState CLOSED_I

ReqState(0,C_iss,C_iss, false)

ActiveState(PARTOPEN,0,{GSS=incr(gss),
GSR= #SEQ(sn48_an48),
GAR= #ACK(sn48_an48)},
{ISS=iss, ISR= #SEQ(sn48_an48)})

ActiveState(C_OPEN,0,{GSS= #GSS(g),
GSR=UpdateGSR(g,S sn),
GAR= #GAR(g)},isn)

ActiveState(C_OPEN,0,{GSS= #GSS(g),
GSR=UpdateGSR(g,SA sn_an),
GAR=UpdateGAR(g,sn_an)},isn)

a_Open

Ack_DataAck(ack_dataack,
SeqAckLS(LS, gssGS gss,
longSA sn48_an48))

Request(C_iss)

Data sn

PKT(Response,sn48_an48)

Ack_DataAck
(ack_dataack, sn_an)

RcvListen

RcvAckDataAckLong

[DataAckValid(sn_an,g,isn)]

RcvData

[DataValid(sn ,g,isn)]

RcvResponse

[AckValid(Response,sn48_an48,
gssGS gss,iss)]

ActiveOpen

StateI/O

CB

App_Client
In

COMMAND

Output
Out

PACKETS

Input
In

PACKETS

In

Out

In

I/O

Figure 10 DCCP Client.

FSFMA’13

14 Analysis of DCCP Simultaneous-Open Procedures

1: (* The Initial State of NAT_A and NAT_B *)
2: val header_C2S = 1‘{src=(10,0,0,1,4321), dst=(138,76,29,7,31000)};
3: val header_S2C = 1‘{src=(10,1,1,3,4321), dst=(155,99,25,11,62000)};
4: val table_A=
5: 1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,1,2,3,4322)}
6: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,0,9,1,4361)}
7: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,0,0,1,4321)};
8: val table_B=
9: 1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,1,1,3,4321)}

10: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,2,9,1,5321)}
11: ++1‘{global_src=(0,0,0,0,0), global_dst=(0,0,0,0,0), local_src=(10,0,6,1,4341)};

Figure 11 The Initial State of NAT_A and NAT_B.

in the token advances one step. Because the global clock is less than the time stamp by
one step, all transitions in NAT layer (if any) have to finish firing before the global clock
advances and the transitions in the DCCP layer can be enable. Thus the transitions in
the NAT layer have higher firing priority than every transition in the DCCP layer. This
imitated method has a drawback that the timed state space is always larger because the
global clock and time stamps contribute to the presence of new states. Increasing state
space sizes seems to be the wrong path because it encourages state explosion. However [25]
demonstrated that if a new additional variable, such as time stamp, is used as progress
measure for the sweep-line analysis, in spite of a larger state space size, the peak memory
used and exploration time can be significantly reduced. Finally we analyse the augmented
model similar to the Sweep-line analysis in [25]. The experimental results are discussed in
section 6.2.

6 Experimental Results

This section contains analysis results for the DCCP simultaneous open procedures when op-
erating over reordering channels without loss. In contrast to the previous work that considers
various cases according the combination of user commands. This paper investigates only
the simultaneous open scenario when the Client user issues an “active open” and the Server
user issues a “simultaneous open” command. The initial markings of all buffer and channel
places are empty. The initial state of both side are CLOSED and the initial send sequence
number (ISS) on both sides is set to 10. The initial markings in Places Header_IP_C2S,
Header_IP_S2C, NAT_A_TABLE and NAT_B_TABLE are specified in Fig. 11. Without
loss of generality, only long sequence numbers are used. All experiments are conducted
on a AMD 9650 2.31GHz PC with 4 GByte RAM. CPN Tools runs on Window XP while
Design/CPN runs on Fedora Core version 6.

6.1 The Prioritized Transition Model
Table 1 illustrates the experimental results when we use prioritized transitions and analyse
the model by CPN Tools. The first column (Config.) in this table defines the configuration
being analysed, where the 3-tuple represents the maximum number of retransmissions al-
lowed for Request, Listen and Ack packets respectively. Columns total nodes and total arcs
record the total number of markings and arcs in the state space, respectively. The time
(hours:minutes:seconds) to generate the full state space is given in Column time. The next
two columns (DMs) records the number of dead markings. Dead markings are classified
into type I and type II. Type I dead markings are desirable and correspond to successful
connection establishment where both the Client and Server are in the OPEN state. In Type
II dead markings both the Client and Server are in still CLOSED state. Both types are

S. Vanit-Anunchai 15

Table 1 DCCP simultaneous open using Prioritized Transitions.
DMs Bounds

Config. total total Ch Ch
nodes arcs time I II L2U_B L2U_A

(0,0,0) 16,441 28,308 00:00:43 13 1 3 5
(0,0,1) 78,360 141,749 00:10:36 33 1 4 5
(0,1,0) 24,579 43,612 00:01:23 13 1 3 6
(0,1,1) 117,264 217,964 00:22:00 33 1 4 6
(0,2,0) 32,736 58,952 00:01:58 13 1 3 7
(0,2,1) 156,187 294,215 00:37:47 33 1 4 7

Table 2 DCCP simultaneous open using the sweep-line method with the augmented model.
Sweep-line with the augmented model DMs Bounds

Config. total total peak Ch Ch %
nodes arcs nodes time I II L2U L2U space

_B _A
(0,0,0) 40,984 65,463 288 00:00:29 26 14 3 5 1.75
(0,0,1) 279,581 469,298 1,080 00:02:33 66 19 4 5 1.38
(0,1,0) 81,531 135,246 496 00:00:50 39 16 3 6 2.02
(0,1,1) 557,615 967,911 2,059 00:07:34 99 21 4 6 1.76
(1,0,0) 2,896,471 4,921,848 3,142 00:38:27 148 24 4 6 -
(1,0,1) 34,412,454 60,468,592 17,908 09:29:13 360 30 5 6 -
(1,1,0) 5,770,971 10,105,648 5,810 01:22:53 222 26 4 7 -
(1,1,1) 68,581,787 123,703,372 34,892 20:57:25 540 32 5 7 -
(0,2,0) 135,454 229,717 794 00:01:14 52 18 3 7 2.43
(0,2,1) 927,819 1,642,398 3,347 00:09:04 132 23 4 7 2.14
(0,2,2) 6,719,017 12,943,167 16,034 00:01:51 236 29 5 8 -
(1,2,0) 9,596,365 17,103,716 9,486 01:42:07 296 28 4 8 -
(1,2,1) 114,060,085 208,918,444 57,427 36:58:00 720 34 5 8 -

expected dead markings. All dead markings have no packets left in all buffers and channels.
The last two columns, Bounds, record the maximum number of packets that can occur in
the channel places Ch_L2U_B and Ch_L2U_A.

6.2 Analyses the Timed Model using the Sweep-line Method
Using prioritized transitions reduces the state space sizes significantly but we can analyse
only six scenarios. When we attempt to analyse the scenarios (1,0,0) , (0,2,2) and (0,1,2), the
available memory is exhausted. As discuss in Section 5, we turn to the sweep-line technique
(with the augmented model). Table 2 illustrates the experimental results when the sweep-
line is applied to the timed CPN model. We use the progress vector suggested in Section
4.5 of [25] together with the time stamp. Conducting search experiments, we discover that
the best position of the time stamp in the progress vector is at the end of the list.

Column peak nodes in Table 2 lists the peak number of nodes stored in main memory
at any one time. Column time records the time used to explore the state space. The last
column (% space) of Table 2 shows the ratio of the number of peak states compared to the
total number of states in Table 1. The smaller the number, the more efficient the sweep-line
algorithm is. The number of peak states is reduced to only 1–2% of the full untimed state
space. This analysis method has potential to explore more scenarios.

7 Conclusions and Future Work

This paper has presented a Coloured Petri Nets model and analysis of DCCP simultaneous
open procedure. Our CPN model is developed based on both RFC 4340 and RFC 5596.

FSFMA’13

16 Analysis of DCCP Simultaneous-Open Procedures

Because NATs with the hole punching procedure affect DCCP behaviour, they cannot be
simply abstracted away using the layered architecture. We suggest to separate NAT opera-
tions into before and after writing the address translation table and remove some transition
occurrences using prioritized transitions. It is possible to use the timed model to imitate pri-
oritized transitions. Analysing the timed models using Sweep-line method is more efficient
than generating full state space of the prioritized transitions models

In future, we are interested in modelling different types of NATs, and increasing the
number of protocol entities. Instead of studying functional behaviour, we wish to investigate
performance behaviour of each protocol entity as well.

Acknowledgments. This work is supported by Research Grant from the Thai Network
Information Center Foundation and the Thailand Research Fund. The author is thankful to
Professor Jonathan Billington, Professor Lar M. Kristensen and the anonymous reviewers.
Their constructive comments have helped to improve the quality of this paper.

References

1 Application of Petri Nets to Communication Networks, volume 1605 of Lecture Notes in
Computer Science. Springer, Heidelberg, 1999.

2 F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral Requirements
for UNicast UDP RTP: A Transport Protocol for Real-Time Applications, RFC 4787.
Available via http://www.rfc-editor.org/rfc/rfc4787.txt, January 2007.

3 J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to Protocol
Verification. In Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume
3098 of Lecture Notes in Computer Science, pages 210–290. Springer, Heidelberg, 2004.

4 J. Billington and B. Han. Modelling and Analysing the Functional Behaviour of TCP’s Con-
nection Management Procedures. International Journal on Software Tools for Technology
Transfer, 9(3-4):269–304, June 2007. Available via http://dx.doi.org/10.1007/s10009-007-
0034-1.

5 J. Billington and S. Vanit-Anunchai. Coloured Petri Net Modelling of an Evolving In-
ternet Standard: the Datagram Congestion Control Protocol. Fundamenta Informaticae,
88(3):357–385, 2008.

6 J. Billington, S. Vanit-Anunchai, and G. E. Gallasch. Parameterised Coloured Petri Nets
Channel Models. In Transactions on Petri Nets and Other Models of Concurrency, volume
5800 of Lecture Notes in Computer Science, pages 71–97. Springer, Heidelberg, 2009.

7 S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State Space
Exploration. In Proceedings of the 7th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2001), volume 2031 of Lecture Notes
in Computer Science, pages 450–464, Genova, Italy, 2-6 April 2001. Springer, Heidelberg.

8 Design/CPN Online. http://www.daimi.au.dk/designCPN/.
9 G. Fairhurst. Datagram Congestion Control Protocol (DCCP) Simultaneous-Open Tech-

nique to FacilitateNAT/Middlebox Traversal, RFC 5596. Available via http://www.rfc-
editor.org/rfc/rfc5596.txt, September 2009.

10 P. Fleischer and L. M. Kristensen. Formal Specification and Validation of Secure Connnec-
tion Establishment in a Generic Access Network Scenario. In Proceedings of ICATPN’08,
volume 5062 of Lecture Notes in Computer Science, pages 153–171. Springer, Heidelberg,
2008.

S. Vanit-Anunchai 17

11 S. Floyd, M. Handley, and E. Kohler. Problem Statement for the Datagram
Congestion Control Protocol (DCCP), RFC 4336. Available via http://www.rfc-
editor.org/rfc/rfc4336.txt, March 2006.

12 S. Gordon. Verification of the WAP Transaction Layer uisng Coloured Petri Nets. PhD
thesis, Institute for Telecommunications Research and Computer Systems Engineering
Centre, School of Electrical and Information Engineering, University of South Australia,
Adelaide, Australia, November 2001.

13 B. Han. Formal Specification of the TCP Service and Verification of TCP Connection
Management. PhD thesis, Computer Systems Engineering Centre, School of Electrical and
Information Engineering, University of South Australia, Adelaide, Australia, December
2004.

14 M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol, RFC 4566.
Available via http://www.rfc-editor.org/rfc/rfc4566.txt, July 2006.

15 K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.
Vol. 1, Basic Concepts. Monographs in Theoretical Computer Science. Springer, Heidel-
berg, 2nd edition, 1997.

16 K. Jensen and L.M. Kristensen. Coloured Petri Nets: Modelling and Validation of Con-
current Systems. Springer, Heidelberg, 2009.

17 E. Kohler, M. Handley, and S. Floyd. Designing DCCP: Congestion Control Without
Reliability. In Proceedings of the 2006 ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM’06), pages 27–38,
Pisa, Italy, 11-15 September 2006.

18 E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol, RFC 4340.
Available via http://www.rfc-editor.org/rfc/rfc4340.txt, March 2006.

19 L. M. Kristensen and K. Jensen. Specification and Validation of an Edge Router Discovery
Protocol for Mobile Ad Hoc Networks. In Integration of Software Specification Techniques
for Applications in Engineering, volume 3147 of Lecture Notes in Computer Science, pages
248–269. Springer, Heidelberg, 2004.

20 L. Liu. Towards Parametric Verification of the Capability Exchange Signalling Protocol.
PhD thesis, Computer Systems Engineering Centre, School of Electrical and Information
Engineering, University of South Australia, Adelaide, Australia, May 2006.

21 T. Mailund. Sweeping the State Space - A Sweep-Line State Space Exploration Method.
PhD thesis, Department of Computer Science, University of Aarhus, February 2003.

22 C. Ouyang. Formal Specification and Verification of the Internet Open Trading Protocol
using Coloured Petri Nets. PhD thesis, Computer Systems Engineering Centre, School of
Electrical and Information Engineering, University of South Australia, Adelaide, Australia,
June 2004.

23 S. Vanit-Anunchai. An Investigation of the Datagram Congestion Control Protocol’s Con-
nection Management and Synchronisation Procedures. PhD thesis, Computer Systems En-
gineering Centre, School of Electrical and Information Engineering, University of South
Australia, Adelaide, Australia, November 2007.

24 S. Vanit-Anunchai and J. Billington. Modelling the Datagram Congestion Control Pro-
tocol’s Connection Management and Synchronisation Procedures. In Proceedings of the
28th International Conference on Application and Theory of Petri Nets and other models
of concurrency (ICATPN’07), volume 4546 of Lecture Notes in Computer Science, pages
423–444, Siedlce, Poland, 25-29 June 2007. Springer, Heidelberg.

25 S. Vanit-Anunchai, J. Billington, and G.E. Gallasch. Analysis of the Datagram Congestion
Control Protocol’s Connection Management Procedures using the Sweep-line Method. In-
ternational Journal on Software Tools for Technology Transfer, 10(1):29–56, 2008. Available
via http://dx.doi.org/10.1007/s10009-007-0050-1.

FSFMA’13

	Introduction
	Previous Work
	Contributions
	Organisation

	DCCP Overview
	Connection Management Procedures
	Hole Punching Procedures

	Modelling Approach
	Layer Architecture
	Embedding the NAT Functions in the CPN Models

	DCCP Simultaneous Open CPN Model
	Model Overview
	Declaration of State Variables
	Declaration of DCCP and IP Packets
	CPN Subpage NAT
	Connection Establishment Pages
	Server Page
	Client Page

	Analysis Approach
	CPN Tools versus Design/CPN
	Prioritized Transitions versus Timed Models

	Experimental Results
	The Prioritized Transition Model
	Analyses the Timed Model using the Sweep-line Method

	Conclusions and Future Work

