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Abstract
Our motivation is the question whether the lazy lambda calculus, a pure lambda calculus with
the leftmost outermost rewriting strategy, considered under observational semantics, or exten-
sions thereof, are an adequate model for semantic equivalences in real-world purely functional
programming languages, in particular for a pure core language of Haskell. We explore several
extensions of the lazy lambda calculus: addition of a seq-operator, addition of data constructors
and case-expressions, and their combination, focusing on conservativity of these extensions. In
addition to untyped calculi, we study their monomorphically and polymorphically typed versions.
For most of the extensions we obtain non-conservativity which we prove by providing counter-
examples. However, we prove conservativity of the extension by data constructors and case in
the monomorphically typed scenario.
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1 Introduction

We are interested in reasoning about the semantics of lazy functional programming languages
such as Haskell [11], in particular in semantical equivalences of expressions and, as a more
general issue, in correctness of program translations and transformations. As a notion
of expression equivalence in a calculus, we employ contextual equivalence which identifies
expressions iff they cannot be distinguished when observing convergence to WHNFs in any
surrounding context. Contextual equivalence is coarser than the (syntactical) conversion
equality, and provides a more useful language model due to its maximal set of equivalences.

However, complexity of a language makes analyses and reasoning hard, so it is advantage-
ous to find conceptually simpler sublanguages which also permit reasoning about equivalences
in the superlanguage. As a starting point we may use the pure core language, say LαHcore, of
Haskell [12], which is a Hindley-Milner polymorphically typed call-by-need lambda calculus
extended by data constructors, case-expressions, seq for strict evaluation and letrec to
model recursive bindings and sharing. The semantics of such extended lambda calculi have
been analyzed in several papers [20, 9, 10, 19, 18].

However, even this language has a rich syntax and thus one may ask whether there are
simpler and/or smaller languages which can be used to reason about (parts of) Haskell.
The issue of transferring the equivalence question is as follows: given two expressions s1, s2
in a calculus L, in which cases is it possible to decide the semantic equivalence s1 ∼ s2
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by transferring the equivalence question for s1, s2 into a smaller or conceptually simpler
language Lsimple, using the proof methods in Lsimple? There are three (standard) types of
transfer steps: (i) from a typed language Lτ into its untyped language L (which may be
larger). Since we use contextual equivalence, in general s1 ∼L s2 implies s1 ∼Lτ s2 for equally
typeable expressions s1, s2, and thus this is a valid transfer, however, some equivalences
may be lost. (ii) from a language L into a sublanguage Lsub by the removal of a syntactic
construction possibility. Since now all expressions of Lsub are also L-expressions, the desired
implication s1 ∼L s2 =⇒ s1 ∼Lτ s2 exactly corresponds to conservativity of the inclusion
w.r.t. equivalence. (iii) transferring the question to an isomorphic language L′.

We consider four calculi in this paper: Abramsky’s lazy lambda calculus AL and its
extensions ALseq,ALcc,ALcc,seq with seq, with case and constructors, and the combination
of the two extensions, resp. We also consider variants of these calculi with monomorphic
(τ -superscript) and polymorphic (α-superscript) types. We analyze whether natural embed-
dings between the calculi are conservative w.r.t. contextual equivalence in the calculi.
Our results can be depicted as follows, where Yes/No indicates a conservative (non-
conservative, resp.) embedding, and Open indicates that the question is still unresolved.

ALcc,seq

ALcc

No 66
ALseq

Nohh

ALNo
ii No

OO

No
55

ALτcc,seq

ALτcc

No 77

ALτseq

Yeshh

ALτYes
hh No

OO

No
66

ALαcc,seq

ALαcc

No 77

ALαseq

Openhh

ALαOpen
hh No

OO

No
66

A common pattern is that the removal of seq makes the embeddings non-conservative.
A powerful commonly used proof technique in all the calculi under consideration is based on
Howe’s method [6, 7], which shows that contextual equivalence coincides with applicative
bisimilarity which equates expressions if they cannot be distinguished by first evaluating them,
then applying their results to arguments, and then using this experiment co-inductively. Our
improvement, which is valid since the languages are deterministic, is a so-called APi-context
lemma, which means that expressions are equivalent iff their termination behavior is identical
when applying them in all possible ways to finitely many arbitrary arguments.

Our results are of help for equivalence reasoning in LαHcore considering implication chains
for the justification of equivalences. The first one starts with transferring to the untyped
core-language LHcore, then removing the syntactic construct letrec (and changing call-
by-need to call-by-name), justified in [17, 18], arriving at ALcc,seq. Then our results and
counterexamples for the four untyped calculi come into play, where the conclusion is that
further transfer steps appear impossible, in particular that AL [1] cannot be justified as
equivalence checking calculus via this implication chain. The second implication chain takes
another potential route: the first step is monomorphising the core language, then removing
the letrec, adding Fix, and again changing the reduction strategy to call-by-name, arriving
at the calculus ALτcc,seq. We believe that both implications of equivalence are correct, but
a formal proof is future work. Then, for the calculi ALτcc, ALτseq, ALτ , we got negative as
well as positive results. A further step could then be omitting the monomorphic types as
well, which gives a valid implication chain from ALτcc,seq to ALτseq and to ALseq, but again
there is no justification for AL and ALτ as equivalence checking calculi for LαHcore. Thus our
results show that calculus for the transfer is ALcc,seq, and under the correctness assumptions
above, also ALτcc,seq, ALτseq, and ALseq. Focusing on the direct relation between the minimal
calculi compared with LαHcore, and taking into account our counterexamples in the paper,
ALτcc and ALcc are ruled out by examples s7, s8. However, it is still possible that AL or ALτ

can be used as equivalence checking calculi LαHcore (although there are very few nontrivial
equivalences there), which is strongly related to the open problem of whether there exist
Böhm-like trees for AL (see Problem 18 in [22]).
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Related Work. Our approach follows the general setup laid out e.g. in [4, 16] which
consider the questions of relative expressivity between programming languages. In difference
to [4], we use applicative bisimilarity and the APi-context lemma as a proof technique, and
explore different calculi extensions. The closest work to ours is [13] that shows, in particular,
that the extension of a monomorphically typed PCF with sum and product types and with
Girard/Reynolds polymorphic types is conservative. They also show that extending PCF
with a “convergence tester” by second-order polymorphic types is conservative. However,
they do not (dis-)prove conservativity of adding the convergence tester to PCF and also do
not consider an untyped case, or the pure lambda calculus.

Adding seq to call-by-need/call-by-name functional languages is investigated in several
papers (e.g. [4, 5, 8]). For the lazy lambda calculus and its extension by seq an example in
[4] can be adapted to show non-conservativity (see Theorem 4.3). It is well-known that in full
Haskell seq makes a difference: The usual free theorems [23] break under the addition of seq
[8], and the monad laws do not hold for the IO-monad if the first argument of seq is allowed
to be of an IO-type [14]. [18, 19] provide a counterexample showing non-conservativity of
adding seq to the lazy lambda calculus with data-constructors and case expressions.

Research on calculi extensions with case and constructors also including studies of untyped
calculi is [2, 3, 21]. In [2] the addition of case and constructors to a basic calculus is explored.
However, that calculus significantly differs from our ones in several points, e.g. it permits
full η-reduction. [3] and [21] study an extension of a lambda calculus with surjective pairs.
However, these works are incomparable to our approach since they use an axiomatic approach
to equality instead of a rewriting and observational one.

Structure of the paper. In Sect. 2 we introduce a common notion for program calculi
together with the notion of contextual equivalence. In Sect. 3 we briefly introduce the
lazy lambda calculus AL and its three extensions ALcc,ALseq,ALcc,seq. Conservativity of
embeddings between the untyped calculi is refuted in Sect. 4. In Sect. 5 the monomorphically
typed variants of the calculi are investigated. Sect. 6 presents the analysis of polymorphically
typed calculi. We conclude in Sect. 7. Due to space reasons not all proofs are given, but
they can be found in the technical report [15].

2 Preliminaries

We define our notion of a program calculus in an abstract way:

I Definition 2.1. A typed deterministic program calculus (TDPC) is a tuple (E , C,−→D,A, T )
where E is the (nonempty) set of expressions, such that every s ∈ E has a type T ∈ T . We
write ET for the expressions of type T , and assume ET 6= ∅. We also assume that E can
be divided into closed and open expressions, where Ec denotes the set of closed expressions.
We use s, t, r, a, b, d to denote expressions and x, y, z, u to denote variables. C is the set of
contexts, such that every C ∈ C is a function C : ET → ET ′ where T, T ′ ∈ T . With CT,T ′ we
denote the contexts that are functions from ET to ET ′ . We assume that C contains the identity
function for every type T ∈ T , and that C is closed under composition, i.e. iff C1 ∈ CT2,T3

and C2 ∈ CT1,T2 then also (C1 ◦ C2) ∈ CT1,T3 . We denote the application of contexts C to
an expression s ∈ E by C[s]. The standard reduction relation −→D ⊆ (E × E) must be: (i)
deterministic: s1 −→D s2 and s1 −→D s3 implies s2 = s3, where = is syntactical equivalence
(which usually also identifies α-equivalent expressions); (ii) type preserving: s1 −→D s2 implies
that s1 and s2 are of the same type; (iii) closedness-preserving: if s1 is closed and s1 −→D s2,
then s2 is closed. The set A ⊆ E are the answers of the calculus, which are usually irreducible
values or specific kinds of normal forms. We use v to range over answers.

RTA’13
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An untyped calculus can also be presented as a typed one, by adding a single type called
“expression”. However, we simply write (E , C,−→D,A) for such a calculus.

We denote the transitive-reflexive closure of −→D by ∗−→D, and
n−→D with n ∈ N0 means n

reductions. We define the notions of convergence, contextual approximation, and contextual
equivalence in a general way. Expressions are contextually equal if they have the same
termination behavior in any surrounding context. This makes contextual equivalence a
strong equality, since the contexts of the language have a high discrimination power. For
instance, it is not necessary to add additional tests, such as checking whether evaluation of
both expressions terminates with the same values, since different values can be distinguished
by contexts.

I Definition 2.2. Let D = (E , C,→,A, T ) be a TDPC. An expression s ∈ E converges if
there exists v ∈ A such that s ∗−→D v. We then write s↓Dv, or just s↓D if the value v is not
of interest. If s↓D does not hold, then we say s diverges and write s⇑D. Contextual preorder
≤D and contextual equivalence ∼D are defined by:

For s1, s2 ∈ ET : s1 ≤D s2 iff ∀T ′ ∈ T , C ∈ CT,T ′ : C[s1]↓D =⇒ C[s2]↓D
For s1, s2 ∈ ET : s1 ∼D s2 iff s1 ≤D s2 and s2 ≤D s1

A program transformation ξ is a binary relation on D-expressions, such that for all s1 ξ s2
the expressions s1 and s2 are of the same type. ξ is correct if for all expressions s1 ξ s2 the
equivalence s1 ∼D s2 holds.

By straightforward arguments one can prove that contextual preorder is a precongruence,
and contextual equivalence is a congruence.

I Definition 2.3. Let D = (E , C,−→D,A, T ) and D′ = (E ′, C′,−→D′ ,A′, T ′) be TDPCs. A
translation ζ : D → D′ consists of mappings ζ : E → E ′, ζ : C → C′, such that ζ maps the
identity function C to the identity function in C′, and ζ(s) is closed iff s is closed.

ζ is convergence equivalent (ce) if s↓D ⇐⇒ ζ(s)↓D′ for all s ∈ E .
ζ is compositional up to observation (cuo), if for all C ∈ C and all s ∈ E such that C[s] is
typed: ζ(C[s])↓D′ iff ζ(C)[ζ(s)]↓D′ .
ζ is observationally correct (oc) if it is (ce) and (cuo).
ζ is adequate if for all expressions s, t: ζ(s) ≤D′ ζ(t) =⇒ s ≤D t.
ζ is fully abstract if for all expressions s, t: ζ(s) ≤D′ ζ(t) ⇐⇒ s ≤D t.
ζ is an isomorphism if ζ is fully abstract and acts as a bijection on the equivalence classes
from E/ ∼D to E ′/ ∼D′ .

We say D′ is an extension of D iff T ⊆ T ′, ET ⊆ E ′T for any type T ∈ T , CT,T ′ ⊆ C′T,T ′ for
all types T, T ′ ∈ T , A = A′ ∩ E and −→D ⊆ −→D′ s.t. for all e1 ∈ E with e1 −→D′ e2 always
e2 ∈ E (and thus e1 −→D e2). Given D and an extension D′, the natural embedding of D into
D′ is the identity translation of ET into E ′T and CT,T ′ into C′T,T ′ for all types T, T ′ ∈ T . A
natural embedding is conservative iff it is a fully abstract translation.

Note that a natural embedding is always convergence equivalent and compositional, which
implies that it is always adequate (see [16]).

3 Untyped Lazy Lambda Calculi and Their Properties

In this section we briefly introduce four variants of the lazy lambda calculus [1] as instances
of untyped TDPCs: the pure calculus AL, its extension by seq, called ALseq, its extension
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(β) ((λx.s) t)→ s[t/x]
(seq) (seq v t) → t if v is an answer
(case) caseKi (cKi,j

→
s ) (p1 -> t1) . . . ((cKi,j

→
y ) -> tj) . . . (p|Ki| -> t|Ki|)→ tj [

→
s /
→
y ]

(fix) (Fix s) → s (Fix s)

Figure 1 Call-by-name reduction rules.

by data constructors and case, called ALcc, and finally its extension by seq as well as data
constructors and case, called ALcc,seq.

I Definition 3.1 (Lazy Lambda Calculus AL). AL is the (untyped) lazy lambda calculus [1].
We define the components of AL according to Definition 2.1.

Expressions E are the set of expressions of the usual (untyped) lambda calculus, defined
by the grammar r, s, t ∈ LAL ::= x | (s t) | λx.s. We identify α-equivalent expressions as
syntactically equal according to Definition 2.1. The only reduction rule is β-reduction (see
Fig. 1). An AL-context is defined as an expression in which one subexpression is replaced by
the context hole [·]. AL-reduction contexts R are defined by the grammar R := [·] | (R s), and
the standard reduction in the sense of Definition 2.1 is the normal order reduction −→AL which
applies beta-reduction in a reduction context, i.e. R[(λx.s) t] −→AL R[s[t/x]]. The answers A
are all (also open) abstractions, which are also called weak head normal forms (WHNF).

I Definition 3.2 (ALseq). ALseq is the lazy lambda calculus extended by seq, i.e. expressions
are defined by r, s, t ∈ LALseq ::= x | (s t) | λx.s | seq s t. Answers are all abstractions
(WHNFs). ALseq-reduction contexts R are defined by the grammar R := [·] | (R s) | seq R t,
and a normal order reduction is R[s] −→ALseq R[t], whenever s β−→ t or s seq−−→ t (see Fig. 1).

I Definition 3.3 (ALcc). ALcc extends AL by case and data constructors. There is a
finite nonempty set of type constructors K1, . . . ,Kn, where for every Ki there are pair-
wise disjoint finite nonempty sets of data constructors {cKi,1, . . . cKi,|Ki|}. Every con-
structor has a fixed arity (a non-negative integer) denoted by ar(Ki) or ar(cKi,j), resp.
Examples are a type constructor Bool (of arity 0) with data constructors True and
False (both of arity 0), as well as lists with a type constructor List (of arity 1) and
data constructors Nil (of arity 0) and Cons (of arity 2). For the constructor application
(cKi,j s1 . . . sar(cKi,j)), we use (cKi,j

→
s ) as an abbreviation, and write t[→s /→x ] for the parallel

substitution t[s1/x1, . . . , sar(cKi,j)/xar(cKi,j)]. The grammar r, s, t ∈ LALcc ::= x | (s t) | λx.s
| (cKi,j

→
s ) | (caseKi s (cKi,1

→
x -> si,1) . . . (cKi,|Ki|

→
x -> si,|Ki|)) defines expressions of ALcc.

We use an abbreviation caseK s alts if the alternatives of the case do not matter. The
ALcc-reduction contexts R are defined as R := [·] | (R s) | caseKi R alts. A normal order
reduction is R[s] −→ALcc R[t], where s β−→ t or s case−−−→ t (see Fig. 1, where pi mean patterns
(cKk,i

→
x) in case-expressions). Answers in ALcc are λx.s and (cKi

→
s ), also called WHNFs.

I Definition 3.4 (ALcc,seq). The calculus ALcc,seq combines the syntax and reduction rules
of ALseq and ALcc with the obvious notion of normal order reduction −→ALcc,seq applying (β),
(seq), and (case) (see Fig. 1) in reduction contexts.

We will write λx1, x2, . . . , xn.t instead of λx1.λx2. . . . λxn.t. We use the following abbre-
viations for specific closed lambda expressions:

id = λx.x ω = λx.(x x) Ω = (ω ω)
Y = λf.

(
(λx.f (x x)) (λx.f (x x))

)
> = (Y (λx, y.x))

RTA’13
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(caseapp) ((caseK t0 (p1 -> t1) . . . (pn -> tn)) r)
→ (caseK t0 (p1 -> (t1 r)) . . . (pn -> (tn r)))

(casecase) (caseK (caseK′ t0 (p1 -> t1) . . . (pn -> tn)) (q1 -> r1) . . . (qm -> rm))
→ (caseK′ t0 (p1 -> (caseK t1 (q1 -> r1) . . . (qm -> rm)))

. . .

(pn -> (caseK tn(q1 -> r1) . . . (qm -> rm))))
(seqseq) (seq (seq s1 s2) s3)→ (seq s1 (seq s2 s3))
(seqapp) ((seq s1 s2) s3)→ (seq s1 (s2 s3))
(seqcase) (seq (caseK t0 (p1 -> t1) . . . (pn -> tn)) r)

→ (caseK t0 (p1 -> (seq t1 r)) . . . (pn -> (seq tn r)))
(caseseq) (caseK (seq s1 s2) alts)→ (seq s1 (caseK s2 alts))

Figure 2 case- and seq-simplifications.

It is not too hard to show that all closed diverging expressions are contextually equal.
Thus we will use the symbol ⊥ to denote a representative of the equivalence class of closed
diverging expressions, e.g. one such expression is Ω.
I Remark. Note that contextual equivalence in all our calculi always distinguishes different
values. For instance, different constructors can always be distinguished by choosing case-
expressions as contexts such that one constructor is mapped to a value while the other one
is mapped to Ω. Different abstractions are distinguished by applying them to arguments.
Different variables x, y are always contextually different: The context C := (λx, y.[·]) id Ω
distinguishes them, since C[x] converges, while C[y] diverges.

We now show correctness of program transformations. The simplifications for the calculi
ALseq,ALcc,ALcc,seq are defined in Fig. 2, s.t. each simplification is defined in all calculi where
the constructs exist. In [15] we prove:

I Theorem 3.5. For D ∈ {AL,ALseq,ALcc,ALcc,seq} the reductions of the corresponding cal-
culus (Fig. 1) and the simplifications (Fig. 2) are correct program transformations, regardless
of the context they are applied in.

Contextual equivalence of open expressions can be proven by closing them using additional
lambda binders. One direction of the following lemma is obvious, since ∼D is a congruence.
The other direction can be proven by using applicative bisimilarity (see [15]).

I Lemma 3.6. For D ∈ {AL,ALseq,ALcc,ALcc,seq} and D-expressions s, t with FV (s) ∪
FV (t) ⊆ {x1, . . . , xn}: s ∼D t ⇐⇒ λx1, . . . , xn.s ∼D λx1, . . . , xn.t.

Correctness of β-reduction implies that a restricted use of η-expansion is correct:

I Proposition 3.7. For every D ∈ {AL,ALseq,ALcc,ALcc,seq} the transformation η is correct
for all abstractions, i.e. s ∼D λz.s z, if s is an abstraction.

I Definition 3.8. We use Bmk as an abbreviation for a “bot-alternative” of the kth data
constructor of type constructor Km i.e. Bmk := (cKm,k

→
x ->⊥). Let v be any closed

abstraction (for AL,ALseq) or be any closed abstraction or constructor application (cKm,j
→
s )

(for in ALcc,ALcc,seq), respectively.
Approximation contexts APi (i ∈ N0) are defined for AL,ALseq,ALcc,ALcc,seq as follows:

For AL, ALseq: AP0 ::= [·] APi+1 ::= (APi v) | (APi ⊥)

For ALcc, ALcc,seq: AP0 ::= [·] APi+1 ::= (APi v) | (APi ⊥)
| caseKm APi B

m
1 . . . Bmj−1 (cKm,j

→
x ->xk) Bmj+1 . . . B

m
n
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s1 := λx.x (λy.x > ⊥ y) > s2 := λx.x (x > ⊥) >
t1(s) := λx.x (x s) t2(s) := λx.x λz.x s z

where s is an expression with FV (s) ⊆ {x}
s3 := λx, y.x (y (y (x id))) s4 := λx, y.x (y λz.y (x id) z)
s5 := λx, y.(x (x y)) (x (x y)) s6 := λx, y.((x (x y)) (x λz.x y z))
s7 := λx.caseBool (x ⊥) (True -> True) (False ->⊥)
s8 := λx.caseBool (x λy.⊥) (True -> True) (False ->⊥)

Figure 3 The untyped counterexample expressions.

The following result known as a context lemma is proven in the technical report [15].
However, we outline the ideas of the proof: Howe’s method [6, 7] implies that contextual
approximation coincides with applicative similarity in all four calculi. Applicative similarity
(in AL,ALseq) means that s2 can simulate s1 if and only if in case s1 reduces to an abstraction
v1, then s2 reduces to an abstraction v2 and for every argument r: v2 r can simulate v1 r.
This recursive definition is meant to be co-inductive. For deriving the context lemma below,
two more steps are necessary: First show that, instead of applying vi to argument r, the
definition is unchanged, if si is applied to argument r and reduction is then performed for
si r. The second step is to show that the co-inductive definition is equivalent to an inductive
definition, using Kleene’s fixpoint theorem.

I Theorem 3.9 (APi-Context-Lemma). For D ∈ {AL,ALseq,ALcc,ALcc,seq} and closed D-
expressions s, t holds:

s ≤D t iff for all i and all approximation contexts APi: APi[s]↓D =⇒ APi[t]↓D

We provide a criterion to prove contextual equivalence of expressions, which is used in later
sections. Its proof can be found in [15].

I Theorem 3.10. For D ∈ {AL,ALseq,ALcc,ALcc,seq} closed D-expressions s and t are
contextually equivalent if there exists i ∈ N0 such that

1. APj [s]↓D ⇐⇒ APj [t]↓D for all 0 ≤ j < i and all APj-contexts.
2. APi[s] ∼D APi[t] for all APi-contexts.

For all four calculi applicative contexts are defined by A ::= [·] | (A s). The following
proposition allows systematic case-distinctions for expressions (proved in [15]).

I Proposition 3.11. Let D ∈ {AL,ALseq,ALcc,ALcc,seq}. For every D-expression s one of the
following equations holds: 1. s ∼D ⊥; 2. s ∼D v where v is an answer; 3. s ∼D A[x] where x is
a free variable and A is an applicative D-context; 4. s ∼D seq A[x] t′ where x is a free variable
and A is an applicative D-context, for D ∈ {ALseq,ALcc,seq}; or 5. s ∼D caseK A[x] alts
where x is a free variable and A is an applicative D-context, for D ∈ {ALcc,ALcc,seq}.

4 Relations between the Untyped Calculi

This section shows the non-conservativity of embeddings of the four untyped lazy calculi.
These negative results show that the syntactically less expressive calculi are not sufficiently
expressive and are thus unstable under extensions. Expressions used in our counterexamples
are defined in Fig. 3. We also prove equations necessary for the examples:

I Lemma 4.1. For all expressions s: > ∼AL λx.> and > s ∼AL >.

RTA’13
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Proof. > s ∼AL > follows from correctness of β (Theorem 3.5), since > s
β,∗−−→

λx.λz.(λx.λz.(x x)) (λx.λz.(x x)) β,∗←−− >. For > ∼AL λx.> we use Theorem 3.10 (for
i = 1): >↓D, λx.>↓D, and (λx.>) r β−→ > ∼D (> r) for any r. J

I Theorem 4.2. The following equalities hold for the expressions in Fig. 3: 1. If s[id/x] 6∼AL
⊥ then t1(s) ∼AL t2(s) . 2. s1 ∼AL s2. 3. s3 ∼AL s4. 4. s5 ∼ALseq s6. 5. s7 ∼ALcc s8.

Proof. 1. We use Theorem 3.10 (for i = 1). For the empty context we have t1(s)↓AL and
t2(s)↓AL. Now we consider the case (t1 b) and (t2 b) where b is a closed abstraction
or ⊥. We make a case distinction on the argument b according to Proposition 3.11.
By easy computations (t1 b) ∼AL (t2 b) if b = ⊥, b = λx.⊥, or b = λx1.λx2.t. For
b := λx.x, two β-reductions show that t1 λx.x ∼AL s[id/x], and that t2 λx.x ∼AL
λz.s[id/x] z. Since s[id/x] 6∼AL ⊥, it is equivalent to an abstraction, and Proposition 3.7
shows contextual equivalence of the two expressions. Now let b := λu.u t1 . . . tn with
n ≥ 1. If (b s[b/x]) 6∼AL ⊥, then there exists a closed abstraction λw.s′ such that
(λw.s′) ∼AL (b s[b/x]). By Proposition 3.7 we can transform: (t1 b) ∼AL b (b s[b/x]) ∼AL
b λw.s′ ∼AL b λz.(λw.s′) z ∼AL b λz.(b s[b/x] z) ∼AL t2 b. In the case (b s[b/x]) ∼AL ⊥,
evaluation of (λu.u t1 . . . tn) ⊥ and (λu.u t1 . . . tn) (λy.⊥) results in ⊥.

2. We use Theorem 3.10 (for i = 1). Since s1↓AL and s2↓AL, we only consider the cases
(s1 b) and (s2 b) where b is a closed abstraction or ⊥. We use Proposition 3.11 for a
case distinction on b. It is easy to verify that s1 b ∼AL s2 b for b = ⊥, b = λz.⊥, and
b = λz.z. For b := λz.(z u1 . . . un) where n ≥ 1, we have (s1 b) ∼AL b (λy.>) > and
(s2 b) ∼AL b > >, and by Lemma 4.1 also (s1 b) ∼AL (s2 b).

3. We use Theorem 3.10 (for i = 2). Since sj↓AL and (sj b)↓AL for j = 3, 4 we need
to consider the cases (s3 b d) and (s4 b d) where b, d are closed abstractions or ⊥.
We use Proposition 3.11 for case distinction on d. If d = ⊥, or d = λx.⊥, then
s3 b d ∼AL s4 b d. If d := λx.x, then item 1 shows that λx.x (x id) ∼AL λx.x λz.(x id) z.
Correctness of β implies that b (b id) ∼AL b λz.(b id) z, and thus s3 b d ∼AL b (b id) ∼AL
b λz.(b id) z ∼AL s4 b d. If d := λx1.λx2.t, then s3 b d ∼AL b (d (λx2.t[(b id)/x1])) η−→
b (d λ.z (λx2.t[(b id)/x1]) z) ∼AL s4 b d, where η is correct by Proposition 3.7. If
d := λu.u t1 . . . tn with n ≥ 1 and (d (b id)) 6∼AL ⊥, it is equivalent to an abstraction,
and η is correct, hence equivalence holds in this case. Otherwise, if (d (b id)) ∼AL ⊥, then
(b (d ⊥) ∼AL (b (d λx.⊥)) since (d ⊥) ∼AL ⊥ ∼AL (d λx.⊥).

4. We use Theorem 3.10 (for i = 2). We have sj↓ALseq and (sj b)↓ALseq for any b for j = 5, 6.
Now we consider the cases (s5 b d) and (s6 b d) where b, d are closed abstractions
or ⊥. We make a case distinction on b using Proposition 3.11. The cases b = ⊥,
b = λx.⊥, and b = λu.u are easy to verify. If b = λu, v.b′ then the subexpression (b d) is
contextually equivalent to λv.b′[d/u] Thus, η-expansion for (b d) is correct which shows
s5 b d ∼ALseq s6 b d. For the other case we distinguish whether (b d) ∼ALseq ⊥ holds. If
(b d) 6∼ALseq ⊥ then η is correct, which shows that s5 b d ∼ALseq s6 b d. If (b d) ∼ALseq ⊥,
then we have to check more cases: If b = λu.seq (u t1 . . .) r or b = λu.seq u r, then
(b (b d)) ∼ALseq ⊥, and s5 b d is equivalent to s6 b d. If b = λu.u t1 . . ., then (b (b d))
becomes ⊥ in both expressions, which shows (s5 b d) ∼ALseq ⊥ ∼ALseq (s6 b d).

5. We use Theorem 3.10. Since s7↓ALcc , s8↓ALcc , and case s7 . . . ∼ALcc ⊥ ∼ALcc case s8 . . .,
it is sufficient to show (s7 b) ∼ALcc (s8 b) where b is a closed abstraction, a constructor
application, or ⊥. If b = ⊥ then the equivalence holds. Otherwise, we inspect the
cases of a normal-order reduction for b y for some free variable y: If b y↓ALccTrue (or
b y↓ALccFalse, resp.) then (b ⊥) and (b λx.⊥) also converge with True (or False, resp.),
which shows that (s7 b) ∼ALcc (s8 b). If evaluation of b y stops with R[y] for some
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reduction context R, then (s7 b) evaluates to caseBool R[⊥] alts which is equivalent to
⊥, and (s8 b) evaluates to caseBool R[λx.⊥] alts. We consider cases of R: If R = [·]
then (s8 b) ∼ALcc ⊥. If R = R′[[·] r] then (s8 b) evaluates to caseBool R

′[⊥] alts which
is equivalent to ⊥. Finally, if R = R′[caseK [·] alts′] then (s8 b) ∼ALcc ⊥. If (b y)
converges with cKi,j t1 . . . tn for some constructor cKi,k not of type Bool then (b ⊥)
converges to cKi,j t′1 . . . t′n and (b λx.⊥) converges to cKi,j t′′1 . . . t′′n. However, in this
case (s7 b) ∼ALcc ⊥ ∼ALcc (s8 b). J

Now we obtain non-conservativity for all embeddings between the four calculi as follows:

I Theorem 4.3. The natural embeddings of AL in ALseq, AL in ALcc,seq, AL in ALcc, ALseq
in ALcc,seq, and ALcc in ALcc,seq are not conservative.

Proof. AL in ALseq and AL in ALcc,seq: The proof uses the expressions s1, s2 which are
adapted from the example of [4, Proposition 3.15]. Theorem 4.2, item 2 shows that
s1 ∼AL s2. The context C := ([·] λz.seq z id) distinguishes s1, s2 in ALseq,ALcc,seq, since
C[s1]↓D while C[s2]⇑D for D ∈ {ALseq,ALcc,seq}.
Another counterexample uses the expressions t1(s), t2(s) with s = (x ((x id) (x id))):
Since s[id/x] ∼AL id, Theorem 4.2, item 1 shows t1(s) ∼AL t2(s). However, the context
C := ([·] λy. seq y ω) distinguishes t1(s) and t2(s) in ALseq and ALcc,seq.

AL in ALcc: From Theorem 4.2 we have s3 ∼AL s4. In ALcc the context C :=
[·] (λu.u True) (λu.caseBool u (True -> False) (False -> id)) distinguishes s3 and s4,
since C[s3] ∼ALcc True and C[s4]⇑ALcc .

ALseq in ALcc,seq: Theorem 4.2 shows s5 ∼ALseq s6. In ALcc,seq the context C := ([·] b True)
with b := λu.caseBool u (True -> False)(False -> id) distinguishes s5 and s6, since
C[s5] ∗−→ALcc,seq id, but C[s6]⇑ALcc,seq .

ALcc in ALcc,seq: A counterexample for conservativity of embedding ALcc into ALcc,seq was
given in [18] which can be translated into the notations of this paper as follows: The
equation s7 ∼ALcc s8 holds (Theorem 4.2), but for the context C := [·] λu.seq u True we
have C[s8]↓ALcc,seqTrue while C[s7]⇑ALcc,seq . J

5 Monomorphically Typed Calculi and Embeddings

We now analyze embeddings among the four calculi under monomorphic typing, and therefore
we add a monomorphic type system to the calculi. The counterexamples in Sect. 4 cannot
be transferred to the typed calculi except for the counterexample showing non-conservativity
of embedding ALcc into ALcc,seq.

Since AL with a monomorphic type system is the simply typed lambda calculus (which
is too inexpressive since every expression converges) we extend all the calculi by a fixpoint
combinator Fix as a constant to implement recursion, and by a constant Bot to denote a
diverging expression1. The resulting calculi are called ALτ , ALτseq, ALτcc, ALτcc,seq.

The syntax for types is T ::= o | T → T | K(T1, . . . , TarK), where o is the base type, and
K is a type constructor. The syntax for expressions is as in the base calculi, but extended by
Fix as a family of constants of all types of the form (T → T )→ T , and the constant Bot as
a family of constants of all types. Variables have a built-in type, i.e. in an expression every
variable is annotated with a monomorphic type, e.g. λxo→o.xo→o is an identity on functions
of type o→ o. However, we rarely write these annotations explicitly. The type of constructors

1 Bot can also be encoded using Fix, but for convenient representation we include the constant.
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(botapp) (Bot s)→ Bot (botseq) (seq Bot s) → Bot
(botcase) (caseK Bot alts)→ Bot

Figure 4 The bot-simplifications.

is structured as in a polymorphic calculus: The family of constructors for one constructor
cKi has a (polymorphic) type schema of the form T1 → . . . → Tn → (Ki T

′
1 . . . T ′ar(Ki)),

where every type-variable of T1 → . . .→ Tn is contained in (Ki T
′
1 . . . T ′ar(Ki)), and every

monomorphic type of constructor cKi is an instance of this type. The types of case and
seq are the monomorphic instances of the usual polymorphic types as in Haskell. We omit
the standard typing rules. However, we write s :: T which means that s can be typed by
a (monomorphic) type T . The reduction rules are in Fig. 1, and normal order reduction
−→D for D ∈ {ALτ ,ALτseq,ALτcc,ALτcc,seq} applies the reduction rules in reduction contexts
(defined as before). It is easy to verify that normal order reduction is deterministic, type-,
and closedness-preserving. The following progress lemma holds: for every closed expression t,
either t ∗−→D t0, where t0 is a value, or t has an infinite reduction sequence, or t ∗−→D R[Bot],
where R is a reduction context. In particular, the typing implies that case-expressions
(caseK (c . . .) alts) are always reducible by a case-reduction.

Answers are defined as abstractions, constructor applications, and the constant Fix.
Contextual equivalence ∼D is defined according to Definition 2.2. We also reuse the ap-
proximation contexts, but restrict them to well-typed contexts. The APi-context lemma
(Theorem 3.9) also holds for the typed calculi, where only equally typed expressions and
well-typed contexts are taken into account.

I Theorem 5.1. For D ∈ {ALτ ,ALτseq,ALτcc,ALτcc,seq} and closed, equally typed D-expressions
s, t holds: s ≤D t iff for all i and all approximation contexts APi, such that APi[s] and
APi[t] are well-typed: APi[s]↓D =⇒ APi[t]↓D.

To lift the correctness results for program transformations into the typed calculi, we
define a translation δ.

I Definition 5.2. Let δ : ALτcc,seq → ALcc,seq be the translation of an ALτcc,seq-expression that
first removes all types and then leaves all syntactical constructs as they are except for the
cases δ(Bot) := Ω and δ(Fix) := λf.(λx.f (x x)) (λx.f (x x)).

In [15] we prove adequacy of δ, which implies that reduction rules and simplifications are
correct program transformations in the typed calculi.

I Proposition 5.3. For equally typed ALτcc,seq-expressions s, t it holds: δ(s) ∼ALcc,seq δ(t)
implies s ∼ALτcc,seq

t. The same holds for ALτ ,ALτseq, and ALτcc w.r.t. their untyped variants.

I Theorem 5.4. All reduction rules and simplifications in Figs. 1, 2, and 4 are correct
program transformations in ALτ ,ALτcc,ALτseq, and ALτcc,seq.

We now show non-conservativity of embedding ALτ in ALτseq as well as of ALτcc in ALτcc,seq,
i.e. the addition of seq is not conservative. For the other embeddings, ALτ in ALτcc and ALτseq
in ALτcc,seq, we show conservativity. This is consistent with typability: the counterexample
for AL in ALcc requires an untyped context, and the counterexample for ALseq in ALcc,seq has
a self-application of an expression, which is nontypable.
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5.1 Adding Seq is Not Conservative
We consider calculi ALτ and ALτseq.

There is only one equivalence class w.r.t. contextual equivalence for closed expressions
of type o: it is Boto :: o. For type o→ o, there are only two equivalence classes with
representatives Boto→o and λxo.Boto. Note that the expression λxo.xo is equivalent to
λxo.Boto, since there are no values of type o.

Our counterexample to conservativity are the following expressions s9, s10 of type ((o→
o)→ (o→ o)→ (o→ o))→ (o→ o)→ (o→ o)→ (o→ o)→ (o→ o) :

s9 := λf, x, y, z.f (f x y) (f y z) s10 := λf, x, y, z.f (f x x) (f z z)

I Theorem 5.5. The embedding of ALτ into ALτseq and into ALτcc,seq is not conservative

Proof. We use Theorem 3.10 (with i = 1) which also holds in the typed calculi (see [15]) and
show s9 ∼ALτ s10. Since s9↓ALτ and s10↓ALτ , we need to show s′9 := (s9 b) ∼ALτ s

′
10 := (s10 b),

where b is a closed expression of type (o → o) → (o → o) → (o → o). We check
the different cases for b. Due to its type b must be equivalent to one of Bot, λw.Bot,
λu,w.Bot, λw1, w2, w3.Bot, λx, y.x, and λx, y.y. For the first three cases it holds: s′9 ∼ALτ

λx, y, z.Bot ∼ALτ s
′
10. If b = λw1, w2, w3.Bot then s′9 ∼ALτ λx, y, z, w3.Bot ∼ALτ s

′
10. If b =

λx, y.x then s′9 ∼ALτ λx, y, z.x ∼ALτ s
′
10. If b = λx, y.y then s′9 ∼ALτ λx, y, z.z ∼ALτ s

′
10. Non-

conservativity now follows from the context C = ([·] (λx, y.seq x y) (λx.Bot) Bot (λx.Bot)):
The expressions C[s9], C[s10], are typable in ALτseq,ALτcc,seq and C[s9] ∼D Bot, but
C[s10] ∼D (λx.Bot) for D ∈ {ALτseq,ALτcc,seq}. J

We reuse the counterexample in the untyped case represented by expressions s7 and s8, where
⊥ is replaced by Bot. The example becomes

s11 := λx.caseBool (x Bot) (True -> True) (False -> Bot)
s12 := λx.caseBool (x (λy.Bot)) (True -> True) (False -> Bot)

where s11, s12 are typed as ((T → Bool)→ Bool) for any type T . The two expressions are
equivalent in ALτcc: They are typed, and δ(s11) ∼ALcc δ(s12) (see Theorem 4.2, item 5). Thus
Proposition 5.3 is applicable. However, s11 6∼ALτcc,seq

s12, since s12 b evaluates to True, while
s11 b diverges, where b = λu.seq u True.

I Theorem 5.6. The embedding of ALτcc into ALτcc,seq is not conservative.

5.2 Adding Case and Constructors is Conservative
We show that adding case and constructors to the monomorphically typed calculi is conservat-
ive. We give a detailed proof for embedding ALτseq into ALτcc,seq. The proof for embedding ALτ

into ALτcc is analogous by omitting unnecessary cases. We show that for ALτseq-expressions
s, t the embedding is fully abstract, i.e. s ≤ALτseq

t ⇐⇒ s ≤ALτcc,seq
t. The hard part is

s ≤ALτseq
t =⇒ s ≤ALτcc,seq

t. Lemma 3.6 holds in the typed calculi as well, and thus it
suffices to consider closed s, t. The APi-context lemma (Theorem 5.1) can be used, where
the arguments are closed.

The main argument concerns the following situation: There are closed equally typed
ALτseq-expressions s, t, such that s ≤ALτseq

t, but we assume that s ≤ALτcc,seq
t does not hold.

Since s, t must have a type without constructed types and since the APi-context lemma holds,
there is an n ≥ 0, and vi, i = 1, . . . , n, that are Bot or ALτcc,seq-values, and where all vi are of
an ALτseq-type, such that s v1 . . . vn↓ALτcc,seq

, but t v1 . . . vn⇑ALτcc,seq
. The goal is to show that

there are ALτseq-expressions v′i that are Bot or ALτseq-values, such that s v′1 . . . v′n↓ALτseq
, and
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t v′1 . . . v
′
n⇑ALτseq

which refutes s ≤ALτseq
t and thus leads to a contradiction. It is sufficient to

show that for every ALτcc,seq-value v and context C with C[v]↓ALτcc,seq
, there is an ALτseq-value

v′, with v′ ≤ALτcc,seq
v, such that C[v′]↓ALτcc,seq

.
In order to construct the proof we define simplification transformations in our mono-

morphically typed calculi, whenever the appropriate constructs exist in the calculus.

IDefinition 5.7. The simplification rules (caseapp), (casecase), (seqseq), (seqapp), (seqcase),
(caseseq), (botapp), (botcase), and (botseq) are defined in Figs. 2 and 4, where we use the
typed variants. For D ∈ {ALτcc,seq,ALτcc} let

Dx−−→ denote the reduction using normal order
reductions and simplification rules in a reduction context, where in case of a conflict the
topmost redex is reduced. If s Dx,∗−−−→ v for some D-answer v, then we denote this as s↓Dx .

Let bcsfC−−−→ denote the reduction in any context by (β), (case), (seq), and (fix).

The simplifications are correct in the calculi under consideration and they do not change the
normal order reduction length (proven in [15]):

I Lemma 5.8. In the calculi ALτcc and ALτcc,seq: The simplification rules preserve the
length of (converging) normal order reductions, i.e. let d be a simplification rule and
D ∈ {ALτcc,ALτcc,seq}: if s

d−→ s′ then s n−→D v, where v is a D-WHNF, if and only if s′ n−→D v′,
where v′ is a D-WHNF.

I Lemma 5.9. For D ∈ {ALτcc,seq,ALτcc} we have ↓D = ↓Dx .

Proof. Since the simplification rules are correct in ALτcc,seq, ALτcc, s↓Dx implies that s↓D.
Now assume that s↓D. We use induction on the number of (β), (case), (seq), (fix)-reductions
of s to a WHNF. If s is a WHNF, then it is irreducible w.r.t. Dx−−→. If s has a normal order
reduction of length n > 0 to a WHNF, then consider a Dx−−→-reduction sequence s Dx,∗−−−→ s0,
where s0 is a D-WHNF. Lemma 5.8 and termination of the simplifications (proved in [15])
show that there are s′, s′′, such that s Dx,∗−−−→ s′ −→D s′′, where s Dx,∗−−−→ s′ consists only of
simplification rules. Lemma 5.8 shows that the normal order reduction length of s′′ to a
WHNF is smaller than n. Now we can apply the induction hypothesis. J

I Definition 5.10. The following approximation procedure computes for every D-expression
t (for D ∈ {ALτcc,seq,ALτcc}) and every depth i an approximating expression approx(t, i) ≤D t.
First a pre-approximation is computed where preapprox(t, 0) := Bot. If there is an infinite
Dx−−→-reduction sequence starting with t, then preapprox(t, i) := Bot for all for i > 0. Otherwise,
let t Dx,∗−−−→ t′ where t′ is irreducible for Dx−−→. Let M be the multicontext derived from t′

where every subexpression at depth one is a hole, such that t′ = M(t1, . . . , tk), and tj , for
1 ≤ j ≤ k, are subexpressions at depth 1. Let t′j = preapprox(tj , i− 1) for j = 1, . . . , k, and
define the result as preapprox(t, i) := M(t′1, . . . , t′k).

Finally, approx(t, i) is computed from preapprox(t, i) by computing its normal form under
the bot-simplifications in Fig. 4.

E.g. for t = seq (seq x id) id first t Dx,∗−−−→ (seq x (seq id id)). Replacing the subex-
pressions at depth 1 by Bot results in preapprox(t, 1) = (seq Bot Bot) which reduces to
approx(t, 1) = Bot. Similarly, preapprox(t, 2) = approx(t, 2) = (seq x λz.Bot).

I Lemma 5.11. For D ∈ {ALτcc,seq,ALτcc} : approx(t, i) ≤D t.

We show a variant of the so-called subterm property for approximations:
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I Lemma 5.12. The approximations approx(t, i) are of the same type as t and irreducible
w.r.t. the simplification rules and bcsfC−−−→-irreducible. If t is an ALτcc,seq-expression of ALτseq-
type, then approx(t, i) is an ALτseq-expression. If t is an ALτcc-expression of ALτ -type, then
approx(t, i) is an ALτ -expression.

Proof. The expressions approx(t, i) have the same type as t. Only bot-simplifications may
be possible, and these can only enable other bot-simplifications and thus, every approx(t, i) is
irreducible w.r.t. the simplification rules. It remains to show that a := approx(t, i) must be an
ALτseq-expression (ALτ -expression, resp.). W.l.o.g. we consider the case with seq-expressions.

Suppose that there is a subexpression in a = approx(t, i) of non-ALτseq-type. We select
the subexpressions of non-ALτseq-type that are not contained in another subexpression of
non-ALτseq-type; let s denote the one of a maximal non-ALτseq-type among these subexpressions.
Since a is closed, we obtain that s cannot be a variable, since then either there is a superterm
of s that is an abstraction of non-ALτseq-type, or a case-expression of non-ALτseq-type. Since a
is of ALτseq-type, and s is maximal, there must be an immediate superterm s′ of s which is of
ALτseq-type. We look for the structure of s′. Due to the maximality conditions, s′ cannot be
an abstraction, an application of the form (s0 s), a constructor application, a seq-expression
of the form (seq s0 s), or a case-alternative, since then it would also have a non-ALτseq-type.
It may be an application (s s2), a seq-expression (seq s s2), or a case expression case s alts.

First assume that s′ is an application, then let s0 be the leftmost and topmost non-
application in s, i.e. s′ = (s0 r1 . . . rn), and s = (s0 r1 . . . rn−1), n ≥ 1, where s0 is not
an application. The expression s0 must be of non-ALτseq-type. Then s0 cannot be Bot, an
abstraction, Fix, a case-expression, or a seq-expression, since otherwise the subterm s0 r1
would be reducible by (botapp), (β), (fix), (caseapp), or (seqapp). s0 cannot be a constructor
application either, due to types. Hence s′ is not an application.

If s′ is a case expression caseK s alts, then s cannot be Bot, a case-expression, a seq-
expression, or a constructor-application, since otherwise s would be reducible by (botcase),
(casecase), (case), or (caseseq). Due to typing s cannot be an abstraction or Fix, and finally
s′ cannot be an application using the arguments above. Hence s′ is not a case-expression.

If s′ is a seq-expression seq s s2, then s cannot be Bot, an abstraction, Fix, a constructor
application, a case-expression, or a seq-expression, since then s′ would be reducible by
(botseq), (seq), (seqcase), or (seqseq). s cannot be an application either, as argued above.
Hence s′ cannot be seq-expression.
In summary, such a subexpression does not exist, i.e. approx(t, i) is an ALτseq-expression. J

In the following we use s|p for the subterm of s at position p, and s[·]p for the expression
s where the subterm at position p is replaced by a context hole.

I Definition 5.13. For an ALτcc,seq-expression (ALτcc-expression, resp.) s, a position p, and a
subexpression s′ such that s|p = s′ the non-R-depth of s′ at p is the number of prefixes p′ of
p s.t. s[·]p′ is not a reduction context.

I Lemma 5.14. For D ∈ {ALτcc,seq,ALτcc}, a D-expression t, a D-context C with C[t]↓D
there is some i and an approximation approx(t, i) with C[approx(t, i)]↓D.

Proof. Let C[t] n−→D t0, where t0 is a D-WHNF. Then compute t′ := approx(t, n + 1).
The construction of approx(t, n+ 1) includes (β)-, (case)-, (seq)- and (fix)-reductions and
simplification rules. Let A be the set of all the simplification rules. We have C[t] bcsfC∪A,∗−−−−−−−→
C[t′′], where t′ is t′′ with subexpressions replaced by Bot. Since reductions and simplifications
are correct, we have C[t′′]↓D, and in particular, the number of normal order reductions of
C[t′′] to a D-WHNF is n′ ≤ n (proven in [15]).
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The normal order reduction for C[t′] makes the same reduction steps as the normal order
reduction of C[t′′] since the Bot-expressions placed by the approximation are in the beginning
at the non-R-depth n + 1, and remain at non-R-depth ≥ n + 1 − j after j normal order
reductions. Finally, they will be at non-R-depth of at least 1, hence the final D-WHNF may
have Bots only at non-R-depth of at least 1, and so it is a WHNF. Thus C[approx(t, n)]↓D. J

I Theorem 5.15. The embeddings of ALτ in ALτcc and of ALτseq in ALτcc,seq are conservative.

Proof. We prove this for the embedding of ALτseq in ALτcc,seq. The other case is similar.
Let s, t be ALτseq-expressions with s ≤ALτseq

t. We have to show that s ≤ALτcc,seq
t. Assume

this is false. Since the APi-context lemma holds (Theorem 5.1) the assumption implies
that there is an n ≥ 0 and closed ALτcc,seq-expressions b1, . . . , bn of ALτseq-type which are
answers or Bot, such that (s b1 . . . bn)↓ALτcc,seq

but (t b1 . . . bn)⇑ALτcc,seq
. According to Lemma

5.14, we have successively constructed the approximations b′i of bi of a depth depending on
the length of the normal order reduction of (s b1 . . . bn), such that (s b′1 . . . b′n)↓ALτcc,seq

but
(t b′1 . . . b′n)⇑ALτcc,seq

, also using Lemma 5.11. Lemma 5.12 shows that the approximations are
in the smaller calculus ALτseq, and thus also (s b′1 . . . b′n)↓ALτseq

but (t b′1 . . . b′n)⇑ALτseq
, which

contradicts s ≤ALτseq
t. J

The same reasoning can be used to show the following result (of practical interest) for
D ∈ {ALτcc,ALτcc,seq}: Assume that the set of type and data constructors is a fixed set in D,
and that D′ is an extension of D such that only new type and data constructors are added.
Then D′ is a conservative extension of D, since we can use the approximation technique from
this section to approximate D′-values by D-values and then apply the APi-context lemma.

6 Polymorphically Typed Calculi

We consider polymorphically typed variants ALα,ALαseq,ALαcc,ALαcc,seq of the four calculi. We
will show non-conservativity of embedding ALα in ALαseq and ALαcc in ALαcc,seq, but leave open
the question of (non-)conservativity of embedding ALα in ALαcc and ALαseq in ALαcc,seq.

The expression syntax is the untyped one. The syntax for polymorphic types T is
T ::= V | T 1 → T 2 | (K T 1 . . . T ar(K)) where V is a type variable. The constructors
have predefined Hindley-Milner polymorphic types according to the usual standards. Only
expressions that are Hindley-Milner polymorphically typed are permitted. Normal order
reduction is defined only on monomorphic type-instances of expressions, which is a deviation
from Definition 2.1.

I Definition 6.1. For D ∈ {ALα,ALαseq,ALαcc,ALαcc,seq} and for s, t ∈ D of equal polymorphic
type: s ≤D t iff ρ(s) ≤D′ ρ(t) for all monomorphic type instantiations ρ, where D′ is the
corresponding monomorphically typed calculus. Contextual equivalence is defined by s ∼D t

iff s ≤D t ∧ t ≤D s.

Since s11, s12 (Sect. 5.1) are of polymorphic type (a→ Bool)→ Bool, the same arguments
as for the proof of Theorem 5.6 can be applied, hence:

I Theorem 6.2. The natural embedding of ALαcc into ALαcc,seq is not conservative.

Let s13, s14 of the polymorphic type ((α→ α)→ (α→ α)→ (α→ α))→ (α→ α)) be
defined as: s13 := λx.x id (x Bot id) and s14 := λx.x id (x (λy.Bot) id).

I Lemma 6.3. For ALτ -expressions t = M [Bot, . . . , Bot], t′ = M [λx.Bot, . . . , λx.Bot], and
t⇑ALτ , t′↓ALτ it holds that M [x1, . . . , xn] ∗−→ALτ xi for some i.
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Proof. This follows by observing a normal order reduction of t, t′ and comparing the first
use of Bot, or λx.Bot, respectively. There must be a use of this argument, since otherwise
the observations are identical. If it is ever used in a function position in a beta-reduction,
then both expressions diverge. Hence, the only possibility is that they are returned. J

I Theorem 6.4. The embedding of ALα into ALαseq is not conservative. The embedding of
ALα into ALαcc,seq is also not conservative.

Proof. Since (ρ(s13) (λu, v.seq u v))⇑ALτ , but (ρ(s14) (λu, v.seq u v))↓ALτ for ρ = {α 7→ o},
we have s13 6∼ALαseq

s14 as well as s13 6∼ALαcc,seq
s14. It remains to show that s13 ∼ALα s14

holds, i.e. that ρ(s13) ∼ALτ ρ(s14) for any monomorphic type instantiation ρ of the type
((a→ a)→ (a→ a)→ (a→ a))→ (a→ a)). We use the APi-context lemma (Theorem 5.1)
and assume that there is an n, a closed ALτ -expression s, and closed arguments b1, . . . , bn,
such that ρ(s13) s b1 . . . bn is typed in ALτ , and ρ(s13) s b1 . . . bn⇑ALτ , ρ(s14) s b1 . . . bn↓ALτ .
By Lemma 6.3, the only possibility is that the Bot, and λx.Bot-positions are extracted. By
the type preservation, and since the type of ρ(s13) s is the type of the Bot-position, it is
impossible that n > 0, since then the type of the result is smaller than the type of the
Bot-position. Hence s id (s y id) ∗−→ALτ y. But since the y occurs in the expression (s y id),
we also have (s y id) ∗−→ALτ y. This implies that (s id y) ∗−→ALτ y. But then the normal
order reduction of s x1 x2 cannot apply either of its arguments x1, x2, and hence must be
a projection to one of the arguments, which is impossible, since it must project to both
arguments. We conclude that ρ(s13) and ρ(s14) cannot be distinguished in all approximation
contexts, and the reasoning does not depend on ρ. Hence s13 ∼ALα s14. J

The expressions s13, s14 could also be used to show non-conservativity of embedding ALτ

into ALτseq. Hence there are also examples at higher types as witnesses for Theorem 5.6.
Whether adding case and constructors is conservative or not in the polymorphic case, for

ALα as well as for ALαseq remains an open problem.
Forgetting Types. Now we look for the translations defined as “forgetting” the types,

and ask for adequacy and full abstraction, which plays now the role of conservativity. For
the monomorphically typed calculi the answer is obvious: these translations are not fully
abstract. For example λxo.xo is equivalent to λxo.⊥o, which refutes full abstractness in all
cases. For the polymorphically typed calculi, this question is non-trivial:

I Proposition 6.5. The translations of ALα into AL, ALαcc into ALcc, and ALαcc,seq into ALcc,seq
by simply forgetting the types are adequate but not fully-abstract.

Proof. For the first case, ALα and AL, we have s13 ∼ALα s14, but (s13 λu, v.(v (λx.u)))⇑ and
(s14 λu, v.(v (λx.u)))↓. For the other calculi, λx.caseBool x (True -> True) (False -> False)
is equivalent to λxBool.x, but in the untyped case, ([·] λz.z) distinguishes these expressions. J

Full abstractness of forgetting types in ALαseq also remains an open question.

7 Conclusion

We have shown that the semantics of the pure lazy lambda calculus changes when seq, or
case and constructors, are added. Under the insight that any semantic investigation for
Haskell should include the seq-operator, we exhibited calculus extensions that are useful
for the analysis of expression equivalences that also hold in a realistic core calculus of lazy
functional and typed languages. We left the rigorous analysis of the implication chain for
equivalence from ALτcc,seq to the polymorphic calculus with letrec for future research.

RTA’13
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