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Abstract
We address a problem connected to the unfolding semantics of functional programming languages:
give a useful characterization of those infinite λ-terms that are λletrec-expressible in the sense that
they arise as infinite unfoldings of terms in λletrec, the λ-calculus with letrec. We provide two
characterizations, using concepts we introduce for infinite λ-terms: regularity, strong regularity,
and binding–capturing chains. It turns out that λletrec-expressible infinite λ-terms form a proper
subclass of the regular infinite λ-terms. In this paper we establish these characterizations only
for expressibility in λµ, the λ-calculus with explicit µ-recursion. We show that for all infinite
λ-terms T the following are equivalent: (i): T is λµ-expressible; (ii): T is strongly regular; (iii): T is
regular, and it only has finite binding–capturing chains.

We define regularity and strong regularity for infinite λ-terms as two different generalizations
of regularity for infinite first-order terms: as the existence of only finitely many subterms that are
defined as the reducts of two rewrite systems for decomposing λ-terms. These rewrite systems act
on infinite λ-terms furnished with a bracketed prefix of abstractions for collecting decomposed
λ-abstractions and keeping the terms closed under decomposition. They differ in which vacuous
abstractions in the prefix are removed.
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1 Introduction

A syntactical core of functional programming languages is formed by λletrec, the λ-calculus
with letrec, which can also be viewed as an abstract functional language. Formally, λletrec is
the extension of the λ-calculus by adding the construct letrec for expressing recursion as well
as explicit substitution. In a slightly enriched form (of e.g. Haskell’s Core language) it is used
as an intermediate language for the compilation of functional programs, and as such it is the
basis for optimizing program transformations. A calculus that in some respects is weaker
than λletrec is λµ, the λ-calculus with the binding construct µ for µ-recursion. Terms in λµ
can be interpreted directly as terms in λletrec (expressions µf.M(f) as letrec f =M(f) in f),
but translations in the other direction are more complicated, and have weaker properties.

For analyzing the execution behavior of functional programs, and for constructing program
transformations, expressions in λletrec or in λµ are frequently viewed as finite representations
of their unfolding semantics: the infinite λ-term that is obtained by completely unfolding all
occurring recursive definitions, the letrec- or µ-bindings, in the expression.
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In order to provide a theoretical foundation for such practical tasks, we aim to understand
how infinite λ-terms look like that are expressible in λletrec or in λµ in the sense that they
are infinite unfoldings of expressions from the respective calculus. In particular, we want to
obtain useful characterizations of these classes of infinite λ-terms. Quite clearly, any such
infinite λ-term must exhibit an, in some sense, repetitive structure that reflects the cyclic
dependencies present in the finite description. This is because these dependencies are only
‘rolled out’, and so are preserved, by a typically infinite, stepwise unfolding process.

For infinite terms over a first-order signature there is a well-known concept of repetitive
structure, namely regularity. An infinite term is called ‘regular’ if it has only a finite number
of different subterms. Such infinite terms correspond to trees over ranked alphabets that
are regular [4]. Like regular trees also regular terms can be expressed finitely by systems of
recursion equations [4], by ‘rational expressions’ [4, Def.4.5.3] which correspond to µ-terms
(see e.g. [5]), or by terms using letrec-bindings. In this context finite expressions denote
infinite terms either via a mathematical definition (a fixed-point construction, or induction
on paths) or as the limit of a rewrite sequence consisting of unfolding steps. Regularity of
infinite terms coincides, furthermore, with expressibility by finite terms enriched with either
of the binding constructs µ or letrec. It is namely well-known that both representations are
equally expressive with respect to denoting infinite terms, because a representation using
letrec’s can also be transformed into one using µ’s while preserving the infinite unfolding.

For infinite λ-terms, however, the situation is different: A definition of regularity is less
clear due to the presence of variable binding. And there are infinite λ-terms that are regular
in an intuitive sense, yet apparently are not λletrec- or λµ-expressible. For example, the syntax
trees of the infinite λ-terms T in Fig. 1 and U in Fig. 2 both exhibit a regular structure. But
while T clearly is λµ- and λletrec-expressible (by µf.λxy.f y x and letrec f = λxy.f y x in f ,
respectively), this seems not to be the case for U : the λ-bindings in U are infinitely entangled,
which suggests that it cannot be the result of just an unfolding process. Therefore it appears
that the intuitive notion of regularity is too weak for capturing the properties of λµ- and of
λletrec-expressibility. We note that actually these two properties coincide, because between
λµ-terms and λletrec-terms similar transformations are possible as between representations
with µ and with letrec of infinite first-order terms (but this will not be proved here).

It is therefore desirable to obtain a precise, and conceptually satisfying, definition of
regularity for infinite λ-terms that formalizes the intuitive notion, and that makes it possible
to prove that λµ-/λletrec-expressible infinite λ-terms form only a proper subclass of the regular
ones. Furthermore the question arises of whether the property of λµ-/λletrec-expressibility
can be captured by a stronger concept of regularity that is still natural in some sense.

We tackle both desiderata at the same time, and provide solutions, but treat only the case
of λµ-expressibility here. We introduce two concepts of regularity for infinite λ-terms. For
this, we devise two closely related rewrite systems (infinitary Combinatory Reduction Systems)
that allow to ‘observe’ infinite λ-terms by subjecting them to primitive decomposition steps
and thereby obtaining ‘generated subterms’. Then regular, and strongly regular infinite
λ-terms are defined as those that give rise to only a finite number of generated subterms
in the respective decomposition system. We establish the inclusion of the class of strongly
regular in the class of regular infinite λ-terms, and the fact that this is a proper inclusion (by
recognizing that the λ-term U in Fig. 2 is regular, but not strongly regular). As our main
result we show that an infinite λ-term is λµ-expressible (that is, expressible by a term in λµ)
if and only if it is strongly regular. Here we say that a term M in λµ expresses an infinite
λ-term V if V is the infinite unfolding of M . An infinite unfolding is unique if it exists, and
it can be obtained as the limit of an infinite rewrite sequence of unfolding steps.
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Figure 1 Strongly regular infinite λ-term T , which can be expressed by the λµ-term µf.λxy.f y x.

This expressibility theorem is a special case of a result we reported in [6], which states
that strong regularity coincides with λletrec-expressibility. That more general result settles a
conjecture by Blom in [3, Sect. 1.2.4]. Its proof is closely connected to the proof of the result
on λµ-expressibility we give here, which exhibits and highlights all the same features, but
lacks the complexity that is inherent to the formal treatment of unfolding for terms in λletrec.

Additionally we give a result that explains the relationship between regularity and strong
regularity by means of the concept of ‘binding–capturing chain’: a regular infinite λ-terms is
strongly regular if and only if it does not contain an infinite binding–capturing chain.
Overview. In Section 2 we introduce rewriting systems (infinitary CRSs) for decomposing
λ-terms into their generated subterms. By means of these systems we define regularity and
strong regularity for infinite λ-terms. In Section 3 we provide sound and complete proof
systems for these notions. In Section 4 we develop the notion of binding–capturing chain
in infinite λ-terms, and show that strong regularity amounts to regularity plus the absence
of infinite binding–capturing chains. In Section 5 we establish the correspondence between
strong regularity and λµ-expressibility for infinite λ-terms. In the final Section 6 we place the
results presented here in the context of our investigations about sharing in cyclic λ-terms.

2 Regular and strongly regular infinite λ-terms

In this section we motivate the introduction of higher-order versions of regularity, and
subsequently introduce the concepts of regularity and strong regularity for infinite λ-terms.

For higher-order infinite terms such as infinite λ-terms, regularity has been used with as
meaning the existence of a first-order syntax tree with named variables that is regular (e.g.
in [2, 1]). For example, the infinite λ-terms T and U from Figures 1 and 2 are regular in
this sense. However, such a definition of regularity has the drawback that it depends on a
first-order representation (as syntax trees with named abstractions and variables) that is not
invariant under α-conversion, the renaming of bound variables. Note that the syntax trees of
T and U have renaming variants that contain infinitely many variables, and that for this
reason are not regular as first-order trees. It is therefore desirable to obtain a definition of
regularity that uses the condition for the first-order case but adapts the notion of subterm to
λ-terms, and that pertains to a formulation of infinite λ-terms as higher-order terms.

Viable notions of subterm for λ-terms in a higher-order formalization require a stipulation
on how to treat variable binding when stepping from a λ-abstraction λz.V into its body V .
For this purpose we enrich the syntax of λ-terms with a bracketed prefix of abstractions
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(similar to a proof system for weak µ-equality in [5, Fig. 12]), and consider (λz)V as a
‘generated subterm’ of λz.V , obtained by a λ-abstraction decomposition applied to ()λz.V ,
where () is the empty prefix. An expression (λx1 . . . xn)T represents a partially decomposed
λ-term: the body T typically contains free occurrences of variables that in the original λ-term
were bound by λ-abstractions but have since been split off by decomposition steps. The role
of such abstractions has then been taken over by abstractions in the prefix (λx1 . . . xn). In
this way expressions with abstraction prefixes are kept closed under decomposition steps.

We formulate infinite λ-terms and their prefixed variants as terms in iCRSs (infinitary
Combinatory Reduction Systems) for which we draw on the literature. By iCRS-terms we
mean α-equivalence classes of iCRS-preterms that are defined by metric completion from
finite CRS-terms [10]. For denoting and manipulating infinite terms we use customary
notation for finite terms. In order to simplify our exposition we restrict to closed terms, but
at one stage (a proof system in Section 5) we allow constants in our terms.

Note that we do not formalize β-reduction since we are only concerned with a static
analysis of infinite λ-terms and later with finite expressions that express them via unfolding.

I Definition 1 (iCRS-representation of λ∞). The CRS-signature for the λ-calculus λ and the
infinitary λ-calculus λ∞ consists of the set Σλ = {app, abs} where app is a binary and abs a
unary function symbol. By Ter(λ∞) we denote the set of infinite closed iCRS-terms over Σλ
with the restriction that CRS-abstraction can only occur as an argument of an abs-symbol.
Note that here and below we subsume finite λ-terms under the infinite ones.

I Definition 2 (iCRS-representation of (λ∞)). The CRS-signature Σ(λ) for (λ∞), the version
of λ∞ with bracketed abstractions, extends Σλ by unary function symbols of arbitrary arity:
Σ(λ) = Σλ ∪ {pren ∣ n ∈ N}. Prefixed λ-terms pren([x1] . . . [xn]T ) will informally be denoted
by (λx1 . . . xn)T , abbreviated as (λx⃗)T , or ()T in case of an empty prefix. By Ter((λ∞))
we denote the set of closed iCRS-terms over Σ(λ) of the form pren([x1] . . . [xn]T ) for some
n ∈ N and some term T over the signature Σλ with the restriction that a CRS-abstraction
can only occur as an argument of an abs-symbol.

I Example 3. The λ-term λxy.y x in CRS-notation is abs([x]abs([y]app(y, x))). The
prefixed λ-term (λx)λy.y x is represented by pre1([x]abs([y]app(y, x))).

On these prefixed λ-terms, we define two rewrite strategies→reg and→reg+ that deconstruct
infinite λ-terms by steps that decompose applications and λ-abstractions, and take place just
below the marked abstractions. They differ with respect to which vacuous prefix bindings
they remove: while →reg-steps drop such bindings always before steps over applications
and λ-abstractions, →reg+-steps remove vacuous bindings only if they occur at the end of
the abstraction prefix. These rewrite strategies will define respective notions of ‘generated
subterm’, and will give rise to two concepts of regularity: a λ-term is called regular/strongly
regular if its set of →reg-reachable/→reg+ -reachable generated subterms is finite.

I Definition 4 (decomposing (λ∞)-terms with rewrite strategies →reg and →reg+). We consider
the following CRS-rules over Σ(λ) in informal notation:1

(%@i) ∶ (λx1 . . . xn)T0 T1 → (λx1 . . . xn)Ti (i ∈ {0,1})
(%λ) ∶ (λx1 . . . xn)λxn+1.T0 → (λx1 . . . xn+1)T0

(%S) ∶ (λx1 . . . xn+1)T0 → (λx1 . . . xn)T0 (if binding λxn+1 is vacuous)
(%del) ∶ (λx1 . . . xn+1)T0 → (λx1 . . . xi−1xi+1 . . . xn+1)T0 (if bind. λxi is vacuous)

1 E.g. explicit form of scheme (%S): pren+1([x1 . . . xn+1]Z(x1, . . . , xn))→ pren([x1 . . . xn]Z(x1, . . . , xn)).

RTA’13
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We call an occurrence o of a binding like a λ-abstraction λz or a CRS-abstraction [z] in a
term V vacuous if V does not contain a variable occurrence of z that is bound by o.

The iCRS with these rules induces an ARS (abstract rewriting system) A on infinite
terms over Σ(λ). By (Λ) we denote the sub-ARS of A with its set of objects restricted to
Ter((λ)). Note that Ter((λ)) is closed under steps in (Λ). By →@0 , →@1 , →λ, →S, →del
we denote the rewrite relations induced by (Λ)-steps with respect to rules %@0 , %@1 , %λ, %S,
%del. We define Reg (Reg+) as the sub-ARS of (Λ) that arises from dropping steps that are:

due to %S (%del), so that the prefix can be shortened only by %del-steps (%S-steps).
due to rules other than %del (%S) but whose source is also a source of a %del-step (%S-step).

Reg (Reg+) is %del-eager (%S-eager) in the sense that on each path %del-steps (%S-steps) occur
as soon as possible. We denote by →reg (→reg+) the rewrite strategy induced by Reg (Reg+).2

I Example 5. Using the recursive equation T = λxy.T y x as a description for the infinite
λ-term T in Fig. 1, we find that decomposition by →reg+ -steps proceeds as follows, repetitively:

()T (λx)λy.T y x (λxy)T y x
(λxy)T y (λxy)T (λx)T ()T . . .

(λxy)y
(λxy)x (λx)x

(in a tree that branches to the right). Note that removal steps for vacuous bindings take place
only at the end of the prefix. See Fig. 1 right for the reduction graph of ()T with displayed
sorts of decomposition steps. Although →S-steps also are →del-steps, this decomposition is
not also one according to →reg , because e.g. the step (λxy)T y →@1 (λxy)y is not %del-eager.

The rules %S are related to the de Bruijn notation of λ-terms. Consider λx.(λy.xx)x
which in de Bruijn notation is λ.(λ.1 1)0 and when using Peano numerals λ.(λ.S(0)S(0))0.
Now if the symbols S are allowed to appear ‘shared’ and occur further up in the term as in
λ.(λ.S(0 0))0, then this term structure corresponds to the decomposition with →reg+ .

To understand the difference between →reg and →reg+ , consider the notions of scope and
scope+, illustrated in Figures 1 and 2. The scope of an abstraction is the smallest connected
portion of a syntax tree that contains the abstraction itself as well as all of its bound variable
occurrences. And scope+s extend scopes minimally so that the resulting areas appear properly
nested. For a precise definition we refer to [6, Sect. 4]. As can be seen in Figures 1 and 2,
applications of %del (%S) coincide with the positions where scopes (scope+s) are closed.

I Definition 6 (regular/strongly regular λ-terms, generated subterms). Let T ∈ Ter(λ∞). We
define the sets ST (T ) and ST +(T ) of generated subterms of T with respect to →reg and →reg+ :

ST (T ) ∶= {U ∈ Ter((λ∞)) ∣ ()T ↠reg U} ST +(T ) ∶= {U ∈ Ter((λ∞)) ∣ ()T ↠reg+ U}

We say that T is regular (strongly regular) if T has only finitely many generated subterms
with respect to →reg (respectively, with respect to →reg+).

I Example 7. From the →reg+ -decomposition in Example 5 and Fig. 1 of the infinite λ-term T

in Fig. 1 it follows that ST +(T ) consists of 9 generated subterms. Hence T is strongly regular.
The situation is different for the infinite λ-term U in Fig. 2. When represented as the

term λx.R(x) together with the CRS-rule R(X)→ λy.R(y)X, its →reg+ -decomposition is:

()U (λx)R(x) (λxy)R(y)x (λxy)R(y) (λxyz)R(z) y (λxyz)R(z) (λxyzu)R(u) z . . .

(λxyx)y (λxy)y
(λxy)x (λx)x

2 We use ‘rewrite strategy’ for a relation on terms, and not for a sub-ARS of a CRS-induced ARS [13].
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Figure 2 The regular infinite λ-term U that is not strongly regular, and not λµ-expressible.

Since here the prefixes grow unboundedly, U has infinitely many →reg+ -generated subterms,
and hence U is not strongly regular. But its →reg-decomposition exhibits again a repetition
as can be seen from the reduction graph in Fig. 2 on the right. Note that a vacuous binding
from within a prefix is removed. ()U has 6 only different →reg-reducts. Hence U is regular.

For infinite λ-terms like (λx1.x1) (λx1.λx2.x2) (λx1.λx2.λx3.x3) . . . that do not have any
regular pseudoterm syntax-trees, both →reg+-decomposition and →reg-decomposition yield
infinitely many generated subterms, and hence they are neither regular nor strongly regular.

For a better understanding of the precise relationship between →reg and →reg+ , and
eventually of the two concepts of generated subterm and of regularity, we gather a number
of basic properties of these rewrite strategies and their constituents.

I Proposition 8. The restrictions of the rewrite relations from Def. 4 to Ter((λ∞)), the set
of objects of Reg and Reg+, have the following properties:

(i) →del is confluent, and terminating.
(ii) →S ⊆→del. Furthermore, →S is deterministic, hence confluent, and terminating.
(iii) →del one-step commutes with →λ, →@0 , →@1 , and one-step sub-commutes with →S ;

→del postpones over →λ, →@0 , →@1 and →S. Formulated symbolically, this means:
←del ⋅→λ ⊆ →λ ⋅←del ←del ⋅→@i ⊆ →@i ⋅←del ←del ⋅→S ⊆ →=S ⋅←=del
→del ⋅→λ ⊆ →λ ⋅→del →del ⋅→@i ⊆ →@i ⋅→del →del ⋅→S ⊆ →S ⋅→del

(iv) Normal forms of →reg and →reg+ are of the form (λx)x, and (λx1 . . . xn)xn, respectively.
(v) →reg and →reg+ are finitely branching, and, on finite terms, terminating.

Proof. These properties, including those concerning commutation of steps, are easy to verify
by analyzing the behavior of the rewrite rules in Reg on terms of Ter((λ∞)). J

I Proposition 9. (i) Let (λx⃗)T be a term in Ter((λ∞)) with ∣x⃗∣ = n ∈ N. Then the
number of terms (λy⃗)U in Ter((λ∞)) with (λy⃗)U ↠del (λx⃗)T and ∣y⃗∣ = n + k ∈ N is
(n+k
n

).
(ii) Let A ⊆ Ter((λ∞)) be a finite set, and k ∈ N. Then also the set of terms in Ter((λ∞))

that are the form (λy⃗)U with ∣y⃗∣ ≤ k and that have a ↠del-reduct in A is finite.
We state a lemma about a close connection between →reg- and →reg+ -rewrite sequences.

I Lemma 10. (i) On Ter(λ∞) it holds: ↞del ⋅ →reg+ ⊆ →!
del ⋅→=reg ⋅ ↞del , where →!

del
denotes many-step →del -reduction to →del -normal form. As a consequence of this and
of →!

del ⋅→=reg ⊆ ↠reg , every finite or infinite rewrite sequence in Ter(λ∞) of the form:

RTA’13



212 Expressibility in the Lambda Calculus with µ

τ ∶ (λx⃗0)T0 →reg+ (λx⃗1)T1 →reg+ . . .→reg+ (λx⃗k)Tk →reg+ . . .

projects over a sequence π ∶ (λx⃗0)T0 ↠del (λx⃗′0)T0 to a rewrite sequence of the form:

τ̌ ∶ (λx⃗′0)T0 ↠reg (λx⃗′1)T1 ↠reg . . . ↠reg (λx⃗′k)Tk ↠reg . . .

in the sense that (λx⃗k)Tk ↠del (λx⃗′k)Tk for all k ∈ N less or equal to the length of τ .
(ii) On Ter(λ∞) it holds: ↠del ⋅ →reg ⊆ →!

S ⋅→=reg+ ⋅↠del . Due to this and →!
S ⋅ →=reg+ ⊆

↠reg+ , every rewrite sequence τ ∶ (λx⃗′0)T0 →reg (λx⃗′1)T1 →reg . . .→reg (λx⃗′k)Tk →reg . . .

in Ter(λ∞) lifts over a sequence π ∶ (λx⃗0)T0 ↠del (λx⃗′0)T0 to a →reg+-rewrite sequence
of the form: τ̂ ∶ (λx⃗0)T0 ↠reg+ (λx⃗1)T1 ↠reg+ . . . ↠reg+ (λx⃗k)Tk ↠reg+ . . . in the
sense that (λx⃗k)Tk ↠del (λx⃗′k)Tk for all k ∈ N less or equal to the length of τ .

Proof. The inclusion properties in (10) and (10) can be shown by easy arguments with
diagrams using the commutation properties in Prop. 8, (iii), as well as (i) and (ii) from
there. J

Now we are able to establish that strong regularity implies regularity for infinite λ-terms.
I Proposition 11. Every strongly regular infinite λ-term is also regular. Finite λ-terms are
both regular and strongly regular.

Proof. Let T be a strongly regular infinite λ-term. Therefore ST +(T ) is finite. Since every
→reg-rewrite-sequence from ()T lifts to a →reg+ -rewrite-sequence from ()T over ↠del-com-
pression due to Lemma 10, (10), every term in ST (T ) is the ↠del–compression of a term in
ST +(T ). Then it follows by Prop. 9, (i), that also ST (T ) is finite. Hence T is also regular.

Let T be a finite λ-term. Due to to Prop. 8, (v), Kőnig’s Lemma can be applied to the
reduction graph of ()T with respect to↠reg+ to yield that T has only finitely many generated
subterms with respect to ↠reg+ . Hence T is strongly regular. J

3 Proving regularity and strong regularity

In this section we introduce proof systems for regularity and strong regularity: the systems
Reg∞ and Reg+,∞ with typically infinite derivations, and the systems Reg, Reg+, and Reg+0
for provability by finite derivations. A completed derivation of ()U in Reg∞ (in Reg+,∞)
corresponds to the ‘tree unfolding’ of the →reg -reduction graph (the →reg+ -reduction graph)
of ()U , which is a tree that describes all →reg -(resp. →reg+ -)rewrite sequences from ()U .
Closed derivations of ()U in Reg (in Reg+, or Reg+0) correspond to finite unfoldings of the
→reg -reduction graph (the →reg+ -reduction graph) into a graph with only vertical sharing.

We start by introducing proof systems for well-formed prefixed terms (terms in Ter((λ∞))).
I Definition 12 (proof systems (Λ)∞, (Λ)+,∞ for well-formed λ∞-terms). The proof systems
defined here act on CRS-terms over signature Σ(λ) as formulas, and are Hilbert-style systems
for potentially infinite prooftrees (of depth ≤ ω). The system (Λ)+,∞ has the axioms (0) and
the rules (@), (λ), and (S) in Fig. 3. The system (Λ)∞ arises from (Λ)+,∞ by replacing the
axioms (0) and the rule (S) with the axioms (0) and the rule (del) in Fig. 4, respectively.

A finite or infinite derivation T in (Λ)∞ (in (Λ)+,∞) is called closed if all terms in leafs of
T are axioms. Derivability of a term (λx⃗)T in (Λ)∞ (in (Λ)+,∞), symbolically ⊢(Λ)∞ (λx⃗)T
(resp. ⊢(Λ)+,∞ (λx⃗)T ), means the existence of a closed derivation with conclusion (λx⃗)T .

I Definition 13 (proof systems Reg∞, Reg+,∞). The proof systems Reg∞ and Reg+,∞ have
the same axioms and rules as (Λ)∞ and (Λ)+,∞, respectively, but they restrict the notion of
derivability. A derivation D in (Λ)∞ (in (Λ)+,∞) is called admissible in Reg∞ (in Reg+,∞)
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0(λx⃗y)y
(λx⃗y)T0

λ(λx⃗)λy.T0

(λx⃗)T0 (λx⃗)T1 @(λx⃗)T0 T1

(λx1 . . . xn−1)T S (if the binding
λxn is vacuous)(λx1 . . . xn)T

[(λx⃗)T ]l

D0

(λx⃗)T
FIX, l (if ∣D0∣ ≥ 1)

(λx⃗)T

Figure 3 The proof system Reg+ for strongly regular λ-terms. In the variant system Reg+0 of
Reg+, instances of (FIX) are subject to the additional side-condition: for all (λy⃗)U on threads in
D0 from open marked assumptions ((λx⃗)T )u downwards it holds that ∣y⃗∣ ≥ ∣x⃗∣. The systems (Λ)+,∞
and Reg+,∞ do not contain the rule FIX. Derivations in Reg+, Reg+0, and Reg∞ must be (S)-eager.

0(λy)y
(λx1 . . . xi−1xi+1 . . . xn)T del (if the binding

λxi is vacuous)(λx1 . . . xn)T

Figure 4 The proof system Reg for regular λ-terms arises from Reg+ through replacing the rule
(S) by the rule (del), and the axiom scheme (0) by the more restricted version here. The systems
(Λ)∞ and Reg∞ do not contain the rule (FIX). Derivations in Reg and Reg∞ must be (del)-eager.

if it contains only finitely many different terms, and if it is (del)-eager ((S)-eager), that is,
if no conclusion of an instance of (@) or (λ) in D is the source of a →del-step (a →S-step).
Derivability in Reg∞ (in Reg+,∞) means the existence of a closed admissible derivation.

We say that a proof system S is sound (complete) for a property P of infinite λ-terms if
⊢S ()T implies P (T ) (if P (T ) implies ⊢S ()T ) for all infinite λ-terms T .

The systems (Λ)∞ and (Λ)+,∞ are sound and complete for all infinite λ-terms in Ter(λ∞):
for completeness note that every prefixed term (λy⃗)U with U not a variable is the conclusion
of an instance of a rule in these systems. This leads us to statements for Reg∞ and Reg+,∞.

I Proposition 14. (i) Reg∞ is sound and complete for regularity of infinite λ-terms.
(ii) Reg+,∞ is sound and complete for strong regularity of infinite λ-terms.

Proof. We argue only for (ii), since (i) can be seen analogously. Every (S)-eager derivation
T in (Λ)+,∞ with conclusion ()T assembles the maximal →reg+ -rewrite sequences from ()T in
the following sense: the steps of every such rewrite sequence correspond to the steps through
T along a thread from the conclusion upwards. Therefore if T is an admissible derivation in
Reg+,∞, and hence contains only finitely many terms, then ST +(T ) is finite. Since every
term ()T in Ter((λ)) has a (S)-eager derivation in (Λ)+,∞, the converse holds as well. J

I Definition 15 (proof systems Reg, Reg+, and Reg+0). The natural-deduction style proof
system Reg+ has the axioms and rules in Fig. 3. Its variant Reg+0 demands an additional
side-condition on instances of the rule (FIX) as described there. The system Reg arises from
Reg+ by dropping the rule (S), and restricting the axioms to the axioms (0) in Fig. 4.

A derivation in one of these systems is called closed if it does not contain any undischarged
marker assumptions (discharging assumptions is indicated by assigning the appertaining
assumption markers to instances of FIX, see Fig. 3). Derivability in Reg (in Reg+ or in
Reg+0) means the existence of a closed, (del)-eager ((S)-eager), finite derivation.

The proposition below explains that the side-condition ‘∣D0∣ ≥ 1’ on subderivations of
FIX-instances guarantees a ‘guardedness’ property for threads in derivations in these systems.
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I Proposition 16. Let D be a derivation in Reg, Reg+, or Reg+0. Then for every instance
ι of the rule (FIX) in D it holds: every thread from ι upwards to a marked assumption that
is discharged at ι passes at least one instance of a rule (λ) or (@).

Proof. Let D be a derivation in Reg, as the argument is analogous for Reg+ and Reg+0. Let
ι be an instance of (FIX) in D, and π a thread from the conclusion (λy⃗)U of ι to a marked
assumption ((λy⃗)U)l that is discharged at ι. Then due to the side-condition on the topmost
instance κ of (FIX) passed on π there is at least one instance of a rule (λ), (@), or (del)
passed on π above κ. We are done unless that is an instance of (del). But then there must
also be an instance of (λ) on π, since (del) decreases the prefix length, only (λ) increases it,
and the prefix lengths in the formula at the start and at the end of π are the same. J

I Example 17. (i) The following are two derivations in Reg+ of different efficiency of the
infinite λ-term T from Fig. 1 when represented by the recursive equation T = λxy.T y x :

(()T )l
S(λx)T
S(λxy)T 0(λxy)y

@(λxy)T y

0(λx)x
S(λxy)x
@(λxy)T y x

λ(λx)λy.T y x
λ()λxy.T y x
FIX, l

()T

((λx)λy.T y x)l
λ()T

S(λx)T
S(λxy)T 0(λxy)y

@(λxy)T y

0(λx)x
S(λxy)x
@(λxy)T y x

λ(λx)λy.T y x
FIX, l

(λx)λy.T y x
λ()T

Note that only the left derivation is one in Reg+0, because the right one contains a term
with shorter prefix than the discharged assumption on a thread to the instance of FIX.

(ii) The infinite λ-term from Fig. 2, denoted by the term ()λx.R(x) and generated by the
CRS-rule R(X)→ λx.R(x)X is derivable in Reg by the closed derivation on the left,
but it is not derivable in Reg+ :

(

=(λx)R(x)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(λy)R(y))l

del(λxy)R(y)

0(λx)x
del(λxy)x
@(λxy)R(y)x

λ(λx)λy.R(y)x
FIX, l

(λx)R(x)
λ()λx.R(x)

⋮
(λxyzuv)R(v)u

λ(λxyzu)λv.R(v)u

0(λxyz)z
S(λxyzu)z
@(λxyzu)R(u) z

λ(λxyz)λu.R(u) z

0(λxy)y
S(λxyz)y
@(λxyz)R(z) y

λ(λxy)λz.R(z) y

0(λx)x
S(λxy)x
@(λxy)R(y)x

λ(λx)λy.R(y)x
λ()λx.R(x)

The latter follows from the infinite prooftree on the right, the result of a bottom-up proof
search in Reg+, which is a derivation in (Λ)+,∞ but not in Reg+,∞, since, as it does not
contain repetitions, the rule FIX cannot be used to cut off repetitive subderivations.

Finally, we can link derivability in Reg and Reg+ to regularity and strong regularity.

I Theorem 18. (i) Reg is sound and complete for regularity of infinite λ-terms.
(ii) Reg+ and Reg+0 are sound and complete for strong regularity of infinite λ-terms.

Proof. For (18), in view of Prop. 14, (i), it suffices to be able to transform closed, admissible
derivations in Reg∞ into closed derivations in Reg, and vice versa. Every closed derivation
D in Reg can be unfolded by a stepwise, typically infinite process into a closed derivation in
(Λ)∞: in every step the subderivation of a bottommost instance ι of FIX is transferred to
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above each of the marked assumptions that are discharged at ι, and the original instance of
FIX is removed. If this process is infinite, then due to Prop. 16 it always eventually increases
the size of the part of the derivation below the bottommost occurrences of FIX. Hence in the
limit it produces a closed, (del)-eager derivation in (Λ)∞ that contains only finitely many
terms (only those in D), and thus is admissible in Reg∞. Conversely, every admissible, closed
derivation T in Reg∞ can be ‘folded’ into a finite closed derivation in Reg by introducing
FIX-instances to cut off the derivation above the upper occurrence of a repetition. This
yields a finite derivation since due to admissibility of T in Reg∞ every sufficiently long
thread contains a repetition, and then Kőnig’s Lemma can be applied.

For Reg+ in (18) it can be argued analogously, using Prop. 14, (ii), and unfolding/folding
between closed derivations in Reg+ and closed, admissible derivations in Reg+,∞. Soundness
of Reg+0 follows from soundness of Reg+. For completeness of Reg+0, note that every closed,
admissible derivation T in Reg+,∞ can be ‘folded’ into a closed derivation of Reg+0 by using
a stricter version of repetition of terms: distinct occurrences of a term (λy⃗)U on a thread of
a prooftree form such a repetition only if all formulas in between have an equally long or
longer abstraction prefix. Since T is admissible, on every infinite thread θ of T there must
occur such a stricter form of repetition, namely of a term with the shortest abstraction prefix
among the terms that occur infinitely often on θ. J

4 Binding–Capturing Chains

In this section we develop a characterization of strongly regular infinite λ-terms through a
property of their term structure, concerning ‘binding–capturing chains’ on positions of the
term. While not needed for obtaining the result concerning λletrec-expressibility in Section 5,
we think that this characterization is of independent interest. However, we only outline its
proof here, which can be found in [6] and in a report [7] that accompanies this article.

Binding–capturing chains originate from the notion of ‘gripping’ due to Melliès [11], and
from techniques concerning the notion of ‘holding’ of redexes developed by van Oostrom [12].
In [5] they have been used to study α-conversion-avoiding µ-unfolding.

Technically, binding–capturing chains are alternations of two kinds of links between
positions of variable occurrences and λ-abstractions (called binders below) in a λ-term:
‘binding links’ from a λ-abstraction downward to the variable occurrences it binds, and
‘capturing links’ from a variable occurrence upward to λ-abstractions that do not bind it,
but are situated on the upward path to its binding λ-abstraction. We formalize these links
by binding and capturing relations, which are then used to define binding–capturing chains.

I Definition 19 (binding, capturing). For every T ∈ Ter(λ∞) we define two binary relations
on the set Pos(T ) of positions of T : the binding relation ⟜, and the capturing relation ⇢.
(For positions in iCRS-terms, see [10].) For defining these relations let p, q ∈ Pos(T ).

p⟜ q (in words: a binder, that is, a λ-abstraction, at p binds a variable occurrence at q)
holds if p is a binder position, and q a variable position in T , and the binder at position p
binds the variable occurrence at position q.

q ⇢ p (in words: a variable occurrence at q is captured by a binder at p), and conversely
p⇠ q (the binder at p captures a variable occurrence at q), hold if q is a variable position and
p < q a binder position in T , and there is no binder position q0 in T with p ≤ q0 and q0 ⟜ q.

I Definition 20 (binding–capturing chain). Let T ∈ Ter(λ∞). A finite or infinite sequence
⟨p0, q1, p1, q2, p2, . . .⟩ in Pos(T ) is called a binding–capturing chain in T if it links positions
alternatingly via binding and capturing: p1 ⟜ q2 ⇢ p2 ⟜ q3 ⇢ p3 ⟜ . . ., starting with a
binding and ending with a capturing. Its length is the number of ‘is captured by’ links.
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See Figs. 1 and 2 for illustrations of binding–capturing chains in terms we have encountered.
Next we introduce a position-annotated variant Reg+pos of Reg+ in order to relate binding–cap-
turing chains to rewrite sequences in Reg+. The idea is that if a λ-term T has a generated
subterm (λy1 . . . yn)U in Reg+, then (λy1 . . . yn)qp1,...,pn

U is a generated subterm in Reg+pos,
where p1, . . . , pn are the positions in T from which the bindings λy1 . . . yn in the abstraction
prefix descend, and q is the position in T of the body U of this generated subterm.

I Definition 21 (position-annotated variant Reg+pos of Reg+). On Ter((λ∞)) we consider the
following rewrite rules in informal notation:

(%@i
pos) ∶ (λx1 . . . xn)qp1,...,pn

T0 T1 → (λx1 . . . xn)qip1,...,pn
Ti (for each i ∈ {0,1})

(%λpos) ∶ (λx1 . . . xn)qp1,...,pn
λy.T0 → (λx1 . . . xny)q00

p1,...,pn,q
T0

(%S
pos) ∶ (λx1 . . . xn+1)qp1,...,pn+1

T0 → (λx1 . . . xn)qp1,...,pn
T0 (if binding λxn+1 is vacuous)

The change of the term-body position in a λ-decomposition step is motivated by the underlying
CRS-notation for terms in (λ∞): when a term abs([y]T0) representing a λ-abstraction starts
at position q, its binding is declared at position q0, and its body T0 starts at position q00.

By Reg+pos we denote the abstract rewriting system induced, similar to the definition of
Reg+ in Def. 4 earlier, by the rules above on position-annotated terms in Ter((λ∞)).

Also analogously to Def. 4, by →reg+ we denote the %S
pos-eager rewrite strategy for Reg+pos.

→reg+-rewrite sequences on terms in Ter((λ∞)) are related to →reg+-rewrite sequences
on position-annotated terms via lifting (adding annotations) and projecting (dropping
annotations). The proposition and the lemma below describe the connection between
position-annotated →reg+-rewrite sequences and the concepts of binding, capturing, and
binding–capturing chains. Then a lemma and the main theorem of this section are given.

I Proposition 22. For all T ∈ Ter(λ∞) and positions p, q ∈ Pos(T ) it holds:
p⟜ q ⇐⇒ ()ε⟨⟩T ↠reg+ (λx1 . . . xn)qp1,...,pn

xn ∧ p = pn

p⇠ q ⇐⇒ ()ε⟨⟩T ↠reg+ (λx1 . . . xi . . . xn)q
′

p1,...,pi,...,pn
U ↠reg+ (λx1 . . . xi)qp1,...,pi

xi

for some i < n such that p ∈ {pi+1, . . . , pn}

I Lemma 23 (binding–capturing chains). For all T ∈ Ter∞(λ) it holds:
(i) If ()εT ↠reg+ (λx1 . . . xn)qp1,...,pn

U , then p1 ⟜ q2 ⇢ p2 ⟜ . . .⟜ qn ⇢ pn holds for some
q2, . . . , qn ∈ Pos(T ).

(ii) If p1 ⟜ q2 ⇢ p2 ⟜ . . . ⟜ qn ⇢ pn is a binding–capturing chain in T , then there
exist r1, . . . , rm, s ∈ Pos(T ) with m ≥ n such that ()εT ↠reg+ (λx1 . . . xm)sr1,...,rm

U and
furthermore p1, . . . , pn ∈ {r1, . . . , rm} such that p1 < p2 < . . . < pn = rm.

I Lemma 24 (infinite binding–capturing chains). Let T be an infinite λ-term, and let τ be
an infinite →reg+-rewrite sequence ()T = (λx⃗0)T0 →reg+ (λx⃗1)T1 →reg+ . . . with the property
limi→∞ ∣x⃗i∣ =∞. Then there exists an infinite binding–capturing chain in T .

Proof (Sketch). The assumed infinite →reg+ -rewrite sequence can be lifted to one with posi-
tion annotations ()εT = (λx⃗0)εp⃗0

T0 →reg+ (λx⃗1)q1
p⃗1
T1 →reg+ (λx⃗2)q2

p⃗2
T2 →reg+ . . . where qi are

positions and p⃗i = ⟨p1, . . . , pmi⟩ vectors of positions. Due to limi→∞ ∣x⃗i∣ = lim infi→∞ ∣x⃗i∣ =∞
the sequence is of the form: ()εT = (λx⃗i0)

qi0
p⃗i0
Ti0 ↠reg+ (λx⃗i1)

qi1
p⃗i1
Ti1 ↠reg+ (λx⃗i2)

qi2
p⃗i2
Ti2 ↠reg+

. . . with 0 = ∣x⃗i0 ∣ < ∣x⃗i1 ∣ < ∣x⃗i2 ∣ < . . . and such that ∣x⃗ij ∣ ≤ ∣x⃗k ∣ holds for all j, k ∈ N with k ≥ ij .
Since steps in Reg+pos remove position annotations only when the corresponding abstraction
variable is dropped from the prefix in an →S-step, it follows that p⃗i0 < p⃗i1 < p⃗i2 < . . . holds
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with respect to the prefix order <. Hence in the limit these vectors tend to an infinite sequence
of positions r = ⟨r1, r2, r3,⋯⟩. Then Lemma 23, (23), can be used to show that the positions
on r are the binder positions of an infinite binding–capturing chain in T . J

I Theorem 25. An infinite λ-term is strongly regular if and only if it is regular and contains
only finite binding–capturing chains.

Proof (Sketch). Suppose that T is strongly regular. By Prop. 11, T is regular. Also, ST +(T )
is finite. Let n be the length of the longest abstraction prefix in ST +(T ). Then Lemma 23, (23),
implies that the length of any binding–capturing chain in T is bounded by n − 1.

Suppose that T is regular, but not strongly regular. Then ST (T ) is finite, while ST +(T )
is infinite. Since the rewrite strategy →reg+ has branching degree ≤ 2 (branching only happens
at sources of →@i-steps), Kőnig’s Lemma implies that there is an infinite →reg+-rewrite
sequence τ ∶ ()T = (λx⃗0)T0 →reg+ (λx⃗1)T1 →reg+ . . . that passes through distinct terms.
By Lemma 10, (10), τ projects to a →reg-rewrite sequence τ̌ ∶ ()T = (λx⃗′0)T0 ↠reg
(λx⃗′1)T1 ↠reg . . . under ↠del-rewrite sequences (λx⃗i)Ti ↠del (λx⃗′i)Ti, for all i ∈ N, that
respectively shortening the length of the abstraction prefix. As ST (T ) is finite, τ̌ passes only
through finitely many terms. This contrast with τ can be used to show that prefix lengths of
the terms on τ must tend to infinity. Due to this, Lemma 24 is applicable to τ , and yields
the existence of an infinite binding–capturing chain in T . J

5 Expressibility by terms of the λ-calculus with µ

Having adapted (in Section 2) the concept of regularity for infinite λ-terms in two ways, we
now obtain an expressibility result for one of these adaptations that is analogous to that in
[4] for regular first-order trees with respect to rational expressions (or equivalently, µ-terms).
We show that an infinite λ-term is strongly regular if and only if it is λµ-expressible.

We first define terms of λµ, the unfolding rewrite relation, and λµ-expressibility.

I Definition 26 (CRS-representation for λµ). The CRS-signature Σλµ = Σλ ∪ {mu} for λµ
extends Σλ by a unary function symbol mu. By Ter(λµ) we denote the set of closed finite
CRS-terms over Σλµ with the restriction that CRS-abstraction occurs only as an argument
of the symbols abs or mu. By Ter((λµ)) we denote the analogously defined set of terms over
the signature Σ(λ) ∪ {mu}. We consider the µ-unfolding rule in informal and formal notation:

(%µ) ∶ µx.M(x)→M(µx.M(x)) %µ ∶ mu([x]Z(x))→ Z(mu([x]Z(x)))

This rule induces the unfolding rewrite relation →µ on Ter(λµ) and Ter((λµ)). We say that
a λµ-term M expresses an infinite λ-term V if M ↠↠µ V holds, that is, M unfolds to V via a
typically infinite, strongly convergent →µ-rewrite sequence (similar for terms in Ter((λµ))).
And an infinite λ-term T is λµ-expressible if there is a λµ-term M that expresses T .

We sketch some intuition for the proof, which proceeds by a sequence of proof-theoretic
transformations. We focus on the more difficult direction. Let T be a strongly regular infinite
λ-term. We want to extract a λµ-term M that expresses T from the finite →reg+-reduction
graph G of T . We first obtain a closed derivation D of ()T in Reg+0. The derivation D can
be viewed as a finite term graph that has G as its homomorphic image, and that does not
exhibit horizontal sharing ([3, Sec. 4.3]). Such term graphs correspond directly to λµ-terms
(analogous to [3]). In order to extract the λµ-termM corresponding to D from this derivation,
we annotate it inductively to a λµ-term-annotated derivation D̂ with conclusion ()M ∶ T in
a proof system Expr that is a variant of Reg+0. Then it remains to show that M indeed
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0
(λx⃗y)y unfÔ⇒ (λx⃗y)y

(λx⃗)M0
unfÔ⇒ (λx⃗)T0 (λx⃗)M1

unfÔ⇒ (λx⃗)T1 @
(λx⃗)M0M1

unfÔ⇒ (λx⃗)T0 T1

(λx⃗y)M unfÔ⇒ (λx⃗y)T
λ

(λx⃗)λy.M unfÔ⇒ (λx⃗)λy.T

(λx⃗)M unfÔ⇒ (λx⃗)T
S (if the binding λy

is vacuous
in M and T )

(λx⃗y)M unfÔ⇒ (λx⃗y)T

(λx⃗)M(µf.M(f)) unfÔ⇒ (λx⃗)T
µ

(λx⃗)µf.M(f) unfÔ⇒ (λx⃗)T

Figure 5 Proof system Unf∞ for completely unfolding of λµ-terms into infinite λ-terms.

unfolds to T . For this we prove that D̂ unfolds to/gives rise to infinite derivations the variant
systems Expr∞ and Unf∞, which witnesses infinite outermost rewrite sequences M ↠↠µ T .

The CRS consisting of the rule %µ is orthogonal and fully-extended [13]. As a consequence
of the result in [9] that outermost-fair strategies in orthogonal, fully extended iCRSs are
normalizing, we obtain the following proposition.

I Proposition 27. Let M ∈ Ter(λµ) and T ∈ Ter(λ∞). If M expresses T , then there is an
outermost →µ-rewrite sequence of length ≤ω that witnesses M ↠↠µ T , and T is the unique
λ-term expressed by M . Analogously for prefixed terms in λµ that express prefixed λ-terms.
Hence the infinite outermost unfolding rewrite relation out↠↠!

µ to infinite normal form defines a
partial mapping from Ter(λµ) to Ter(λ∞), and from Ter((λµ)) to Ter((λ∞)).

The relation out↠↠!
µ can be defined via derivability in the proof system Unf∞ in Fig. 5: the

existence of a possibly infinite derivation that is closed in the sense of Def. 12, and admissible,
i.e. it is (S)-eager, and does not contain infinitely many consecutive instances of the rule (µ).

I Proposition 28. Unf∞ is sound and complete w.r.t. out↠↠!
µ : For all (λx⃗)T ∈ Ter((λ∞)) and

(λx⃗)M ∈ Ter((λµ)), ⊢Unf∞ (λx⃗)M unfÔ⇒ (λx⃗)T holds if and only if (λx⃗)M out↠↠!
µ (λx⃗)T .

I Definition 29 (proof systems Expr, Expr∞, and Exprµ, Expr∞µ ). The natural-deduc-
tion-style proof system Expr has as its formulas abstraction prefixed λµ-terms annotated
by infinite λ-terms, and the rules in Fig. 6. The system Exprµ has abstraction prefixed
λµ-terms as formulas, and its rules arise from Exprµ by dropping the λ-terms. Derivability
in these systems means the existence of a closed (no open assumptions), (S)-eager, finite
derivation.

The variant Expr∞ of Expr arises by replacing the rule (FIX) with the rule (µ) in Fig. 7.
Expr∞µ arises from Exprµ analogously. A derivation in either of these systems is admissible
if it does not contain infinitely many consecutive instances of (µ), and if it is (S)-eager in
the sense of Def. 13. Derivability in these systems means the existence of an admissible
derivation that is closed in the sense of Def. 12.

I Lemma 30. (i) For every λµ-term M : ⊢Exprµ ()M if and only if ⊢Expr∞µ ()M .
(ii) Every closed derivation in Expr∞µ contains only finitely many λµ-terms.
(iii) For every λµ-term M it holds: ⊢Exprµ ()M if and only if there is no →reg+-generated

subterm of M (in ST +(M)) of the form ()µx0 . . . xn.x0 for n ∈ N.

Proof. For (30), in order to show “⇒” let D be a finite, closed, (S)-eager derivation in Exprµ
with conclusion ()M . By ‘unfolding’ this derivation through a process in which in each step:
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0(λx⃗y) y ∶ y
(λx⃗y) M ∶ T

λ(λx⃗) λy.M ∶ λy.T
(λx⃗) M0 ∶ T0 (λx⃗) M1 ∶ T1 @(λx⃗) M0M1 ∶ T0 T1

(λx⃗) M ∶ T
S (if the binding λy is vacuous)

(λx⃗y) M ∶ T[(λx⃗) cl ∶ T ]l

D0

(λx⃗) M(cl) ∶ T FIX, l (if ∣D0∣ ≥ 1, and ∣y⃗∣ ≥ ∣x⃗∣ for all (λy⃗) N ∶ U on threads
from open assumptions ((λx⃗) cl ∶ T )l down)(λx⃗) µf.M(f) ∶ T

Figure 6 Natural-deduction style proof system Expr for expressibility of infinite λ-terms by
λµ-terms. The proof system Exprµ for λµ-terms that express infinite λ-terms arises by dropping the
colons ‘:’ and the subsequent infinite λ-terms. Derivations in Expr and Exprµ must be (S)-eager.

(λx⃗) M(µf.M(f)) ∶ T
µ

(λx⃗) µf.M(f) ∶ T

Figure 7 The proof system Expr∞ for expressibility of λ-terms by λµ-terms arises from Expr by
replacing the rule FIX with the rule µ. The proof system Expr∞µ for λµ-terms that express λ-terms
arises from Expr∞ by dropping the colons ‘:’ and the subsequent infinite λ-terms. Admissible
derivations in Expr∞ and in Expr∞µ do not have infinitely many consecutive instances of µ.

a subderivation
of a bottommost
instance of FIX

[(λy⃗)cl]l

D0(cl)
(λy⃗)N(cl) FIX, l

(λy⃗)µf.N(f)

is ‘unfolded’ into
a subderivation

[(λy⃗)cl]l

D0(cl)
(λy⃗)N(cl) FIX, l

[(λy⃗)µf.N(f)]
D0(µf.N(f))

(λy⃗)N(µf.N(f))
µ

(λy⃗)µf.N(f)

in the limit a closed derivation T in Expr∞µ is obtained with the same conclusion as D.
Furthermore, T does not contain infinitely many consecutive instances of µ, since the side-
condition on (FIX) guarantees a guardedness condition analogous to Prop. 16. Hence T is
a closed admissible derivation in Expr∞µ with conclusion ()M . For showing “⇐”, suppose
that T is a closed admissible derivation in Expr∞µ with conclusion ()M . Then there is a
finite closed derivation D with the same conclusion in the variant system Expr∞µ,− that does
not require the side-condition part ∣D0∣ ≥ 1 for instances of FIX. Via the process described
above, D unfolds to a closed, (S)-eager derivation in Expr∞µ , which has to be equal to T ,
since closed (S)-eager derivations in Expr∞µ are unique (due to the rules of this system). If
D would not satisfy the guardedness condition described in Prop. 16, and therefore would
also violate the mentioned side-condition part, for any of its FIX-instances, then T would
not be admissible. It follows that D is a closed derivation in Exprµ with conclusion ()M .

For (30) note that by the argument for “⇐” in (30), every closed derivation in Expr∞µ is
the unfolding of a closed derivation in Exprµ, and that the unfolding process can produce
only finitely many λµ-terms. Statement (30) follows by an easy analysis of closed derivations
in Expr∞µ,− that violate the guardedness condition in Prop. 16 on any of its FIX-instances. J

I Lemma 31. For all infinite prefixed λ-terms T , ⊢Reg+0 (λx⃗)T holds if and only if there
exists a λµ-term M such that ⊢Expr (λx⃗) M ∶ T .

Proof (Sketch). Every derivation D in Reg+0 with conclusion (λx⃗)T can be annotated with
appropriate λµ-terms, by induction on the derivation depth, thereby introducing appropriate
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constants and exploiting the form of the rules in Expr, to a derivation D̂ in Expr with
conclusion (λx⃗) M ∶ T and corresponding assumptions, for some prefixed λµ-term (λx⃗)M .

Conversely, the result of dropping the λµ-terms and the subsequent colons in a derivation
D′ in Expr results in a derivation Ď′ in Reg+0. J

I Example 32. The derivation Dl in Reg+0 from Example 17, (i), on the left can be annotated,
as described by Lemma 31 to obtain the following derivation D̂l in Expr :

(() cl ∶ T )l
S(λx) cl ∶ T S(λxy) cl ∶ T

0(λxy) y ∶ y
@(λxy) cl y ∶ T y

0(λx) x ∶ x
S(λxy) x ∶ x
@(λxy) cl y x ∶ T y x

λ(λx) λy.cl y x ∶ T y x
λ() λxy.cl y x ∶ λxy.T y x FIX, u

() µf.λxy.f y x ∶ T

Note that the λµ-term in the conclusion unfolds to T , the infinite λ-term in Fig. 1.

I Theorem 33. The proof system Expr is sound and complete with respect to ↠↠!
µ : for

all expressions (λx⃗) M ∶ T of λµ-term-annotated, prefixed infinite λ-terms it holds that
⊢Expr (λx⃗) M ∶ T if and only if (λx⃗)M ↠↠!

µ (λx⃗)T .

Proof. For “⇒” let D be a closed, (S)-eager derivation in Expr with conclusion (λx⃗) M ∶ T .
By an unfolding process and arguments analogous as described in the proof of Lemma 30, D
unfolds to a closed admissible prooftree T in Expr∞ with the same conclusion. By changing
all symbols “∶” in T to “ unfÔ⇒”, and distributing the abstraction prefixes in the expressions of
T over “ unfÔ⇒”, a closed admissible prooftree T ′ in Unf∞ is obtained that has the conclusion
(λx⃗)M unfÔ⇒ (λx⃗)T . Then by Prop. 28 it follows that (λx⃗)M ↠↠!

µ (λx⃗)T .
For “⇐”, suppose that (λx⃗)M ↠↠!

µ (λx⃗)T holds. Then Prop. 28 entails that there is
a closed admissible derivation T in Unf∞ with the conclusion (λx⃗)M unfÔ⇒ (λx⃗)T . Since
subderivations of closed admissible derivations in Unf∞ are again such derivations, it follows
by Prop. 28 and Prop. 27 that T does not contain more infinite λ-terms than λµ-terms. By
dropping the symbols unfÔ⇒ and the infinite λ-terms on the right, a closed admissible derivation
Tµ in Expr∞µ is obtained. Due to Lemma 30, (30), Tµ, and hence T , contains only finitely
many λµ-terms. As T does not contain more infinite λ-terms than λµ-terms, it follows that
T contains only finitely many formulas. By changing all symbols “ unfÔ⇒” in T into “∶”, and
gathering the abstraction prefixes in the expressions of T , a closed admissible prooftree T ′
in Expr∞ with the conclusion (λx⃗) M ∶ T and only finitely many formulas are obtained.

Finally, similar as in the proof of Theorem 18, T ′ can be ‘folded’ into a finite closed
derivation D′ in Expr with conclusion (λx⃗) M ∶ T by introducing FIX-instances to cut
off the derivation above the upper occurrence of a repetition (the side-condition on such
instances of FIX is guaranteed due to admissibility of T ′). J

I Theorem 34. An infinite λ-term is λµ-expressible if and only if it is strongly regular.

Proof. For all infinite λ-terms T it holds:

T is λµ-expressible ⇐⇒ ∃M ∈ Ter(λµ). M ↠↠!
µ T (by Prop. 27)

⇐⇒ ∃M ∈ Ter(λµ). ⊢Expr ()M ∶ T (by Theorem 33)
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⇐⇒ ⊢Reg+0 ()T (by Theorem 31)
⇐⇒ T is strongly regular (by Theorem 18, (18)),

which establishes the statement of the theorem. J

As a consequence of Theorems 34 and 25 we obtain a theorem with our main results.

I Theorem 35. For all infinite λ-terms the following statements are equivalent:
(i) T is λµ-expressible.
(ii) T is strongly regular.
(iii) T is regular, and it only contains finite binding–capturing chains.

6 Generalization to λletrec and practical perspectives

In [6] we undertook an in-depth study of expressibility in λletrec, and obtained the more
general, but analogous result for full λletrec instead of only for λµ. While there are significantly
more technicalities involved, the structure of the proofs is analogous to here. Instead of
demanding eager application of the scope-delimiting rules %del and %S, respectively, there we
study λ-term decomposition →S

reg and →S
reg+ for arbitrary scope-delimiting strategies S.

Concepts introduced here and in [6] have the potential to be practically relevant for the
implementation of functional programming languages. In [8] we study various higher-order
and first-order term-graph representations of cyclic λ-terms. Their definitions draw heavily
on the decomposition rewrite systems in this paper. That is, every term in λletrec can be
translated into a finite first-order ‘λ-term-graph’ by applying the rewrite strategy →reg+ to
the expressed strongly regular, infinite λ-term. Thereby vertices with the labels λ, @, S are
created according to the kind of →reg+ -step observed (plus variable occurrence vertices with
label 0). The degree of sharing exhibited by λ-term-graphs can be analyzed with functional
bisimulation. In [8] we identify a class of first-order representations with eager application of
scope closure that faithfully preserves and reflects the sharing order on higher-order term
graphs. This leads to an algorithm for efficiently determining the maximally shared form of a
term in λletrec, which can be put to use in a compiler as part of an optimizing transformation.

Associated with this article is the report [7], which contains more details on Section 4.
Also closely related is the report [6] about the more general case of expressibility in λletrec.
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