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Abstract
A concurrent system can be naturally specified as a rewrite theory R = (Σ, E,R) where states
are elements of the initial algebra TΣ/E and concurrent transitions are axiomatized by the rewrite
rules R. Under simple conditions, narrowing with rules R modulo equations E can be used to
symbolically represent the system’s state space by means of terms with logical variables. We
call this symbolic representation a logical state space and it can also be used for model checking
verification of LTL properties. Since in general such a logical state space can be infinite, we
propose several abstraction techniques for obtaining either an over-approximation or an under-
approximation of the logical state space: (i) a folding abstraction that collapses patterns into
more general ones, (ii) an easy-to-check method to define (bisimilar) equational abstractions, and
(iii) an iterated bounded model checking method that can detect if a logical state space within
a given bound is complete. We also show that folding abstractions can be faithful for safety
LTL properties, so that they do not generate any spurious counterexamples. These abstraction
methods can be used in combination and, as we illustrate with examples, can be effective in
making the logical state space finite. We have implemented these techniques in the Maude
system, providing the first narrowing-based LTL model checker we are aware of.
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1 Introduction

Model checking of finite-state systems is very well-developed (see. e.g., [2, 8]) and is
well-supported by many tools and algorithms. Although model checking of infinite-state
systems is more challenging, important advances have been made by various approaches, e.g.
[1, 4, 11, 19, 22]. What many of these approaches have in common is the use of symbolic
representations —such as formulas in a decidable logic or regular (string or tree) languages—
to represent not just states but possibly infinite sets of states.

An intriguing possibility —first proposed in [31] for the simpler case of reachability
analysis, and extended in [16] to LTL model checking— is to use rewriting-based symbolic
techniques for infinite-state model checking by: (i) formalizing a concurrent system as a
rewrite theory R = (Σ, E,R), whose states are elements of the initial algebra TΣ/E , and
whose concurrent transitions are axiomatized by the rules R; (ii) representing possibly infinite
sets of states by Σ-terms t(x1, . . . , xn) with logical variables x1, . . . , xn, so that t(x1, . . . , xn)
describes the set of its ground instances modulo E; and (iii) assuming an E-unification
algorithm is available, exploring the logical state space, whose states are terms with logical
variables t(x1, . . . , xn), by performing narrowing with R modulo E (see Section 2).
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82 Abstract Logical Model Checking of Infinite-State Systems

However, at the time the papers [16, 31] were published, no implementation of such
narrowing-based logical model checking existed, and important open problems had to be
resolved before its practical effectiveness could be demonstrated. This paper is all about
solving such open problems by developing new narrowing-based model checking methods,
and incorporating these new methods in an actual tool that can demonstrate the practical
effectiveness of the narrowing-based model checking approach.

Open Problems Addressed. The main problems left unresolved by [16, 31] include:

1. Dealing with infinite logical state spaces. Narrowing can in general generate an infinite
number of symbolic states; even though the idea of folding logical states by means of the
subsumption 4E modulo E proposed in [16] showed that an infinite logical state space
could sometimes be folded into a finite one, this was just one method, and no model
checking algorithm existed when it failed.

2. Dealing with a broad class of theories for which finitary unification algorithms exist. The
key point is that the equations E in a rewrite theory R must define not just structural
axioms of the state, such as the associative-commutative nature of a set of processes, for
which well-known unification algorithms exist: E must also define the truth values of the
state predicates on which the temporal logic formulas are based. There is no hope that a
finite set of unification algorithms can handle equations E of this kind: generic methods
that can support a broad class of user-defined equational theories E are needed.

3. Dealing with spurious counterexamples. The use of abstractions typically brings with it
spurious counterexamples that violate the given LTL formula on the abstract system but
not in the concrete one. Can this spuriousness be avoided?

Our Contributions. Problem (1) is addressed in a twofold way by: (i) developing new
abstraction techniques for logical state spaces that can be seamlessly combined with folding,
such as equational abstractions (extended and simplified from their use in concrete state
spaces in [30]) and the new bisimilar equational abstractions (Section 3.3); and (ii) developing
a new bounded LTL logical model checking algorithm that does not require the state space to
be finite, can model check a system up to a given depth, and can detect that a finite state
space exists within the depth and support full verification in that case (Section 4).

Problem (2) is addressed by supporting equational theories E having the finite variant
property [10] using the generic variant narrowing and unification algorithms in [17]; our
approach is similar to that of the Maude-NPA [15], but is applied here to general LTL model
checking, whereas Maude-NPA only supports reachability analysis for a restricted domain.

Problem (3) is addressed by showing that folding the logical state space by means
of the subsumption 4E modulo E can give a faithful abstraction that does not generate
any spurious counterexamples when verifying safety LTL properties (Section 3.2). This
faithfulness of course holds when folding with 4E and bisimilar equational abstractions
are used in combination. Note that folding abstractions are strictly more general than
bisimulations since they are not faithful for general LTL properties.

Another important contribution is that all these new methods are supported by the new
Maude LTL logical model checker that uses the Maude infrastructure [9, 12] for variant
narrowing/unification and has many of its features implemented at the C++ level for efficiency
reasons. We illustrate both the effectiveness of the tool and the new methods presented here
by means of two nontrivial infinite-state systems: Lamport’s bakery algorithm and Dijkstra’s
mutual exclusion algorithm for an unbounded number of processes (Section 5).
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Related Work. Logical model checking is complementary to other infinite-state model
checking techniques that symbolically represent a system’s state space, such as regular
languages [1], string/multiset grammars [4, 34], tree automata [22, 32], constraint logic
programming [11], Presbuger arithmetic [6], program specialization [20], etc. Similar to
logical model checking, they are often combined with abstraction methods, e.g., [5, 7, 21].

Our abstract logical model checking differs from these approaches in several ways. First,
we do not impose restrictions in the formalisms used for the verification of properties.
Except for requiring that equations have the finite variant property, the only condition
imposed on the rewrite theories is being topmost, which is easily satisfied by many systems,
including concurrent object-oriented systems. Second, the combination of different abstraction
techniques can give a faithful abstraction that has no spurious counterexamples.

Similar to folding abstractions, there exist many infinite-state model checking methods
to exploit an order relation 4, e.g., [14, 19]. However, those methods typically assume that
4 is well quasi-ordered (which implies well-foundedness of 4), while we do not impose such
conditions on 4. Indeed, the E-subsumption relation 4E is, in general, not well-founded.

Bisimilar equational abstractions are also related to other abstraction techniques, e.g.,
[8, 25]. For rewrite theories, it is related to, and complements, abstraction techniques for
rewrite theories such as [18, 30]. The main difference is that usual abstraction techniques
do not provide bisimulations between the abstract and concrete systems and when they do
provide them, they rely on manual proofs, instead than on simple, checkable criteria (such
as those in Theorem 17) for defining bisimilar equational abstractions.

2 Preliminaries on Narrowing-based Logical Model Checking

An order-sorted signature is a triple Σ = (S,≤,Σ) with poset of sorts (S,≤) and operators Σ
typed in (S,≤). The set TΣ(X )s denotes the set of Σ-terms of sort s, and TΣ,s denotes the set
of ground Σ-terms of sort s. Positions in a term t are denoted as strings of nonzero natural
numbers that represent tree positions when t is parsed as a tree. A subterm of a term t at a
position p is denoted by t|p, and the replacement in t of such a subterm by another term u is
denoted by t[u]p. A substitution σ : Y → TΣ(X ) is a function from Y ⊆ X to TΣ(X ) such
that σy has the same sort as that of y ∈ Y . The substitution instance σt is a term obtained
from t by simultaneously replacing each occurrence of variable y ∈ Dom(σ) in t with σy.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some sort s ∈ Σ.
Given a set E of Σ-equations, equational logic induces a congruence relation =E on terms
t, t′ ∈ TΣ(X ) [29]. The E-subsumption preorder t 4E t′ holds iff there exists a substitution
σ : Y → TΣ(X ) such that t =E σt′, meaning that t′ is more general than t modulo E. The
E-renaming equivalence t ≈E t′ holds iff there exists a substitution θ : X → X such that
t =E θt′ and θ(x) 6= θ(y) for any x, y ∈ X , implying that t 4E t′ and t′ 4E t.

An order-sorted rewrite theory is a triple R = (Σ, E,R) with Σ an order-sorted signature,
E a set of Σ-equations, and R a set of rewrite rules, written l −→ r, where l, r are Σ-terms.
Each rule l −→ r specifies a one-step rewrite t −→R,E t′ iff there is a non-variable position p
in t and a substitution σ such that t|p =E σl and t′ = t[σr]p. A rewrite theory R specifies a
concurrent system whose states are axiomatized as the initial algebra TΣ/E (i.e., each state
is an E-equivalence class [t]E ∈ TΣ/E of ground terms), and whose concurrent transitions
are axiomatized as one-step rewrites −→R,E [28]. A rewrite theory R is topmost iff for each
l −→ r ∈ R, l, r ∈ TΣ(X )State for a sort State at the top of one of the connected component
of (S,≤), and no operator in Σ has State or any of its subsorts as an argument sort. This
ensures that all rewrites with rules in R must take place at the top of the term.

RTA’13



84 Abstract Logical Model Checking of Infinite-State Systems

For a rewrite theory R = (Σ, E,R), state propositions can be defined by means of
its equations. Each state proposition is defined as a term of sort Prop using (possibly
parametric) function symbols of the form p : s1 . . . sn → Prop, and the satisfaction relation
is defined by equations using the auxiliary operator _|=_ : State Prop → Bool, where sort
Bool has two constants true and false such that true 6=E false and for any term t ∈ TΣ,Bool
of sort Bool, either t =E true or t =E false holds. By definition, a state proposition
p(u1, . . . , un) ∈ TΣ/E,Prop is satisfied on [t]E ∈ TΣ/E,State iff (t |= p(u1, . . . , un)) =E true.

If R includes a set AP of state propositions whose values on states are fully defined by its
equations E, we can associate to R a corresponding Kripke structure K(R)AP for LTL model
checking. A Kripke structure is a 4-tuple K = (S,AP,L,−→ K) with S a set of states, AP a
set of atomic state propositions, L : S → P(AP) a state-labeling function, and −→K ⊆ S×S a
total transition relation where every state s ∈ S has a next state s′ ∈ S with s −→K s′. Given
a subset S0 ⊆ S, the set of its successors is PostK(S0) = {s ∈ S | (∃s0 ∈ S0) s0 −→K s},
and the set of its reachable states is Post∗K(S0) =

⋃
i∈N(PostK)i(S0). We assume R is

deadlock-free, since R can be transformed into an equivalent deadlock-free theory [30].

I Definition 1. Given R = (Σ, E,R) and a set AP of state propositions defined by its
equations E, the corresponding Kripke structure is K(R)AP = (TΣ/E,State,AP,L,−→R,E),
where L([t]E) = {p ∈ AP | (t |= p) =E true}.

We present a topmost rewrite theory R specifying Lamport’s bakery algorithm for mutual
exclusion. Each state has the form “i ; j ; [m1] . . . [mn],” where i is the current number in
the bakery’s number dispenser, j is the number currently being served, and the [m1] . . . [mn]
are a multiset of customer processes, each in a mode ml, which can be either idle (has
not yet picked a number), or wait(n) (waiting with number n), or crit(n) (being served
with number n). We model natural numbers as the free commutative monoid generated
by 1 (denoted s) with multiset union (addition), denoted __ (empty syntax), satisfying
associativity, commutativity, and identity (0) axioms. For example, 0 = 0, and 3 = s s s. The
behavior of the bakery algorithm is then specified by the following topmost rewrite rules:

rl [wake]: N ; M ; [idle] PS => (s N) ; M ; [wait(N)] PS .
rl [crit]: N ; M ; [wait(M)] PS => N ; M ; [crit(M)] PS .
rl [exit]: N ; M ; [crit(M)] PS => N ; (s M) ; [idle] PS .

The state proposition ex? for the mutual exclusion is defined by the following equations,
where the variable WS stands for a set of processes whose status is either idle or wait(n):

eq N ; M ; WS |= ex? = true .
eq N ; M ; [crit(M1)] WS |= ex? = true .
eq N ; M ; [crit(M1)] [crit(M2)] PS |= ex? = false .

This system is infinite-state in two ways: (i) the counters i and j are unbounded; and (ii)
the number n of customer processes is also unbounded. For example, given the initial state
“0 ; 0 ; [idle],” we obtain the infinite transition system of Figure 1.

0 ; 0 ; [idle]

��

s ; s ; [idle]

��

s s ; s s ; [idle]

��
s ; 0 ; [wait(0)]

��

s s ; s ; [wait(s)]

��

s s s ; s s ; [wait(s s)]

��
s ; 0 ; [crit(0)]

66

s s ; s ; [crit(s)]

55

· · ·

Figure 1 An infinite transition system for the Bakery algorithm from “0 ; 0 ; [idle].”
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Narrowing [23, 24] generalizes term rewriting by allowing free variables in terms and
by performing unification instead of matching. An E-unifier for an equation t = t′ is a
substitution σ such that σt =E σt′, and a set CSUE(t = t′) of E-unifiers is complete iff any
E-unifier ρ for t = t′ has a more general substitution σ in CSUE(t = t′), i.e., there is a
substitution η such that ρ =E σ ◦ η. Given a topmost rewrite theory R = (Σ, E,R), if the
left-hand sides of the rules R are non-variable terms and a finitary E-unification procedure
is available, each rule l −→ r specifies a topmost narrowing step t;σ,R,E t′ (or t;R,E t′)
iff there exists an E-unifier σ ∈ CSUE(t = l) such that t′ = σr.

If an equational theory (Σ, E) has the finite variant property, there is an algorithm to
compute a finitary and complete set CSUE(t = t′) of E-unifiers [17]. An E-variant of a term t

is a pair (t′, θ) with t′ an E-canonical form of a substitution instance θt, i.e., θt −→∗E t′ and
t′ cannot be further rewritten. A variant (t2, θ2) is more general than (t1, θ1) iff there is
a substitution η such that t1 =E ηt2 and θ1 =E θ2 ◦ η. An equational theory (Σ, E) has
the finite variant property iff the set of most general E-variants for each term is finite (see
[10, 17] for details). For the Bakery example, the equations for the state proposition ex?
trivially satisfy the finite variant property because their right-hand sides are all constants.

Such a rewrite theory R = (Σ, E,R) also specifies a logical transition system NR [16]
whose states are elements of the algebra TΣ/E(X ) of sort State (excluding variables as states),
and whose transitions are specified by topmost narrowing steps  R,E . That is, the states of
NR are not concrete states (i.e., ground terms), but state patterns, that is, terms t(x1, . . . , xn)
with logical variables x1, . . . , xn. What t(x1, . . . , xn) stands for is not a single state, but the
set of all concrete states [θt] ∈ TΣ/E,State that are its ground instances.

If a rewrite theory R = (Σ, E,R) defines a finite set AP of state propositions by its
equations E, we can also associate to R a corresponding narrowing-based logical Kripke
structure NAP

R . Each state in the underlying logical transition system NR is now split into
possibly several states in NAP

R (by ;AP in the following definition) so that the truth of every
state proposition for each state in NAP

R is decided into true or false.

I Definition 2. [16] Given a rewrite theory R = (Σ, E,R) and a finite set AP = {p1, . . . , pn}
of state propositions defined by E, its narrowing-based logical Kripke structure is:

NAP
R =

(
NAP
R , AP, L, (;R,E ;;AP)

)
where t (;R,E ;;AP) t′ ⇐⇒ (∃u) t;R,E u;AP t′, and

NAP
R = {[t]E ∈ TΣ/E(X )

State
−X | (∀p ∈ AP) (t |= p) =E true ∨ (t |= p) =E false},

L([t]E) = {p ∈ AP | (t |= p) =E true},
t ;AP t′ ⇐⇒ ∃θ ∈ CSUE

(
(t |= p1) = w1 ∧ · · · ∧ (t |= pn) = wn

)
such that t′ = θt,

where for each 1 ≤ i ≤ n, wi is either true or false.

For the Bakery example, given the logical initial state N ; N ; [idle], we obtain within NR the
infinite transition system in Figure 2. The corresponding Kripke structure N {ex?}

R is then
similar to NR, but each logical state in NR is split according to the truth of ex?.

N ; N ; [idle]

��

s N ; s N ; [idle]

��

s s N ; s s N ; [idle]

��
s N ; N ; [wait(N)]

��

s s N ; s N ; [wait(s N)]

��

s s s N ; s s N ; [wait(s s N)]

��
s N ; N ; [crit(N)]

55

s s N ; s N ; [crit(s N)]

44

· · ·

Figure 2 An infinite transition system with logical states for the Bakery algorithm.

RTA’13
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Such a narrowing-based Kripke structure NAP
R can be considered as an exact abstraction

of the concrete Kripke structure K(R)AP , where concrete states are abstracted by means of
the E-subsumption preorder 4E as shown in the following theorem.

I Theorem 3. [16] Given a topmost rewrite theory R = (Σ, E,R) and a finite set AP of
state propositions defined by E, for an LTL formula ϕ and a pattern t ∈ NAP

R :

NAP
R , [t]E |= ϕ ⇐⇒ (∀θ : X → TΣ) K(R)AP , [θt]E |= ϕ.

However, NAP
R often has an infinite number of logical states as in Figure 2. The following

sections explain how we can reduce it to a finite state space by abstraction techniques that
provide either an over-approximation or an under-approximation of NAP

R .

3 Abstract Logical Model Checking

For model checking techniques, an abstraction K̂ of a concurrent system typically preserves
all moves of the original system K, in terms of a simulation between K and K̂. Given two
Kripke structures Ki = (Si,AP,Li,−→Ki

), i = 1, 2, a binary relation H ⊆ S1 × S2 is a
simulation iff (i) s1Hs2 and s1 −→K1 s

′
1 implies that (∃s′2 ∈ S2) s′1Hs′2 and s2 −→K2 s

′
2, and

(ii) s1Hs2 =⇒ L1(s1) = L2(s2). A simulation H ⊆ S1 × S2 is total iff for any s1 ∈ S1 there
exists s2 ∈ S2 such that s1Hs2. H is a bisimulation iff both H and H−1 are simulations. If
K2 simulates K1, any LTL formula satisfied in K2 is also satisfied in K1.

I Lemma 4. [8] Given Ki = (Si,AP,Li,−→Ki), i = 1, 2, for a simulation H ⊆ S1 × S2, if
s1

0Hs
2
0, then for any LTL formula ϕ over AP, K2, s

2
0 |= ϕ implies K1, s

1
0 |= ϕ.

This section presents two abstraction techniques for narrowing-based logical model
checking, namely, folding abstractions and equational abstractions. Such an abstraction K̂
provides an over-approximation of the original system K, i.e., K̂ simulates K. Thus, if we
verify that ϕ holds for K̂, then we can be sure that it also holds for K. However, as usual
for over-approximation abstraction techniques, a counterexample in K̂ can be spurious, so
that it has no counterpart in K. We also provide some conditions for both abstraction
techniques when K̂ can be faithful for a certain subset ∆ of LTL formulas so that K̂ generates
no spurious counterexamples, i.e., for each ϕ ∈ ∆ and sH ŝ, K̂, ŝ |= ϕ iff K, s |= ϕ.

3.1 Folding Abstractions
We can reduce a logical Kripke structure by collapsing each state into a more general state
according to the E-subsumption preorder 4E , by the notion of folding abstraction proposed
in [16]. In this paper we further generalize folding abstractions with any folding preorder 4.

I Definition 5. Given a Kripke structure K = (S,AP,L,−→K), a folding preorder 4 ⊆ S2

is a reflexive and transitive relation on S that defines a simulation between K and K.

For a narrowing-based Kripke structure NAP
R , the most common folding relations are: equality

modulo E, renaming modulo E, and matching modulo E, i.e., 4 ∈ {=E ,≈E ,4E} [16].
We can iteratively construct a folding abstraction of a Kripke structure K from a set of

initial states I ⊆ S, using a folding preorder 4 ⊆ S2 as shown in Definition 6 below. Each
state s ∈ S in K is collapsed into a previously seen state t ∈ S such that s 4 t, while any
transition for the folded state s is transferred to the state t in the folding abstraction. Such
a folded Kripke structure has in general much fewer states than the original structure, and
can sometimes collapse an infinite-state space to a finite-state one.
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I Definition 6 (Folding Abstraction). Given K = (S,AP,L,−→K), a folding preorder 4 ⊆ S2,
and a set of initial states I ⊆ S, the folding abstraction of K from I is the Kripke structure

Reach4K(I) = (Post∗K4(I), AP, L, −→Reach4
K(I))

where Post∗K4(I) =
⋃
i∈N PostiK4(I) and −→Reach4

K(I)=
⋃
i∈N −→

4
K,i such that:

Postn+1
K4 (I) is the successor set of PostnK4(I) not subsumed by previously seen states:

Post0
K4(I) = I, Postn+1

K4 (I) = {s ∈ PostK(PostnK4(I)) | ∀l ≤ n ∀u ∈PostlK4(I). s 64 u}.

−→4
K,n+1 ⊆ PostnK4(I)×

[⋃
0≤i≤n+1 PostiK4(I)

]
defines the transitions from each state

s ∈ PostnK4(I) to a next state t ∈ PostlK4(I) for 0 ≤ l ≤ n+ 1, up to n+ 1 steps:

−→4
K,0= ∅, s −→4

K,n+1 s
′ ⇐⇒ ∃t ∈ PostK(s). t 4 s′.

Each reachable state s ∈ Post∗K(I) in a Kripke structure K has a corresponding abstract
state ŝ ∈ Post∗K4(I) in the folding abstraction Reach4K(I) as follows.

I Lemma 7. Given K = (S,AP,L,−→ K), a folding preorder 4 ⊆ S2, and a set of initial
states I ⊆ S, for each reachable state s ∈ Post∗K(I), there is ŝ ∈ Post∗K4(I) such that s 4 ŝ.

Proof. For a reachable state s ∈ Post∗K(I) of K, there exists a finite path πs : [n]→ S with
length n ∈ N beginning in I and ending at s (i.e., πs(0) ∈ I and πs(n − 1) = s), where
[n] = {0, 1, . . . , n}. We show this lemma by induction on the length of πs. First, if |πs| = 0,
then s ∈ I = Post0

K4(I) ⊆ Post∗K4(I), and s 4 s. Next, suppose that for any path π

beginning in I with length n, there exists an abstract state tn−1 ∈ Post∗K4(I) such that
π(n− 1) 4 tn−1. Consider a path πs with length n+ 1 such that πs(0) ∈ I and πs(n) = s.
By induction hypothesis, there exists tn−1 ∈ Post∗K4(I) such that πs(n− 1) 4 tn−1. Notice
that tn−1 ∈ PostkK4(I) for some k ∈ N. Since 4 is a simulation between K and K:

πs(n− 1) ∈ Post∗K(I) −→K πs(n) ∈ Post∗K(I)
4 4

tn−1 ∈ PostkK4(I) −→K ∃ tn ∈ PostK(PostkK4(I))

There are now two possibilities: (i) if tn ∈ Postk+1
K4 (I), we found tn ∈ Post∗K4(I) such that

s = πs(n) 4 tn; (ii) otherwise, there exist l ≤ k and u ∈ PostlK4(I) such that tn 4 u, since
by definition Postk+1

K4 (I) = {s ∈ PostK(PostkK4(I)) | ∀l ≤ k ∀u ∈PostlK4(I). s 64 u}; that is,
we found u ∈ Post∗K4(I) such that s = πs(n) 4 tn 4 u. J

Furthermore, the folding abstraction Reach4K(I) of K = (S,AP,L,−→K) simulates the
reachable substructure ReachK(I) of K that only contains reachable states from I, where
ReachK(I) = (Post∗K(I), AP, L, −→K ∩ (Post∗K(I))2).

I Theorem 8. Given K = (S,AP,L,−→ K), a folding preorder 4 ⊆ S2, and a set of initial
states I ⊆ S, the folding preorder 4 is a total simulation between ReachK(I) and Reach4K(I).

Proof. Suppose s 4 t and s −→K s′ for states s, s′ ∈ Post∗K(I) and an abstract state
t ∈ Post∗K4(I). By definition, t ∈ PostkK4(I) for some k ∈ N. Since 4 is a simulation
between K and K, there exists t′ ∈ PostK(PostkK4(I)) such that t −→K t′ and s′ 4 t′. There
are also two possibilities: (i) if t′ ∈ Postk+1

K4 (I), we have t −→4
K,k+1 t

′ such that s′ 4 t′;
(ii) otherwise, by definition of Postk+1

K4 (I), there exist l ≤ k and t′′ ∈ PostlK4(I) such that
t′ 4 t′′, and we have t −→4

K,k+1 t
′′ again, where s′ 4 t′ 4 t′′. Therefore, 4 is a simulation

between ReachK(I) and Reach4K(I). Also, 4 is total by Lemma 7. J
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N ; N ; [idle] [idle]

id��
id

--
s N ; N ; [wait(N)] [idle]

id��
id

��

s N ; N ; [idle] [wait(N)]
id��

id

xx

s N ; N ; [crit(N)] [idle]

id

<< <<

s N ; N ; [idle] [crit(N)]

id

hhhh

s(s N) ; N ; [wait(N)] [wait(s N)]
id // s(s N) ; N ; [crit(N)] [wait(s N)]

id

AA AA

s(s N) ; N ; [wait(s N)] [crit(N)]

id

88 88

s(s N) ; N ; [wait(s N)] [wait(N)]
idoo

Figure 3 A finite folding abstraction with a folding preorder 4E for the Bakery algorithm. We
add a double-headed arrow between states A and C to denote both a transition from state A to
another state B and the fact that state B is folded into state C.

For our Bakery example, given the logical initial state N ; N ; [idle] [idle], Figure 3 shows
the finite folding abstraction of N {ex?}

R with the folding preorder 4E . The mutual exclusion
�ex? is satisfied in the folding abstraction, since the state proposition ex? evaluates to true
in every state. Thanks to Theorem 8, �ex? is satisfied for any possible instance of it.

3.2 Faithfulness of Folding Abstractions
A folding abstraction Reach4K(I) is in general an over-approximation of a logical state space.
If an LTL formula ϕ is not satisfied in Reach4K(I), it can generate a spurious counterexample
for ϕ. Nonetheless, if a folding preorder 4 is symmetric, then 4 becomes a total bisimulation
by Theorem 8, so that both satisfy exactly the same set of LTL formulas. For example, both
=E and ≈E are symmetric for a narrowing-based Kripke structure.

What can we then say about 4E for a narrowing-based Kripke structure? Since 4E is
more general than =E and ≈E , it has a better chance to yield a finite state space, although it
may generate a spurious counterexample for an LTL formula. However, a folding abstraction
is faithful for invariants; that is, if there is a counterexample for any invariant �Φ in
Reach4K(I), where Φ is a boolean formula with no temporal operators, there exists a real
counterexample in K. This faithfulness follows from the fact that each state in Reach4K(I) is
still reachable from I in the original Kripke structure K.

I Lemma 9. Given a Kripke structure K = (S,AP,L,−→K), a folding preorder 4 ⊆ S2,
and a set of initial states I ⊆ S, we have Post∗K4(I) ⊆ Post∗K(I).

Proof. Recall that Post∗K4(I) =
⋃
i∈N PostiK4(I). By definition, Post0

K4(I) = I ⊆ Post∗K(I).
Suppose that PostnK4(I) ⊆ Post∗K(I) for some n ∈ N. Since Postn+1

K4 (I) ⊆ PostK(PostnK4(I)),
for each s′ ∈ Postn+1

K4 (I), there exists s ∈ PostnK4(I) such that s −→K s′. By induction
hypothesis, s ∈ Post∗K(I), and thus s′ ∈ Post∗K(I). Therefore, Postn+1

K4 (I) ⊆ Post∗K(I). J

If a folding abstraction Reach4K(I) does not satisfy an invariant, then there exists an error
state s ∈ Post∗K4(I) in Reach4K(I) that violates the invariant. Because the error state s
is again reachable from I in the original Kripke structure K, we can construct a concrete
counterexample in K by backward search from s to I. Consequently:

I Theorem 10 (Faithfulness for Invariants). Given a Kripke structure K = (S,AP,L,−→ K),
a folding preorder 4 ⊆ S2, and a set of initial states I ⊆ S, for any invariant �Φ:

Reach4K(I), I |= �Φ ⇐⇒ K, I |= �Φ.
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Moreover, folding abstractions can provide a faithful model checking procedure for safety
LTL formulas. For a safety LTL formula ϕ, there exists a finite automaton F¬ϕ that recognizes
counterexamples for ϕ [2, 26]. A finite automaton is a 5-tuple F = (Q,Q0,P(AP), δ, F ) with
Q a finite set of states, Q0 ⊆ Q a set of initial states, P(AP) an alphabet of transition
labels, δ ⊆ Q × P(AP) × Q a transition relation, and F ⊆ Q a set of final states. The
language accepted by F is the set L(F) of finite runs of F starting in Q0 and ending in F .
Given a Kripke structure K and a set I ⊆ S of initial states, the synchronous product of
K and F is a finite automaton K[I] × F = (S × Q, I × Q0,P(AP), δK, S × F ) such that
(s, b) L(s)−−→ (s′, b′) ∈ δK iff s −→K s′ ∧ b L(s)−−→ b′ ∈ δ. The model checking problem of a safety
LTL formula ϕ can then be characterized by using a finite automaton F¬ϕ associated to the
negated formula ¬ϕ, where K, I |= ϕ iff L(K[I]× F¬ϕ) = ∅ [2, 26].

Since the emptiness checking of the finite automaton K[I]×F¬ϕ can be characterized by the
reachability analysis of the final states, we can apply our previous result to faithfully abstract
the synchronous product K[I]× F¬ϕ. For a folding preorder 4 of K, let the product preorder
4F ⊆ (S ×Q)2 be defined by the equivalence: (s, b) 4F (s′, b′) ⇐⇒ s 4 s′ ∧ b = b′.

I Lemma 11. Given a finite automaton F and a folding preorder 4 for a Kripke structure K,
the product preorder 4F is a folding preorder for the synchronous product K[I]× F.

Proof. Suppose that (s1, b1) L(s1)−−−→ (s′1, b′1) ∈ δK and (s1, b1) 4F (s2, b2). By definition,
s1 4 s2 and b1 = b2. Since 4 is a simulation between K and K, there exists s′2 ∈ S such
that s2 −→K s′2 and s′1 4 s′2, and L(s1) = L(s2). Hence, (s2, b2) L(s1)−−−→ (s′2, b′1) ∈ δK, and
(s′1, b′1) 4F (s′2, b′1). Therefore, 4F is a simulation between K[I]× F and K[I]× F. J

Therefore, by Theorem 10, for a safety LTL formula ϕ, L
(
Reach4F¬ϕ

K[I]×F¬ϕ
(I ×Q0)

)
= ∅ iff

L(K[I]× F¬ϕ) = ∅. Consequently, we have:

I Theorem 12 (Faithfulness for Safety Properties). Given K = (S,AP,L,−→ K), a folding
preorder 4 ⊆ S2, and a set of initial states I ⊆ S, for a safety LTL formula ϕ, there exists
a finite automaton F¬ϕ with Q0 a set of initial states such that:

L
(
Reach4F¬ϕ

K[I]×F¬ϕ
(I ×Q0)

)
= ∅ ⇐⇒ K, I |= ϕ.

3.3 Equational Abstractions for Logical State Space
A logical state representation for a rewrite theory R already affords a huge abstraction, and
it may turn an infinite system into a more manageable system. However, even a folding
abstraction of such a logical state space need not be finite in general. For example, when
we consider our Bakery example and the logical initial state N ; N ; IS that does not bound
the number of customer processes, the folding abstraction with 4E has an infinite path that
keeps incrementing the number of processes with instantiation, as shown in Figure 4.

N ; N ; IS

IS/IS1[idle]
��

s s N ; N ; IS2 [wait(N)]
[wait(s N)]

IS2/IS3[idle]
��

s s s s N ; N ; IS4 [wait(N)] [wait(s N]
[wait(s s N)] [wait(s s s N)]

IS4/IS5[idle]
��s N ; N ; IS1

[wait(N)]

IS1/IS2[idle]

88

s s s N ; N ; IS3 [wait(N)]
[wait(s N] [wait(s s N)]

IS3/IS4[idle]

55

· · ·

Figure 4 An infinite folded logical transition system for the Bakery algorithm with an arbitrary
number of processes. The logical variable ISk stands for a set of idle processes.
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An abstraction of a concurrent system can be constructed by a suitable equivalence
relation ≡ on states [8, 30]. Given K = (S,AP,L,−→K) and an equivalence relation
≡ ⊆ S×S such that s1 ≡ s2 implies L(s1) = L(s2), the quotient abstraction K/≡ is a Kripke
structure (S/≡,AP,L,−→K/≡) where [s1] −→K/≡ [s2] iff (∃s′1 ∈ [s1], s′2 ∈ [s2]) s′1 −→K s′2.
For a topmost and deadlock-free rewrite theory R = (Σ, E,R) containing a set AP of
state propositions defined by the equations E, by adding a set of extra equations G to
R, we can define an equational abstraction R/G = (Σ, E ∪ G,R) [30], which specifies
the quotient abstraction of K(R)AP by the equivalence relation ≡G on states, namely,
[t]E ≡G [t′]E ⇐⇒ t =E∪G t′, where [t]E ≡G [t′]E implies L([t]E) = L([t′]E).

In this section we explain how equational abstractions can be applied for narrowing-based
model checking for collapsing an infinite logical state space into a finite one, whereas equation
abstractions [30] are used for ground terms in the literature for non-logical state spaces.

I Definition 13 (Equational Abstraction). Given R = (Σ, E,R) and a set of equations G,
the rewrite theory R/G = (Σ, E ∪ G,R) defines an equational abstraction iff: (i) finitary
unification procedures modulo E and modulo E ∪G are available, and (ii) true 6=E∪G false.

If a set AP of state propositions is fully defined by E, whenever t =E∪G t′ for two states
t, t′ ∈ TΣ/E,State, condition (ii) ensures that both t and t′ satisfy exactly the same state
propositions. Note that if E ∪G has the finite variant property, there is a finitary unification
procedure module E ∪G as explained in [10, 17], which is available in the Maude system [12].

Similar to equational abstractions for a concrete Kripke structure K(R)AP , we obtain a
simulation between a logical Kripke structure NAP

R and its equational abstraction NAP
R/G.

I Lemma 14. Given a topmost rewrite theory R = (Σ, E,R), a finite set AP of state
propositions defined by E, and a set G of equations, if R/G is an equational abstraction,
then HG = {([t]E , [t]E∪G) | t ∈ TΣ(X )State} is a simulation between NAP

R and NAP
R/G.

Proof. For t ∈ TΣ(X ) and u ∈ TΣ/G(X ), suppose t =E∪G u and t  θ,R,E t′ using rule
l −→ r ∈ R, that is, θ ∈ CSUE(t = l) and t′ = θ(r). Since θ ∈ CSUE(t = l), there exists
θ′ ∈ CSUE∪G(u = l) such that θ =E∪G θ′. Therefore, for u′ = θ′r, u θ′,R,E∪G u′ using the
same rule l −→ r ∈ R and t′ = θr =E∪G θ′r = u′. J

We introduce bisimilar equational abstractions, which ensure a bisimulation between the
narrowing-based Kripke structure NAP

R and its quotient abstraction NAP
R/G.

I Definition 15 (Bisimilar Equational Abstraction). Given a rewrite theory R = (Σ, E,R)
and a set G of extra equations, an equational abstraction R/G is a bisimilar equational
abstraction iff for any states t1, t2, t3 ∈ TΣ/E,State:

t1 −→R,E t2 ∧ t1 =E∪G t3 =⇒ (∃t4 ∈ TΣ/E,State) t3 −→R,E t4 ∧ t2 =E∪G t4.

Notice that for a bisimilar equational abstraction R/G, the equivalence relation =E∪G is
indeed a bisimulation for R with respect to −→R,E , since =E∪G is symmetric.

I Theorem 16. Given a topmost rewrite theory R = (Σ, E,R) and a finite set AP of state
propositions defined by the equations E, if R/G is a bisimilar equational abstraction, then
HG = {([t]E , [t]E∪G) | t ∈ TΣ(X )State} is a bisimulation between NAP

R and NAP
R/G.

Proof. We only need to prove the HG is a simulation between NAP
R/G and NAP

R . For terms
u ∈ TΣ/G(X ) and t ∈ TΣ(X ), suppose u =E∪G t and u  σ,R,E∪G u′, i.e., σu −→R,E∪G u′.
Since σu =E∪G σt, by definition of bisimilar equational abstractions, there exists a term
t′ ∈ TΣ/E such that σt −→R,E t′ and u′ =E∪G t′. Therefore, by completeness of narrowing,
there exists a substitution σ′ such that t σ′,R,E t′. J
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N ; N ; IS
IS/IS1[idle]

// s N; N ; IS1 [wait(N)]

IS1/IS2[idle]
��

id // s N; N ; IS1 [crit(N)]

id
rr

s s N; N ; IS2 [wait(N)] [wait(s N)]IS2/IS3[idle]
&& id // s s N; N ; IS2 [crit(N)] [wait(s N)]

id
ll

Figure 5 An abstract folded logical transition system for the bakery example.

A bisimilar equational abstraction with topmost equations of the form t = t′ with
t, t′ ∈ TΣ(X )State can be easily identified by checking critical pairs between the left-hand
sides of the rules and both sides of the equations in the equational abstraction, and checking
that application of an equation does not interfere with the application of a rewrite rule. This
process can easily be automated in a similar way to the existing Maude coherence checker
[13], which checks similar (but slightly different) conditions between equations and rules.

I Theorem 17 (Necessary/Sufficient Conditions for Bisimilarity). Given a topmost rewrite
theory R and an equational abstraction R/G for a set G of topmost equations, R/G is a
bisimilar equational abstraction iff for each rule l −→ r and each u = v ∈ G or v = u ∈ G:

σ ∈ CSUE(l = u) =⇒
(
∃θ : X → TΣ(X )

)
σv =E θl ∧ σr =E∪G θr. (*)

Proof. (If) Suppose that t1 −→R,E t2 and t1 =E∪G t3. If =k
G/E denotes k applications of

equations in G modulo E, then t1 =n
G/E t3 for some n ∈ N. We prove by induction on the

number n that (∃t4) t3 −→R,E t4 and t2 =E∪G t4. When n = 0, it is immediate because
t1 =E t3 and then t3 −→R,E t2. For n > 0, assume that if t1 =n

G/E t′3 for any t′3 ∈ TΣ/E,State,
there exists t′4 ∈ TΣ/E,State such that t′3 −→R,E t′4 and t2 =E∪G t′4. If t1 =n

G/E t′3 =1
G/E t3,

then t′3 −→R,E t′4 and by using the critical pair condition in the statement, (∃t4) t3 −→R,E t4
and t′4 =E∪G t4. Finally, we have that t2 =E∪G t′4 =E∪G t4 and the conclusion follows.
(Only if) The property t1 −→R,E t2 ∧ t1 =E∪G t3 =⇒ (∃t4) t3 −→R,E t4 ∧ t2 =E∪G t4
must be satisfied for a term t3 that has only one application of the equations in G, i.e.,
t1 =1

G/E t3. And such a case is indeed represented by the conditions of the statement. J

The reason why only topmost equations are allowed for bisimilar equational abstractions is
to avoid problems caused by repeated variables in transition rules. For instance, consider
R = {f(X,X) −→ h(X)}, E = ∅ and G = {a = b}. This topmost rewrite theory satisfies
the condition of the previous theorem except G being topmost. Then, given the term f(a, a),
f(b, a) =G f(a, a) but now f(b, a) cannot be rewritten with R.

For our bakery example, we can obtain a bisimilar equational abstraction of the fol-
ded transition system by restricting the abstraction only to the following equation, which
intuitively collapses extra waiting processes that does not introduce any new behaviors:
eq (s s s L M) ; M ; PS0 [wait(s L M)] [wait(s s L M)]

= (s s L M) ; M ; PS0 [wait(s L M)] .

I Lemma 18. The above equation satisfies the bisimilarity conditions (*) in Theorem 17.

Proof. If we consider the rule [wake]: N ; M ; [idle] PS => (s N) ; M ; [wait(N)] PS, then
CSUE(l = u) has the single E-unifier σ = {PS 7→ PS1[wait(s M L)][wait(s s M L)], N 7→ s s s M L,
PS0 7→ PS1[idle]}, where E denotes the equational axioms. Then, σv =E θl and σr =E∪G θr,
for the substitution θ = {N 7→ s s M L, PS 7→ PS1[wait(s M L)]}. For the other direction of
the equation, CSUE(l = v) =

{
σ′ = {PS 7→ PS2[wait(s M L)], PS0 7→ PS2[idle], N 7→ s s M L}

}
,

and for the substitution θ′ = {N 7→ s s s M L, PS 7→ PS2[wait(s M L)] [wait(s s M L)]}, we have
σ′u =E θ′l and σ′r =E∪G θ′r. The cases for the other rules are similar. J
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Therefore, in order to model check the invariant �ex? from the initial pattern N ; N ; IS
for an unbounded number of processes, we can then construct the finite abstract folded
logical transition system from the given initial pattern displayed in Figure 5, where any
counterexamples found are not spurious by Theorems 10 and 16.

4 Logical Bounded LTL Model Checking with Folding

We have shown that an infinite logical state space can be reduced to a finite state space using
folding abstractions and equational abstractions. Although we can always achieve a finite
logical state space using a trivial equational abstraction that collapses every state into a
single state, the interesting case is obtaining bisimilar equational abstractions that produce
a finite logical state space. However, we cannot ensure a priori whether such an abstract
logical state space is finite or not, since it is in general undecidable for many infinite-state
systems. Therefore, we introduce a logical bounded model checking (LBMC) method for
verifying LTL properties, which provides an under-approximation of a logical state space.

In LBMC, we construct a k-step folding abstraction of K whose states are reachable in
k-steps from a set of initial states I ⊆ S. Such a depth k is iteratively incremented until a
certain bound or until reaching a fixed-point if it exists.

I Definition 19. Given K = (S,AP,L,−→K), a folding preorder 4 ⊆ S2, and a set of initial
states I ⊆ S, the k-step folding abstraction of K from I is the Kripke structure

Reach4,kK (I) = (Post≤kK4(I), AP, L, −→Reach4,k
K (I)),

where Post≤kK4(I) =
⋃

0≤i≤k PostiK4(I) and −→Reach4,k
K (I)=

⋃
0≤i≤k −→

4
K,i.

For a (∞-step) folding abstraction Reach4K(I) we can easily see that if its state set Post∗K4(I)
is finite, there exists n ∈ N such that Reach4,jK (I) = Reach4K(I) for any j ≥ n by definition.
Therefore, unlike typical bounded model checking methods (e.g., [3]), our folding-based
method can easily detect if Reach4,nK (I) is complete or not.

The LBMC of a logical Kripke structure N with a set of initial states I and a folding
preorder 4 consists in model checking N (I)4i = Reach4,iN (I) for each i ∈ N, iteratively from
0 until one of the following termination conditions holds: (i) N (I)4i is complete (a fixpoint is
found), (ii) a counterexample is found in N (I)4i , or (iii) i is greater than a given maximum
bound n. The LBMC algorithm for an LTL formula ϕ is briefly described as follows:

1. Apply a standard explicit-state LTL model checking algorithm to verify ϕ on N (I)4k . If
a counterexample of ϕ is found in N (I)4k , stop and return the counterexample.

2. Suppose that there is no counterexample of ϕ in N (I)4k .
a. If k ≥ n, stop and report that N does not violate ϕ until the current bound k.
b. Otherwise, generate N (I)4k+1 with the next bound k + 1:

i. If N (I)4k+1 is identical to N (I)4k , that is, N (I)4k is complete, return true;
ii. Otherwise, increment the depth-bound k by 1 and go to Step 1.

If the LBMC algorithm returns a counterexample, there are three possibilities according to
the underlying folding preorder. If 4 is the E-renaming equivalence ≈E or ϕ is an invariant,
it is an actual counterexample in N . If 4 is the E-subsumption 4E and ϕ is a general LTL
formula, it may be a spurious counterexample. Of course, if an equation abstraction has
been applied, it is a real counterexample in N only for a bisimilar equational abstraction.
Note that the above LBMC algorithm can easily be extended to guarantee the faithfulness
for safety LTL properties as explained in Section 3.2.
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5 The Maude LTL Logical Model Checker and Examples

This section illustrates the Maude LTL logical model checker (LMC) tool with two examples.
This tool uses the existing narrowing framework in Full Maude to compute narrowing ;σ,R,E

[12]. However, for efficiency reasons, the core algorithms for the folding graph construction
and the LTL model checking are implemented at the C++ level within the Maude system.
For the LBMC algorithm, we apply an on-the-fly technique to reuse the previously generated
states for the next step. The Maude LTL LMC tool and a number of other examples can be
found in http://formal.cs.illinois.edu/kbae/lmc.

Our tool provides the following two commands for logical model checking an LTL formula
ϕ from an initial state t with the maximum bound n ∈ N:

(lmc [n] t |= ϕ .) and (lfmc [n] t |= ϕ .)

This bound n limits the depth of the k-step folding graph Reach4,kNAP
R

([t]E) from an initial state
[t]E ∈ NAP

R . Each command uses a different folding relation 4 : the renaming equivalence
≈E for the lmc command, and the subsumption 4E for the lfmc command. If a bound n is
not specified in the command, infinity is considered as the bound.

5.1 The Bakery Algorithm Revisited
The following command partially verifies that the mutual execution �ex? is satisfied from
any initial state with the pattern N ; N ; IS:ProcIdleSet within the bound 10:
Maude > (lmc [10] N:Nat ; N:Nat ; IS: ProcIdleSet |= [] ex? .)
logical model check in BAKERY - SATISFACTION :

N:Nat ; N:Nat ; IS: ProcIdleSet |= [] ex?
result :

no counterexample found within bound 10

This model checking command does not terminate if the bound is not specified, since ≈E is
not strong enough to collapse the reachable transition system to a finite one. The bound
should be specified to ensure the termination even with 4E , since, as already shown in
Figure 4, for such a logical initial state the folding logical approximation is infinite:
Maude > (lfmc [50] N:Nat ; N:Nat ; IS: ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY - SATISFACTION :

N:Nat ; N:Nat ; IS: ProcIdleSet |= [] ex?
result :

no counterexample found within bound 50

Instead, when the subsumption 4E is applied, with the bisimilar equational abstraction
shown in Section 3.3, the mutual exclusion property �ex? can be verified from the initial
pattern N ; N ; IS:ProcIdleSet as follows,1 where, as shown in Figure 5, five logical states
are generated in less than one second on an Intel Core i5 2.4 GHz with 4GB RAM:
Maude > (lfmc N:Nat ; N:Nat ; IS: ProcIdleSet |= [] ex? .)
logical folding model check in BAKERY - SATISFACTION -ABS :

N:Nat ; N:Nat ; IS: ProcIdleSet |= [] ex?
result :

true

1 Note that the module BAKERY-SATISFACTION-ABS extends the previous module BAKERY-SATISFACTION
with the abstraction equation in Section 3.3.
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l0 : repeat
l1 : flag [ i ] := 1
l2 : while turn 6= i do

if flag [turn] = 0 then turn := i
l3 : flag [ i ] := 2

l4 : for j 6= i do
if flag [ j ] = 2 then goto l1

crit : /∗ critical region ∗/
l5 : flag [ i ] := 0

forever

Figure 6 The Dijkstra’s Mutual Exclusion Algorithm (for a process i) [27]

5.2 Dijkstra’s Mutual Exclusion Algorithm

This section illustrates a topmost rewrite theory with another mutual exclusion algorithm
for an arbitrary number of processes. Dijkstra’s algorithm [27] considers n processes with
n ≥ 2, and two shared variables: (i) flag[1 . . . n] is an array of values {0, 1, 2} for each process
1 ≤ i ≤ n, and (ii) turn is an integer between 1 and n. The behavior of this algorithm is
summarized by the pseudo code in Figure 6.

We represent a state of this system as a multiset of triples < {f1, p1, t1} · · · {fk, pk, tk} >,
where each {fi, pi, ti} represents a process with fi a value of flag[i], pi a program counter,
and ti a turn specifier that can be either on (i.e., turn = i) or off (i.e., turn 6= i). Only
one process can be turned on at a time. The behavior of this system is then specified by
the following topmost rewrite rules, where PS stands for the remaining set of precesses, and
WAITPS stands for a multiset of processes whose flag is either 0 or 1:

rl [l1] : < {F,l0 ,T} PS > => < {1,l1 ,T} PS > .
rl [l2] : < {F,l1 ,off} {0,S,on} PS > => < {F,l1 ,on} {0,S,off} PS > .
rl [l2 ’]: < {F,l1 ,on} PS > => < {F,l2 ,on} PS > .
rl [l3] : < {F,l2 ,T} PS > => < {2,l3 ,T} PS > .
rl [l4] : < {F,l3 ,T} {2,S,T’} PS > => < {1,l1 ,T} {2,S,T’} PS > .
rl [l4 ’]: < {F,l3 ,T} WAITPS > => < {F,crit ,T} WAITPS > .
rl [l5] : < {F,crit ,T} PS > => < {0,l5 ,T} PS > .
rl [l0] : < {F,l5 ,T} PS > => < {F,l0 ,T} PS > .

Similar to the Bakery example, the mutual exclusion property of a single state can be
specified by the atomic proposition ex?, defined by the following equations, where the logical
variable NCPS stands for a set of processes whose program counter is not crit:

eq < NCPS > |= ex? = true .
eq < {F,crit ,T} NCPS > |= ex? = true .
eq < {F,crit ,T} {F’,crit ,T’} PS > |= ex? = false .

This system is infinite-state since the number of processes is unbounded. As a result, if
the logical variable IS denotes a set of processes with flag 0 and program counter l0, the
reachable logical state space from the pattern < IS:InitProcSet > is infinite even with the
subsumption 4E . However, we can obtain a finite bisimilar equational abstraction by adding
the following topmost equations,2 which satisfy the conditions (*) in Theorem 17:

eq < {F,l1 ,off} {F,l1 ,off} PS > = < {F,l1 ,off} PS > .
eq < {F,l5 ,off} {F,l5 ,off} PS > = < {F,l5 ,off} PS > .

2 These equations G do not satisfy the finite variant property (see the conditions on [17]). However, all
the reachable logical states from the given initial state < IS > have a finite set of most general G-variants,
which is enough to have a finitary G-unification procedure for the reachable logical state space.
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Then, the mutual exclusion �ex? can be verified from the pattern < IS:InitProcSet >
that represents an arbitrary number of processes by the following command, where 42 logical
spaces are generated in less than 6 second on the same machine:

Maude > (lfmc < IS: InitProcSet > |= [] ex? .)
logical folding model check in DIJKSTRA -MUTEX - SATISFACTION -ABS:

< IS: InitProcSet > |= [] ex?
result :

true

6 Conclusions

Using narrowing to model check LTL formulas on infinite-state systems is an intriguing
symbolic method proposed in [16], whose practical effectiveness has required finding new
methods to solve several open problems —such as Problems (1)–(3) in Section 1— and
demonstrating its effectiveness in practice by supporting tools and examples. This paper has
presented several new methods solving, or substantially improving, many of these difficulties,
and the new Maude LTL logical model checker supporting these new techniques. We have
also shown the effectiveness of the tool in verifying two nontrivial examples.

As usual much work remains ahead. Although the execution times shown in examples
are quite reasonable, the tool’s efficiency can be substantially improved by systematically
exploiting the folding variant narrowing and unification features implemented at the C++
level in the upcoming new release of Maude. We plan to do this in the near future. Also,
although the tool implementation is reasonably mature and has been tested on a collection
of nontrivial examples, more experimentation is needed to increase its performance and
illustrate its use on a wider set of applications. Another promising research direction is
combining narrowing and SMT solving, using the rewriting modulo SMT ideas [33].
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