
Evidence Normalization in System FC (Invited
Talk)
Dimitrios Vytiniotis and Simon Peyton Jones

Microsoft Research, Cambridge
dimitris@microsoft.com, simonpj@microsoft.com

Abstract
System FC is an explicitly typed language that serves as the target language for Haskell source
programs. System FC is based on System F with the addition of erasable but explicit type
equality proof witnesses. Equality proof witnesses are generated from type inference performed
on source Haskell programs. Such witnesses may be very large objects, which causes performance
degradation in later stages of compilation, and makes it hard to debug the results of type inference
and subsequent program transformations. In this paper we present an equality proof simplific-
ation algorithm, implemented in GHC, which greatly reduces the size of the target System FC
programs.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, F.3.3 Studies of
Program Constructs

Keywords and phrases Haskell, type functions, system FC

Digital Object Identifier 10.4230/LIPIcs.RTA.2013.20

1 Introduction

A statically-typed intermediate language brings a lot of benefits to a compiler: it is free
from the design trade-offs that come with source language features; types can inform op-
timisations; and type checking programs in the intermediate language provides a powerful
consistency check on each stage of the compiler.

The Glasgow Haskell Compiler (GHC) has just such an intermediate language, which
has evolved from System F to System FC [16, 20] to accommodate the source-language
features of GADTs [6, 15, 13] and type families [9, 3]. The key feature that allows System
FC to accomodate GADTs and type families is its use of explicit coercions that witness the
equality of two syntactically-different types. Coercions are erased before runtime but, like
types, serve as a static consistency proof that the program will not “go wrong”.

In GHC, coercions are produced by a fairly complex type inference (and proof inference)
algorithm that elaborates source Haskell programs into FC programs [19]. Furthermore,
coercions undergo major transformations during subsequent program optimization passes.
As a consequence, they can become very large, making the compiler bog down. This paper
describes how we fixed the problem:

Our main contribution is a novel coercion simplification algorithm, expressed as a rewrite
system, that allows the compiler to replace a coercion with an equivalent but much
smaller one (Section 4).
Coercion simplification is important in practice. We encountered programs whose un-
simplified coercion terms grow to many times the size of the actual executable terms,
to the point where GHC choked and ran out of heap. When the simplifier is enabled,
coercions simplify to a small fraction of their size (Section 5).

© Dimitrios Vytiniotis and Simon Peyton Jones;
licensed under Creative Commons License CC-BY

24th International Conference on Rewriting Techniques and Applications (RTA’13).
Editor: Femke van Raamsdonk; pp. 20–38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-53-8
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

D. Vytiniotis and S. Peyton Jones 21

c ∈ Coercion variables
x ∈ Term variables
e, u ::= x | l | λx :σ.e | e u

| Λa:η.e | e φ Type polymorphism
| λc:τ.e | e γ Coercion abstraction/application
| K | case e of p → u Constructors and case expressions
| let x :τ = e in u Let binding
| e . γ Cast

p ::= K c:τ x :τ Patterns

Figure 1 Syntax of System FC (Terms).

To get these benefits, coercion simplification must take user-declared equality axioms
into account, but the simplifier must never loop while optimizing a coercion – no matter
which axioms are declared by users. Proof normalization theorems are notoriously hard,
but we present such a theorem for our coercion simplification. (Section 6)

Equality proof normalization was first studied in the context of monoidal categories and we
give pointers to early work in Section 7 – this work in addition addresses the simplification
of open coercions containing variables and arbitrary user-declared axioms.

2 An overview of System FC

We begin by reviewing the role of an intermediate language. GHC desugars a rich, complex
source language (Haskell) into a small, simple intermediate language. The source language,
Haskell, is implicitly typed, and a type inference engine figures out the type of every binder
and sub-expression. To make type inference feasible, Haskell embodies many somewhat ad-
hoc design compromises; for example, λ-bound variables are assigned monomorphic types.
By contrast, the intermediate language is simple, uniform, and explicitly typed. It can be
typechecked by a simple, linear time algorithm. The type inference engine elaborates the
implicitly-typed Haskell program into an explicitly-typed FC program.

To make this concrete, Figure 1 gives the syntax of System FC, the calculus implemented
by GHC’s intermediate language. The term language is mostly conventional, consisting of
System F, together with let bindings, data constructors and case expressions. The syntax
of a term encodes its typing derivation: every binder carries its type, and type abstractions
Λa:η.e and type applications e φ are explicit.

The types and kinds of the language are given in Figure 2. Types include variables
(a) and constants H (such as Int and Maybe), type applications (such as Maybe Int), and
polymorphic types (∀a:η.φ). The syntax of types also includes type functions (or type
families in the Haskell jargon), which are used to express type level computation. For
instance the following declaration in source Haskell:

type family F (a :: *) :: a
type instance F [a] = a

introduces a type function F at the level of System FC. The accompanying instance line
asserts that any expression of type F [a] can be viewed as having type a. We shall see
in Section 2.2 how this fact is expressed in FC. Finally type constants include datatype
constructors (T) but also arrow (→) as well as a special type constructor ∼# whose role we

RTA’13

22 Evidence Normalization in System FC (Invited Talk)

Types
φ, σ, τ, υ ::= a Variables

| H Constants
| F Type functions
| φ1 φ2 Application
| ∀a:η.φ Polymorphic types

Type constants
H ::= T Datatypes

| (→) Arrow
| (∼#) Coercion

Kinds
κ, η ::= ? | κ→ κ

| Constraint# Coercion kind

Coercion values
γ, δ ::= c Variables

| 〈φ〉 Reflexivity
| γ1; γ2 Transitivity
| sym γ Symmetry
| nth k γ Injectivity
| γ1 γ2 Application
| C γ Type family axiom
| ∀a:η.γ Polym. coercion
| γ@φ Instantiation

Figure 2 Syntax of System FC (types and coercions).

Environments
Γ,∆ ::= · | Γ, bnd
bnd ::= a : η Type variable

| c : σ ∼# φ Coercion variable
| x : σ Term variable
| T : κ→ ? Data type
| K : ∀(a:η).τ → T a Data constructor
| Fn : κn → κ Type families (of arity n)
| C (a:η) : σ ∼# φ Axioms

Notation
T τ ≡ T τ1 . . . τn
τ → τ ≡ τ1 → . . .→ τn → τ

τ1..n ≡ τ1, . . . , τn

Figure 3 Syntax of System FC (Auxiliary definitions).

explain in the following section. The kind language includes the familiar ? and κ1 → κ2 kinds
but also a special kind called Constraint# that we explain along with the ∼# constructor.

The typing rules for System FC are given in Figure 4. We urge the reader to consult
[16, 20] for more examples and intuition.

2.1 Coercions
The unusual feature of FC is the use of coercions. The term e . γ is a cast, that converts
a term e of type τ to one of type φ (rule ECast in Figure 4). The coercion γ is a witness,
or proof, providing evidence that τ and φ are equal types – that is, γ has type τ ∼# φ.
We use the symbol “∼#” to denote type equality1. The syntax of coercions γ is given in
Figure 2, and their typing rules in Figure 6. For uniformity we treat ∼# as an ordinary type
constructor, with kind κ→ κ→ Constraint# (Figure 5).

To see casts in action, consider this Haskell program which uses GADTs:

1 The “#” subscript is irrelevant for this paper; the interested reader may consult [18] to understand the
related type equality ∼, and the relationship between ∼ and ∼#.

D. Vytiniotis and S. Peyton Jones 23

Γ `tm e : τ

(x :τ) ∈ Γ
EVar

Γ `tm x : τ

(K :σ) ∈ Γ
ECon

Γ `tm K : σ

Γ, (x :σ) `tm e : τ Γ `ty σ : ?
EAbs

Γ `tm λx :σ.e : σ → τ

Γ `tm e : σ → τ Γ `tm u : σ
EApp

Γ `tm e u : τ

Γ, (c:σ) `tm e : τ
Γ `ty σ : Constraint# ECAbs
Γ `tm λc:σ.e : σ → τ

Γ `tm e : (σ1 ∼# σ2)→ τ

Γ `co γ : σ1 ∼# σ2 ECApp
Γ `tm e γ : τ

Γ, (a:η) `tm e : τ
ETabs

Γ `tm Λa:η.e : ∀a:η.τ

Γ `tm e : ∀a:η.τ Γ `ty φ : η
ETApp

Γ `tm e φ : τ [φ/a]

Γ, (x :σ) `tm u : σ Γ, (x :σ) `tm e : τ
ELet

Γ `tm let x :σ = u in e : τ

Γ `tm e : τ Γ `co γ : τ ∼# φ
ECast

Γ `tm e . γ : φ

Γ `tm e : T κ σ

For each branch K x :τ → u

(K :∀(a:ηa).σ1 ∼# σ2 → τ → T a) ∈ Γ
φi = τi [σ/a]
φ1i = σ1i [σ/a]
φ2i = σ2i [σ/a] Γ, c:φ1 ∼# φ2 x :φ `tm u : σ

ECase
Γ `tm case e of K (c:σ1 ∼# σ2) (x :τ)→ u : σ

Figure 4 Well-formed terms.

Γ `ty τ : κ

(a:η) ∈ Γ
TVar

Γ `ty a : η

(T :κ) ∈ Γ
TData

Γ `ty T : κ

(F :κ) ∈ Γ
TFun

Γ `ty F : κ

κ1, κ2 ∈ {Constraint#, ?}
TArr

Γ `ty (→) : κ1 → κ2 → ?
TEqPred

Γ `ty (∼#) : κ→ κ→ Constraint#

Γ `ty φ1 : κ1 → κ2 Γ `ty φ2 : κ1
TApp

Γ `ty φ1 φ2 : κ2

Γ, (a:η) `ty τ : ?
TAll

Γ `ty ∀a:η.τ : ?

Figure 5 Well-formed types.

RTA’13

24 Evidence Normalization in System FC (Invited Talk)

Γ `co γ : σ1 ∼# σ2

(c:σ1 ∼# σ2) ∈ Γ
CVar

Γ `co
c : σ1 ∼# σ2

(C a:η : τ1 ∼# τ2) ∈ Γ
Γ `co γi : σi ∼# φi

CAx
Γ `co

C γ : τ1[σ/a]∼#τ2[φ/a]

Γ `ty φ : κ
CRefl

Γ `co 〈φ〉 : σ ∼# σ

Γ `co γ1 : σ1 ∼# σ2

Γ `co γ2 : σ2 ∼# σ3
CTrans

Γ `co
γ1; γ2 : σ1∼#σ3

Γ `co
γ : σ1 ∼# σ2

CSym
Γ `co

sym γ : σ2 ∼# σ1

Γ `co
γ : H σ ∼# H τ

CNth
Γ `co

nth k γ : σk ∼# τk

Γ, (a:η) `co
γ : σ1 ∼# σ2

CAll
Γ `co ∀a:η.γ : (∀a:η.σ1) ∼# (∀a:η.σ2)

Γ `co γ1 : σ1 ∼# σ2

Γ `co γ2 : φ1 ∼# φ2 Γ `ty: σ1 φ1 : κ
CApp

Γ `co
γ1 γ2 : σ1 φ1 ∼# σ2 φ2

Γ `ty φ : η
Γ `co γ : (∀a:η.σ1) ∼# (∀a:η.σ2)

CInst
Γ `co

γ@φ : σ1[φ/a] ∼# σ2[φ/a]

Figure 6 Well-formed coercions.

data T a where f :: T a -> [a]
T1 :: Int -> T Int f (T1 x) = [x+1]
T2 :: a -> T a f (T2 v) = [v]

main = f (T1 4)

We regard the GADT data constructor T1 as having the type

T1 : ∀a.(a ∼# Int)→ Int→ T a

So in FC, T1 takes three arguments: a type argument to instantiate a, a coercion witnessing
the equivalence of a and Int, and a value of type Int. Here is the FC elaboration of main:

main = f Int (T1 Int <Int> 4)

The coercion argument has kind (Int ∼# Int), for which the evidence is just 〈Int〉 (reflex-
ivity). Similarly, pattern-matching on T1 binds two variables: a coercion variable, and a
term variable. Here is the FC elaboration of function f:

f = /\(a:*). \(x:T a).
case x of

T1 (c:a ~# Int) (n:Int) -> (Cons (n+1) Nil) |> sym [c]
T2 (v:a) -> Cons v Nil

The cast converts the type of the result from [Int] to [a]. The coercion sym [c] is evidence
for (or a proof of) the equality of these types, using coercion c, of type (a ∼# Int).

2.2 Typing coercions
Figure 6 gives the typing rules for coercions. The rules include unsurprising cases for re-
flexivity (CRefl), symmetry (CSym), and transitivity (CTrans). Rules CAll and CApp
allow us to construct coercions on more complex types from coercions on simpler types.

D. Vytiniotis and S. Peyton Jones 25

Rule CInst instantiates a coercion between two ∀-types, to get a coercion between two
instantiated types. Rule CVar allows us to use a coercion that has been introduced to the
context by a coercion abstraction (λc:τ∼#φ.e), or a pattern match against a GADT (as in
the example above).

Rule CAx refers to instantiations of axioms. In GHC, axioms can arise as a result of
newtype or type family declarations. Consider the following code:

newtype N a = MkN (a -> Int)

type family F (x :: *) :: *
type instance F [a] = a
type instance F Bool = Char

N is a newtype (part of the original Haskell 98 definition), and is desugared to the following
FC coercion axiom:

CN a : N a ∼# a → Int

which provides evidence of the equality of types (N a) and (a → Int).
In the above Haskell code, F is a type family [4, 3], and the two type instance declar-

ations above introduce two FC coercion axioms:

C1 a : F [a] ∼# a

C2 : F Bool ∼# Char

Rule CAx describes how these axioms may be used to create coercions. In this particular
example, if we have γ : τ ∼# σ, then we can prove that C1 γ : F [τ] ∼# σ. Using such
coercions we can get, for example, that (3 . sym (C1 〈Int〉)) : F [Int].

Axioms always appear saturated in System FC, hence the syntax C γ in Figure 2.

3 The problem with large coercions

System FC terms arise as the result of elaboration of source language terms, through type
inference. Type inference typically relies on a constraint solver [19] which produces System
FC witnesses of equality (coercions), that in turn decorate the elaborated term. The con-
straint solver is not typically concerned with producing small or readable witnesses; indeed
GHC’s constraint solver can produce large and complex coercions. These complex coercions
can make the elaborated term practically impossible to understand and debug.

Moreover, GHC’s optimiser transforms well-typed FC terms. Insofar as these trans-
formations involve coercions, the coercions themselves may need to be transformed. If you
think of the coercions as little proofs that fragments of the program are well-typed, then the
optimiser must maintain the proofs as it transforms the terms.

3.1 How big coercions arise
The trouble is that term-level optimisation tends to make coercions bigger. The full details
of these transformations are given in the so called push rules in our previous work [20], but
we illustrate them here with an example. Consider this term:

(λx .e . γ) a

RTA’13

26 Evidence Normalization in System FC (Invited Talk)

where
γ : (σ1 → τ1) ∼# (σ2 → τ2)
a : σ2

We would like to perform the beta reduction, but the cast is getting in the way. No matter!
We can transform thus:

(λx .e . γ) a
= ((λx .e) (a . sym (nth 0 γ))) . nth 1 γ

From the coercion γ we have derived two coercions whose syntactic form is larger, but whose
types are smaller:

γ : (σ1 → τ1) ∼# (σ2 → τ2)
sym (nth 0 γ) : σ2 ∼# σ1

nth 1 γ : τ1 ∼# τ2

Here we make use of the coercion combinators sym, which reverses the sense of the proof;
and nth i , which from a proof of T σ ∼# T τ gives a proof of σi ∼# τi . Finally, we use
the derived coercions to cast the argument and result of the function separately. Now the
lambda is applied directly to an argument (without a cast in the way), so β-reduction can
proceed as desired. Since β-reduction is absolutely crucial to the optimiser, this ability to
“push coercions out of the way” is fundamental. Without it, the optimiser is hopelessly
compromised.

A similar situation arises with case expressions:

case (K e1 . γ) of {. . . ; K x → e2; . . .}

where K is a data constructor. Here we want to simplify the case expression, by picking
the correct alternative K x → e2, and substituting e1 for x . Again the coercion gets in the
way, but again it is possible to push the coercion out of way.

3.2 How coercions can be simplified
Our plan is to simplify complicated coercion terms into simpler ones, using rewriting. Here
are some obvious rewrites we might think of immediately:

sym (sym γ) γ

γ; sym γ 〈τ〉 if γ : τ ∼# φ

But ther are much more complicated rewrites to consider. Consider these coercions, where
CN is the axiom generated by the newtype coercion in Section 2.2:

γ1 : τ1 ∼# τ2
γ2 = sym (CN 〈τ1〉) : (τ1 → Int) ∼# (N τ1)

γ3 = N 〈γ1〉 : (N τ1) ∼# (N τ2)
γ4 = CN 〈τ2〉 : (N τ2) ∼# (τ2 → Int)

γ5 = γ2; γ3; γ4 : (τ1 → Int) ∼# (τ2 → Int)

Here γ2 takes a function, and wraps it in the newtype; then γ3 coerces that newtype from
N τ1 to N τ2; and γ4 unwraps the newtype. Composing the three gives a rather large,
complicated coercion γ2; γ3; γ4. But its type is pretty simple, and indeed the coercion γ1 →
〈Int〉 is a much simpler witness of the same equality. The rewrite system we present shortly
will rewrite the former to the latter.

D. Vytiniotis and S. Peyton Jones 27

Finally, here is an actual example taken from a real program compiled by GHC (don’t
look at the details!):

Mut 〈v〉 (sym (CStateT 〈s〉)) 〈a〉
; sym (nth 0 ((∀wtb. Mut 〈w〉 (sym (CStateT 〈t〉)) 〈b〉 → 〈ST t (w b)〉)@v@s@a)

 〈Mut v s a〉

As you can see, the shrinkage in coercion size can be dramatic.

4 Coercion simplification

We now proceed to the details of our coercion simplification algorithm. We note that the
design of the algorithm is guided by empirical evidence of its effectiveness on actual programs
and that other choices might be possible. Nevertheless, we formally study the properties of
this algorithm, namely we will show that it preserves validity of coercions and terminates –
even when the rewrite system induced by the axioms is not strongly normalizing.

4.1 Simplification rules
Coercion simplification is given as a non-deterministic relation in Figure 7 and Figure 8 In
these two figures we use some syntactic conventions: Namely, for sequences of coercions γ1
and γ2, we write γ1; γ2 for the sequence of pointwise transitive compositions and sym γ1 for
pointwise application of symmetry. We write nontriv(γ) iff γ contains some variable c or
axiom application C γ.

We define coercion evaluation contexts, G, as coercion terms with holes inside them. The
syntax of G allows us to rewrite anywhere inside a coercion. The main coercion evaluation
rule is CoEval. If we are given a coercion γ, we first decompose it to some evaluation context
G with γ1 in its hole. Rule CoEval works up to associativity of transitive composition; for
example, we will allow the term (γ1; γ2;); γ3 to be written as G[γ2; γ3] where G = γ1;2. This
treatment of transitivity is extremely convenient, but we must be careful to ensure that
our argument for termination remains robust under associativity (Section 6). Once we have
figured out a decomposition G[γ1], CoEval performs a single step of rewriting ∆ ` γ1 γ2
and simply return G[γ2]. Since we are allowed to rewrite coercions under a type environment
(∀a:η.G is a valid coercion evaluation context), ∆ (somewhat informally) enumerates the
type variables bound by G. For instance we should be allowed to rewrite ∀a:η.γ1 to ∀a:η.γ2.
This can happen if (a:η)| − γ1 γ2. The precondition ∆ `co γ1 : σ ∼# φ of rule CoEval
ensures that this context corresponds to the decomposition of γ into a context and γ1.
Moreover, the ∆ is passed on to the relation, since some of the rules of the relation
that we will present later may have to consult the context ∆ to establish preconditions for
rewriting.

The soundness property for the −→ relation is given by the following theorem.

I Theorem 1 (Coercion subject reduction). If `co γ1 : σ ∼# φ and γ1 −→ γ2 then `co γ2 :
σ ∼# φ.

The rewriting judgement ∆ ` γ1 γ2 satisfies a similar property.

I Lemma 2. If ∆ `co γ1 : σ ∼# φ and ∆ ` γ1 γ2 then ∆ `co γ2 : σ ∼# φ.

To explain coercion simplification, we now present the reaction rules for the relation,
organized in several groups.

RTA’13

28 Evidence Normalization in System FC (Invited Talk)

Coercion evaluation contexts G ::= 2 | G γ | γ G | C γ1Gγ2 | sym G | ∀a:η.G | G@τ | G; γ | γ;G

γ ∼= G[γ1] modulo associativity of (;) ∆ `co γ1 : σ ∼# φ ∆ ` γ1 γ2
CoEval

γ −→ G[γ2]

∆ ` γ1 γ2

Reflexivity rules
ReflApp ∆ ` 〈φ1〉 〈φ2〉 〈φ1 φ2〉
ReflAll ∆ ` ∀a:η.〈φ〉 〈∀a:η.φ〉
ReflElimL ∆ ` 〈φ〉; γ γ

ReflElimR ∆ ` γ; 〈φ〉 γ

Eta rules
EtaAllL ∆ ` ((∀a:η.γ1); γ2)@φ γ1[φ/a]; (γ2@φ)
EtaAllR ∆ ` (γ1; (∀a:η.γ2))@φ γ1@φ; γ2[φ/a]

EtaNthL ∆ ` nth k (〈H τ1..`〉 γ; γ)

{
nth k γ if k ≤ `
γk−`;nth k γ otherwise

EtaNthR ∆ ` nth k (γ; 〈H τ1..`〉 γ)

{
nth k γ if k ≤ `
nth k γ; γk−` otherwise

Symmetry rules
SymRefl ∆ ` sym 〈φ〉 〈φ〉
SymAll ∆ ` sym (∀a:η.γ) ∀a:η. sym γ

SymApp ∆ ` sym (γ1 γ2) (sym γ1) (sym γ2)
SymTrans ∆ ` sym (γ1; γ2) (sym γ2);(sym γ1)
SymSym ∆ ` sym (sym γ) γ

Reduction rules

RedNth ∆ ` nth k (〈H τ1..`〉 γ)

{
〈τk 〉 if k ≤ `
γk−` otherwise

RedInstCo ∆ ` (∀a:η.γ)@φ γ[φ/a]
RedInstTy ∆ ` 〈∀a:η.τ〉@φ 〈τ [φ/a]〉

Push transitivity rules
PushApp ∆ ` (γ1 γ2); (γ3 γ4) (γ1; γ3) (γ2; γ4)
PushAll ∆ ` (∀a:η.γ1); (∀a:η.γ2) ∀a:η.γ1; γ2

PushInst ∆ ` (γ1@τ); (γ2@τ) (γ1; γ2)@τ when ∆ `co γ1; γ2 : σ1 ∼# σ2

PushNth ∆ ` (nth k γ1); (nth k γ2) nth k (γ1; γ2) when ∆ `co γ1; γ2 : σ1 ∼# σ2

Figure 7 Coercion simplification (I).

D. Vytiniotis and S. Peyton Jones 29

4.1.1 Pulling reflexivity up
Rules ReflApp, ReflAll, ReflElimL, and ReflElimR, deal with uses of reflexivity.
Rules ReflApp and ReflAll “swallow” constructors from the coercion language (coercion
application, and quantification respectively) into the type language (type application, and
quantification respectively). Hence they pull reflexivity as high as possible in the tree struc-
ture of a coercion term. Rules ReflElimL and ReflElimR simply eliminate reflexivity
uses that are composed with other coercions.

4.1.2 Pushing symmetry down
Uses of symmetry, contrary to reflexivity, are pushed as close to the leaves as possible or
eliminated, (rules SymRefl, SymAll, SymApp, SymTrans, and SymSym) only getting
stuck at terms of the form sym x and sym (C γ). The idea is that by pushing uses of
symmetry towards the leaves, the rest of the rules may completely ignore symmetry, except
where symmetry-pushing gets stuck (variables or axiom applications).

4.1.3 Reducing coercions
Rules RedNth, RedInstCo, and RedInstTy comprise the first interesting group of rules.
They eliminate uses of injectivity and instantiation. Rule RedNth is concerned with the
case where we wish to decompose a coercion of type H φ ∼# H σ, where the coercion term
contains H in its head. Notice that H is a type and may already be applied to some type
arguments τ1..`, and hence the rule has to account for selection from the first ` arguments,
or a later argument. Rule RedInstCo deals with instantiation of a polymorphic coercion
with a type. Notice that in rule RedInstCo the quantified variable may only appear
“protected” under some 〈σ〉 inside γ, and hence simply substituting γ[φ/a] is guaranteed to
produce a syntactically well-formed coercion. Rule RedInstTy deals with the instantiation
of a polymorphic coercion that is just a type.

4.1.4 Eta expanding and subsequent reducing
Redexes of RedNth and RedInstCo or RedInstTy may not be directly visible. Consider
nth k (〈H τ1..`〉 γ; γ). The use of transitivity stands in our way for the firing of rule RedNth.
To the rescue, rules EtaAllL, EtaAllR, EtaNthL, and EtaNthR, push decomposition
or instantiation through transitivity and eliminate such redexes. We call these rules “eta”
because in effect we are η-expanding and immediately reducing one of the components of the
transitive composition. Here is a decomposition of EtaAllL in smaller steps that involve
an η-expansion (of γ2 in the second line):

((∀a:η.γ1); γ2)@φ
 ((∀a:η.γ1); (∀a:η.γ2@a))@φ
 (∀a:η.γ1; γ2@a)@φ γ1[φ/a]; γ2@φ

We have merged these steps in a single rule to facilitate the proof of termination. In doing
this, we do not lose any reactions, since all of the intermediate terms can also reduce to the
final coercion.

There are many design possibilities for rules that look like our η-rules. For instance
one may wonder why we are not always expanding terms of the form γ1; (∀a:η.γ2) to
∀a:η.γ1@a; γ2, whenever γ1 is of type ∀a:η.τ ∼# ∀a:η.φ. We experimented with several

RTA’13

30 Evidence Normalization in System FC (Invited Talk)

∆ `co
c : τ ∼# υ

VarSym
∆ ` c; sym c 〈τ〉

∆ `co
c : τ ∼# υ

SymVar
∆ ` sym c; c 〈υ〉

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(υ)
AxSym

∆ ` C γ1; sym (C γ2)
[a 7→ γ1; sym γ2]↑(τ)

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(τ)
SymAx

∆ ` sym (C γ1);C γ2
[a 7→ sym γ1; γ2]↑(υ)

(C (a:η) : τ ∼# υ) ∈ Γ
a ⊆ ftv(υ) nontriv(δ)
δ = [a 7→ γ2]↑(υ)

AxSuckR
∆ ` (C γ1); δ C γ1;γ2

(C (a:η) : τ ∼# υ) ∈ Γ
a ⊆ ftv(τ) nontriv(δ)
δ = [a 7→ γ1]↑(τ)

AxSuckL
∆ ` δ; (C γ2) C γ1;γ2

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(τ)
nontriv(δ) δ = [a 7→ γ2]↑(τ)

SymAxSuckR
∆ ` sym (C γ1); δ sym (C sym γ2;γ1)

(C (a:η) : τ ∼# υ) ∈ Γ a ⊆ ftv(υ)
nontriv(δ) δ = [a 7→ γ1]↑(υ)

SymAxSuckL
∆ ` δ; sym (C γ2) sym (C γ2; sym γ1)

Figure 8 Coercion simplification (II).

variations like this, but we found that such expansions either complicated the termination ar-
gument, or did not result in smaller coercion terms. Our rules in effect perform η-expansion
only when there is a firing reduction directly after the expansion.

4.1.5 Pushing transitivity down
Rules PushApp, PushAll, PushNth, and PushInst push uses of transitivity down the
structure of a coercion term, towards the leaves. These rules aim to reveal more re-
dexes at the leaves, that will be reduced by the next (and final) set of rules. Notice
that rules PushInst and PushNth impose side conditions on the transitive composition
γ1; γ2. Without these conditions, the resulting coercion may not be well-formed. Take γ1 =
∀a:η.〈T a a〉 and γ2 = ∀a:η.〈T a Int〉. It is certainly the case that (γ1@Int); (γ2@Int)
is well formed. However, `co γ1 : ∀a:η.T a a ∼# ∀a:η.T a a and `co γ2 : ∀a:η.T a Int ∼#
∀a:η.T a Int, and hence (γ1; γ2)@Int is not well-formed. A similar argument applies to
rule PushNth.

4.1.6 Leaf reactions
When transitivity and symmetry have been pushed as low as possible, new redexes may
appear, for which we introduce rules VarSym, SymVar, AxSym, SymAx, AxSuckR,
AxSuckL, SymAxSuckR, SymAxSuckL. (Figure 8)

Rules VarSym and SymVar are entirely straightforward: a coercion variable (or its
symmetric coercion) meets its symmetric coercion (or the variable) and the result is the
identity.
Rules AxSym and SymAx are more involved. Assume that the axiom (C (a:η):τ ∼#
υ) ∈ Γ, and a well-formed coercion of the form: C γ1; sym (C γ2). Moreover ∆ `co

D. Vytiniotis and S. Peyton Jones 31

[a 7→ γ]↑(τ) = γ′

[a 7→ γ]↑(a) = γ

[a 7→ γ]↑(b) = 〈b〉
[a 7→ γ]↑(H) = 〈H 〉
[a 7→ γ]↑(F) = 〈F 〉

[a 7→ γ]↑(τ1 τ2) =
{
〈φ1 φ2〉 when [a 7→ γ]↑(τi) = 〈φi〉
([a 7→ γ]↑(τ1)) ([a 7→ γ]↑(τ2)) otherwise

[a 7→ γ]↑(∀b:η.τ) =
{
〈∀a:η.φ〉 when [a 7→ γ]↑(τ) = 〈φ〉
∀b:η.([a 7→ γ]↑(τ)) otherwise (b /∈ ftv(γ), b 6= a)

Figure 9 Lifting.

γ1 : σ1 ∼# φ1 and ∆ `co γ2 : σ2 ∼# φ2. Then we know that ∆ `co C γ1; sym (C γ2) :
τ [σ1/a] ∼# τ [σ2/a]. Since the composition is well-formed, it must be the case that
υ[φ1/a] = υ[φ2/a]. If a ⊆ ftv(υ) then it must be φ1 = φ2. Hence, the pointwise
composition γ1; sym γ2 is well-formed and of type σ1 ∼# σ2. Consequently, we may
replace the original coercion with the lifting of τ over a substitution that maps a to
γ1; sym γ2: [a 7→ γ1; sym γ2]↑(τ).
What is this lifting operation, of a substitution from type variables to coercions, over a
type? Its result is a new coercion, and the definition of the operation is given in Figure 9.
The easiest way to understand it is by its effect on a type:
I Lemma 3 (Lifting). If ∆, (a:η) `ty τ : η and ∆ `co γ : σ ∼ φ such that ∆ `ty σ : η and
∆ `ty φ : η, then ∆ `co [a 7→ γ]↑(τ) : τ [σ/a] ∼# τ [φ/a]
Notice that we have made sure that lifting pulls reflexivity as high as possible in the
syntax tree – the only significance of this on-the-fly normalization was that it appeared
to simplify the argument we have given for termination of coercion normalization.
Returning to rules AxSym and SymAx, we stress that the side condition is essential for
the rule to be sound. Consider the following example:

C (a:?) : F [a] ∼# Int ∈ Γ

Then (C 〈Int〉); sym (C 〈Bool〉) is well-formed and of type F [Int] ∼# F [Bool], but
〈F 〉 (〈Int〉; sym 〈Bool〉) is not well-formed! Rule SymAx is symmetric and has a similar
soundness side condition on the free variables of τ this time.
The rest of the rules deal with the case when an axiom meets a lifted type – the re-
action swallows the lifted type inside the axiom application. For instance, here is rule
AxSuckR:

(C (a:η):τ ∼# υ) ∈ Γ a ⊆ ftv(υ)
nontriv(δ) δ = [a 7→ γ2]↑(υ)

AxSuckR
∆ ` (C γ1); δ C γ1;γ2

This time let us assume that ∆ `co γ1 : σ1 ∼# φ1. Consequently ∆ `co C γ1 : τ [σ1/a] ∼#
υ[φ1/a]. Since a ⊆ ftv(υ) it must be that ∆ `co γ2 : φ1 ∼# φ3 for some φ3 and
we can pointwise compose γ1;γ2 to get coercions between σ1 ∼# φ3. The resulting
coercion C γ1;γ2 is well-formed and of type τ [σ1/a] ∼# υ[φ3/a]. Rules AxSuckL,
SymAxSuckL, and SymAxSuckR involve a similar reasoning.
The side condition nontriv(δ) is not restrictive in any way – it merely requires that

RTA’13

32 Evidence Normalization in System FC (Invited Talk)

δ contains some variable c or axiom application. If not, then δ can be converted to
reflexivity:
I Lemma 4. If `co δ : σ∼#φ and ¬ nontriv(δ), then δ−→∗〈φ〉.
Reflexivity, when transitively composed with any other coercion, is eliminable via Re-
flElimL/R or and consequently the side condition is not preventing any reactions from
firing. It will, however, be useful in the simplification termination proof in Section 6.

The purpose of rules AxSuckL/R and SymAxSuckL/R is to eliminate intermediate
coercions in a big transitive composition chain, to give the opportunity to an axiom to meet
its symmetric version and react with rules AxSym and SymAx. In fact this rule is precisely
what we need for the impressive simplifications from Section 3. Consider that example
again:

γ5 = γ2; γ3; γ4
= sym (CN 〈τ1〉); (〈N 〉 γ1); (CN 〈τ2〉) (AxSucL with δ := (〈N 〉 γ1))
−→ sym (CN 〈τ1〉); (CN (γ1; 〈τ2〉)) (ReflElimR with γ := γ1, φ := τ2)
−→ sym (CN 〈τ1〉); (CN γ1) (SymAx)
−→ 〈→〉 (〈τ1〉; γ1) 〈Int〉 (ReflElimL with φ := τ1, γ := γ1)
−→ 〈→〉 γ1 〈Int〉

Notably, rules AxSuckL/R and SymAxSuckL/R generate axiom applications of the
form C γ (with a coercion as argument). In our previous papers, the syntax of axiom
applications was C τ , with types as arugments. But we need the additional generality to
allow coercions rewriting to proceed without getting stuck.

5 Coercion simplification in GHC

To assess the usefulness of coercion simplification we added it to GHC. For Haskell programs
that make no use of GADTs or type families, the effect will be precisely zero, so we took
measurements on two bodies of code. First, our regression suite of 151 tests for GADTs and
type families; these are all very small programs. Second, the Data.Accelerate library that
we know makes use of type families [5]. This library consists of 18 modules, containing 8144
lines of code.

We compiled each of these programs with and without coercion simplification, and meas-
ured the percentage reduction in size of the coercion terms with simplification enabled. This
table shows the minimum, maximum, and aggregate reduction, taken over the 151 tests and
18 modules respectively. The “aggregate reduction” is obtained by combining all the pro-
grams in the group (testsuite or Accelerate) into one giant “program”, and computing the
reduction in coercion size.

Testsuite Accelerate
Minimum −97% −81%
Maximum +14% 0%

Aggregate −58% −69%

There is a substantial aggregate decrease of 58% in the testsuite and 69% in Accelerate,
with a massive 97% decrease in special cases. These special cases should not be taken lightly:
in one program the types and coercions taken together were five times bigger than the term
they decorated; after simplification they were “only” twice as big. The coercion simplifier
makes the compiler less vulnerable to falling off a cliff.

D. Vytiniotis and S. Peyton Jones 33

Only one program showed an increase in coercion size, of 14%, which turned out to be
the effect of this rewrite:

sym (C ;D) −→ (sym D); (sym C)

Smaller coercion terms make the compiler faster, but the normalization algorithm itself
consumes some time. However, the effect on compile time is barely measurable (less than
1%), and we do not present detailed figures.

Of course none of this would matter if coercions were always tiny, so that they took very
little space in the first place. And indeed that is often the case. But for programs that
make heavy use of type functions, un-optimised coercions can dominate compile time. For
example, the Accelerate library makes heavy use of type functions. The time and memory
consumption of compiling all 21 modules of the library are as follows:

Compile time Memory allocated Max residency
With coercion optimisation 68s 31Gbyte 153Mbyte

Without coercion optimisation 291s 51Gbyte 2, 000Mbyte

As you can see, the practical effects can be extreme; the cliff is very real.

6 Termination and confluence

We have demonstrated the effectiveness of the algorithm in practice, but we must also
establish termination. This is important, since it would not be acceptable for a compiler
to loop while simplifying a coercion, no matter what axioms are declared by users. Since
the rules fire non-deterministically, and some of the rules (such as RedInstCo or AxSym)
create potentially larger coercion trees, termination is not obvious.

6.1 Termination
To formalize a termination argument, we introduce several definitions in Figure 10. The
axiom polynomial of a coercion over a distinguished variable z , p(·), returns a polynomial
with natural number coefficients that can be compared to any other polynomial over z . The
coercion weight of a coercion is defined as the function w(·) and the symmetry weight of a
coercion is defined with the function sw(·) in Figure 10. Unlike the polynomial and coercion
weights of a coercion, sw(·) does take symmetry into account. Finally, we will also use the
number of coercion applications and coercion ∀-introductions, denoted with intros(·) in what
follows.

Our termination argument comprises of the lexicographic left-to-right ordering of:

µ(·) = 〈p(·),w(·), intros(·), sw(·)〉

We will show that each of the reductions reduces this tuple. For this to be a valid
termination argument for (−→) we need two more facts about each component measure,
namely that (i) (=) and (<) are preserved under arbitrary contexts, and (ii) each component
is invariant with respect to the associativity of (;).

I Lemma 5. If ∆ `co γ1 : τ ∼# σ and γ1 ∼= γ2 modulo associativity of (;), then p(γ1) = p(γ2),
w(γ1) = w(γ2), intros(γ1) = intros(γ2), and sw(γ1) = sw(γ2).
Proof. This is a simple inductive argument, the only interesting case is the case for p(·)
where the reader can calculate that p(γ1; (γ2; γ3)) = p((γ1; γ2); γ3) and by induction we are
done. J

RTA’13

34 Evidence Normalization in System FC (Invited Talk)

Axiom polynomial
p(sym γ) = p(γ)
p(C γ) = z · Σp(γi) + z + 1
p(c) = 1
p(γ1; γ2) = p(γ1) + p(γ2) + p(γ1) · p(γ2)
p(〈φ〉) = 0
p(nth k γ) = p(γ)
p(γ@φ) = p(γ)
p(γ1 γ2) = p(γ1) + p(γ2)
p(∀a:η.γ) = p(γ)

Coercion weight
w(sym γ) = w(γ)
w(C γ) = Σw(γi) + 1
w(c) = 1
w(γ1; γ2) = 1 + w(γ1) + w(γ2)
w(〈φ〉) = 1
w(nth k γ) = 1 + w(γ)
w(γ@φ) = 1 + w(γ)
w(γ1 γ2) = 1 + w(γ1) + w(γ2)
w(∀a:η.γ) = 1 + w(γ)

Symmetry weight
sw(sym γ) = w(γ) + sw(γ)
sw(C γ) = Σsw(γi)
sw(c) = 0
sw(γ1; γ2) = sw(γ1) + sw(γ2)
sw(〈φ〉) = 0
sw(nth k γ) = sw(γ)
sw(γ@φ) = sw(γ)
sw(γ1 γ2) = sw(γ1) + sw(γ2)
sw(∀a:η.γ) = sw(γ)

Figure 10 Metrics on coercion terms.

I Lemma 6. If Γ,∆ `co γi : τ ∼# σ (for i = 1, 2) and p(γ1) < p(γ2) then p(G[γ1]) < p(G[γ2])
for any G with Γ `co G[γi] : φ ∼# φ′. Similarly if we replace (<) with (=).

Proof. By induction on the shape of G. The only interesting case is the transitivity case
again. Let G = γ;G′. Then p(γ;G′[γ1]) = p(γ) + p(G′[γ1]) + p(γ) · p(G′[γ1]) whereas
p(γ;G′[γ2]) = p(γ) + p(G′[γ2]) + p(γ) · p(G′[γ2]). Now, either p(γ) = 0, in which case we
are done by induction hypothesis for G′[γ1] and G′[γ2], or p(γ) 6= 0 in which case again
induction hypothesis gives us the result since we are multiplying p(G′[γ1]) and p(G′[γ2]) by
the same polynomial. The interesting “trick” is that the polynomial for transitivity contains
both the product of the components and their sum (since product alone is not preserved by
contexts!). J

I Lemma 7. If Γ,∆ `co γi : τ ∼# σ and w(γ1) < w(γ2) then w(G[γ1]) < w(G[γ2]) for any G
with Γ `co G[γi] : φ ∼# φ′. Similarly if we replace (<) with (=).

I Lemma 8. If Γ,∆ `co γi : τ ∼# σ and intros(γ1) < intros(γ2) then intros(G[γ1]) <

intros(G[γ2]) for any G with Γ `co G[γi] : φ ∼# φ′. Similarly if we replace (<) with (=).

I Lemma 9. If Γ,∆ `co γi : τ ∼# σ, w(γ1) ≤ w(γ2), and sw(γ1) < sw(γ2) then sw(G[γ1]) <
sw(G[γ2]) for any G with Γ `co G[γi] : φ ∼# φ′.

Proof. The only interesting case is when G = sym G′ and hence we have that sw(G[γ1]) =
sw(sym G′[γ1]) = w(G′[γ1]) + sw(G′[γ1]). Similarly sw(G[γ2]) = w(G′[γ2]) + sw(G′[γ2]). By
the precondition for the weights and induction hypothesis we are done. The precondition
on the weights is not restrictive, since w(·) has higher precedence than sw(·) inside µ(·). J

The conclusion is the following theorem.

I Theorem 10. If γ ∼= G[γ1] modulo associativity of (;) and ∆ `co γ1 : σ ∼# φ, and
∆ ` γ1 γ2 such that µ(γ2) < µ(γ1), it is the case that µ(G[γ2]) < µ(γ).

D. Vytiniotis and S. Peyton Jones 35

I Corollary 11. (−→) terminates on well-formed coercions if each of the transitions
reduces µ(·).

Note that often the term rewrite literature requires similar conditions (preservation under
contexts and associativity), but also stability under substitution (e.g. see [1], Chapter 5). In
our setting, variables are essentially treated as constants and this is the reason that we do
not rely on stability under substitutions. For instance the rule ReflElimR ∆|−γ; 〈φ〉 γ

is not expressed as ∆|−c; 〈φ〉 c, as would be customary in a more traditional term-rewrite
system presentation.

We finally show that indeed each of the steps reduces µ(·).

I Theorem 12 (Termination). If ∆ `co γ1 : σ ∼# φ and ∆ ` γ1 γ2 then µ(γ2) < µ(γ1).

Proof. It is easy to see that the reflexivity rules, the symmetry rules, the reduction rules, and
the η-rules preserve or reduce the polynomial component p(·). The same is true for the push
rules but the proof is slightly more interesting. Let us consider PushApp, and let us write pi
for p(γi). We have that p((γ1 γ2); (γ3 γ4)) = p1 +p2 +p3 +p4 +p1p3 +p2p3 +p1p4 +p2p4. On
the other hand p((γ1; γ3) (γ2; γ4)) = p1 +p3 +p1p3 +p2 +p4 +p2p4 which is a smaller or equal
polynomial than the left-hand side polynomial. Rule PushAll is easier. Rules PushInst
and PushNth have exactly the same polynomials on the left-hand and the right-hand side
so they are ok. Rules VarSym and SymVar reduce p(·). The interesting bit is with rules
AxSym, SymAx, and AxSuckR/L and SymAxSuckR/L. We will only show the cases for
AxSym and AxSuckR as the rest of the rules involve very similar calculations:

Case SymAx. We will use the notational convention p1 for p(γ1) (a vector of polynomi-
als) and similarly p2 for p(γ2). Then the left-hand side polynomial is:

(zΣp1+z+1) + (zΣp2+z+1)+
(zΣp1+z+1) · (zΣp2+z+1) =

(z 2+2z)Σp1 + (z 2+2z)Σp2 + z 2Σp1Σp2 + (z 2+4z+3)

For the right-hand side polynomial we know that each γ1i ; sym γ2i will have polynomial
p1i + p2i + p1ip2i and it cannot be repeated inside the lifted type more than a finite
number of times (bounded by the maximum number of occurrences of a type variable
from a in type τ), call it k . Hence the right-hand side polynomial is smaller or equal to:

kΣp1 + kΣp2 + kΣ(p1ip2i) ≤ kΣp1 + kΣp2 + kΣp1Σp2

But that polynomial is strictly smaller than the left-hand side polynomial, hence we are
done.
Case AxSuckR. In this case the left-hand side polynomial is going to be greater or equal
to (because of reflexivity inside δ and because some of the a variables may appear more
than once inside υ it is not exactly equal to) the following:

(zΣp1 + z + 1) + Σp2 + (zΣp1 + z + 1)Σp2 =
zΣp1Σp2 + zΣp1 + zΣp2 + 2Σp2 + z + 1

On the other hand, the right-hand side polynomial is:

zΣ(p1i + p2i + p1ip2i) + z + 1 ≤ zΣp1 + zΣp2 + zΣp1Σp2 + z + 1

We observe that there is a difference of 2Σp2, but we know that δ satisfies nontriv(δ),
and consequently there must exist some variable or axiom application inside one of the
γ2. Therefore, Σp2 is non-zero and the case is finished.

RTA’13

36 Evidence Normalization in System FC (Invited Talk)

It is the arbitrary copying of coercions γ1 and γ2 in rules AxSym and SymAx that prevents
simpler measures that only involve summation of coercions for axioms or transitivity. Other
reasonable measures such as the height of transitivity uses from the leaves would not be
preserved from contexts, due to AxSym again.

So far we’ve shown that all rules but the axiom rules preserve the polynomials, and the
axiom rules reduce them. We next show that in the remaining rules, some other component
reduces, lexicographically. Reflexivity rules reduce w(·). Symmetry rules preserve w(·)
and intros(·) but reduce sw(·). Reduction rules and η-rules reduce w(·). Rules PushApp
and PushAll preserve or reduce w(·) but certainly reduce intros(·). Rules PushInst and
PushNth reduce w(·). J

We conclude that (−→) terminates.

6.2 Confluence
Due to the arbitrary types of axioms and coercion variables in the context, we do not expect
confluence to be true. Here is a short example that demonstrates the lack of confluence;
assume we have the following in our context:

C1 (a:?→ ?) : F a ∼# a

C2 (a:?→ ?) : G a ∼# a

Consider the coercion:

(C1 〈σ〉); sym (C2 〈σ〉)

of type F σ ∼# G σ. In one reduction possibility, using rule AxSuckR, we may get

C1 (sym (C2 〈σ〉))

In another possibility, using SymAxSuckL, we may get

sym (C2 (sym (C1 〈σ〉)))

Although the two normal forms are different, it is unclear if one of them is “better” than
the other.

Despite this drawback, confluence or syntactic characterization of normal forms is, for
our purposes, of secondary importance (if possible at all for open coercions in such an under-
constrained problem!), since we never reduce coercions for the purpose of comparing their
normal forms. That said, we acknowledge that experimental results may vary with respect
to the actual evaluation strategy, but we do not expect wild variations.

7 Related and future work

Traditionally, work on proof theory is concerned with proof normalization theorems, namely
cut-elimination. Category and proof theory has studied the commutativity of diagrams in
monoidal categories [12], establishing coherence theorems. In our setting Lemma 4 expresses
such a result: any coercion that does not include axioms or free coercion variables is equi-
valent to reflexivity. More work on proof theory is concerned with cut-elimination theorems
– in our setting eliminating transitivity completely is plainly impossible due to the presence
of axioms. Recent work on 2-dimensional type theory [10] provides an equivalence relation
on equality proofs (and terms), which suffices to establish that types enjoy canonical forms.

D. Vytiniotis and S. Peyton Jones 37

Although that work does not provide an algorithm for checking equivalence (this is harder
to do because of actual computation embedded with isomorphisms), that definition shares
many rules with our normalization algorithm. Finally there is a large literature in associative
commutative rewrite systems [7, 2].

To our knowledge, most programming languages literature on coercions is not concerned
with coercion simplification but rather with inferring the placement of coercions in source-
level programs. Some recent examples are [11] and [17]. A comprehensive study of coercions
and their normalization in programming languages is that of [8], motivated by coercion
placement in a language with type dynamic. Henglein’s coercion language differs to ours in
that (i) coercions there are not symmetric, (ii) do not involve polymorphic axiom schemes
and (iii) may have computational significance. Unlike us, Henglein is concerned with charac-
terizations of minimal coercions and confluence, fixes an equational theory of coercions, and
presents a normalization algorithm for that equational theory. In our case, in the absence of
a denotational semantics for System FC and its coercions, such an axiomatization would be
no more ad-hoc than the algorithm and hence not particularly useful: for instance we could
consider adding type-directed equations like ∆ ` γ 〈τ〉 when ∆ `co γ : τ ∼# τ , or other
equations that only hold in consistent or confluent axiom sets. It is certainly an interesting
direction for future work to determine whether there even exists a maximal syntactic axio-
matization of equalities between coercions with respect to some denotational semantics of
System FC.

In the space of typed intermediate languages, xMLF[14] is a calculus with coercions that
capture instantiation instead of equality, and which serves as target for the MLF language.
Although the authors are not directly concerned with normalization as part of an interme-
diate language simplifier, their translation of the graph-based instantiation witnesses does
produce xMLF normal proofs.

Finally, another future work direction would be to determine whether we can encode
coercions as λ-terms, and derive coercion simplification by normalization in some suitable
λ-calculus.

Acknowledgments

Thanks to Tom Schrijvers for early discussions and for contributing a first implementation.
We would particularly like to thank Thomas Ströder for his insightful and detailed feedback
in the run-up to submitting the final paper.

References
1 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University

Press, New York, NY, USA, 1998.
2 Leo Bachmair and David A. Plaisted. Termination orderings for associative-commutative

rewriting systems. J. Symb. Comput., 1(4):329–349, December 1985.
3 Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated type

synonyms. In ICFP’05: Proceedings of the Tenth ACM SIGPLAN International Conference
on Functional Programming, pages 241–253, New York, NY, USA, 2005. ACM.

4 Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow.
Associated types with class. SIGPLAN Not., 40(1):1–13, 2005.

5 Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell, and Vinod
Grover. Accelerating Haskell array codes with multicore GPUs. In Proceedings of the sixth
workshop on Declarative Aspects of Multicore Programming, DAMP’11, pages 3–14, New
York, NY, USA, 2011. ACM.

RTA’13

38 Evidence Normalization in System FC (Invited Talk)

6 James Cheney and Ralf Hinze. First-class phantom types. CUCIS TR2003-1901, Cornell
University, 2003.

7 Nachum Dershowitz, Jien Hsiang, N. Alan Josephson, and David A. Plaisted. Associative-
commutative rewriting. In Proceedings of the Eighth international joint conference on
Artificial intelligence – Volume 2, IJCAI’83, pages 940–944, San Francisco, CA, USA,
1983. Morgan Kaufmann Publishers Inc.

8 Fritz Henglein. Dynamic typing: syntax and proof theory. Sci. Comput. Program., 22:197–
230, June 1994.

9 Oleg Kiselyov, Simon Peyton Jones, and Chung-chieh Shan. Fun with type functions. In
Cliff Jones and Bill Roscoe, editors, Reflections on the work of CAR Hoare. Springer, 2010.

10 Daniel R. Licata and Robert Harper. Canonicity for 2-dimensional type theory. In Proceed-
ings of the 39th annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL’12, pages 337–348, New York, NY, USA, 2012. ACM.

11 Zhaohui Luo. Coercions in a polymorphic type system. Mathematical Structures in Com-
puter Science, 18(4):729–751, 2008.

12 Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate
Texts in Mathematics. Springer-Verlag, 1971.

13 Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn.
Simple unification-based type inference for GADTs. In ICFP’06: Proceedings of the Elev-
enth ACM SIGPLAN International Conference on Functional Programming, pages 50–61,
New York, NY, USA, 2006. ACM Press.

14 Didier Rémy and Boris Yakobowski. A Church-style intermediate language for MLF. In
Matthias Blume, Naoki Kobayashi, and German Vidal, editors, Functional and Logic Pro-
gramming, volume 6009 of Lecture Notes in Computer Science, pages 24–39. Springer Berlin
/ Heidelberg, 2010.

15 Tim Sheard and Emir Pasalic. Meta-programming with built-in type equality. In Proc
4th International Workshop on Logical Frameworks and Meta-languages (LFM’04), Cork,
pages 106–124, July 2004.

16 Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly.
System F with type equality coercions. In TLDI’07: Proceedings of the 2007 ACM SIG-
PLAN International Workshop on Types in Languages Design and Implementation, pages
53–66, New York, NY, USA, 2007. ACM.

17 Nikhil Swamy, Michael Hicks, and Gavin M. Bierman. A theory of typed coercions and
its applications. In Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming, ICFP’09, pages 329–340, New York, NY, USA, 2009. ACM.

18 Dimitrios Vytiniotis, Simon Peyton Jones, and Pedro Magalhaes. Equality proofs and
deferred type errors. In Proceedings of ACM SIGPLAN International Conference on Func-
tional Programming (ICFP’12), pages 341–352, 2012.

19 Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Out-
sidein(x): modular type inference with local assumptions. Journal of Functional Program-
ming, 21, 2011.

20 Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve Zdancewic. Gener-
ative type abstraction and type-level computation. In Proceedings of the 38th annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’11, pages
227–240, New York, NY, USA, 2011. ACM.

	Introduction
	An overview of System FC
	Coercions
	Typing coercions

	The problem with large coercions
	How big coercions arise
	How coercions can be simplified

	Coercion simplification
	Simplification rules
	Pulling reflexivity up
	Pushing symmetry down
	Reducing coercions
	Eta expanding and subsequent reducing
	Pushing transitivity down
	Leaf reactions

	Coercion simplification in GHC
	Termination and confluence
	Termination
	Confluence

	Related and future work

