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Abstract
The research on programs capable to automatically grade source code has been a subject of
great interest to many researchers. Automatic Grading Systems (AGS) were born to support
programming courses and gained popularity due to their ability to assess, evaluate, grade and
manage the students’ programming exercises, saving teachers from this manual task.

This paper discusses semantic analysis techniques, and how they can be applied to improve
the validation and assessment process of an AGS. We believe that the more flexible is the res-
ults assessment, the more precise is the source code grading, and better feedback is provided
(improving the students learning process).

In this paper, we introduce a generic model to obtain a more flexible and fair grading process,
closer to a manual one. More specifically, an extension of the traditional Dynamic Analysis
concept, by performing a comparison of the output produced by a program under assessment
with the expected output at a semantic level. To implement our model, we propose a Flexible
Dynamic Analyzer, able to perform a semantic-similarity analysis based on our Output Semantic-
Similarity Language (OSSL) that, besides specifying the output structure, allows to define how to
mark partially correct answers. Our proposal is compliant with the Learning Objects standard.
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1 Introduction

When learning a new programming language, students need to solve a large number of
programming exercises to practice the new language syntax and semantics. Teacher’s
feedback about the mistakes that they made on those exercises is crucial to improve their
knowledge. However, it is hard for teachers to manually manage all the students’ solutions.

The manual grading of programming exercises can involve a lot of work and be a time
consuming task, since each program must be tested and its source code must be analyzed
by a teacher. This task is neither simple nor mechanical: it is often a complex and arduous
process, prone to faults. Different human graders may assign different evaluations to the
same exercise, due to several factors like fatigue, favoritism or even inconsistency [51].
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To minimize such problems, the research on tools capable to reduce the amount of work
for instructors and improve the students learning experience led to the development of
several Automatic Grading Systems (AGS), specialized on grading student’s programs; they
gained popularity in the field of teaching and learning programming languages [2] as Learning
Support tools.

Aside their educational role, AGS are also used by the programming communities for
programming contests. These contests can vary slightly in rules, but all of them are intended
to assess the competitor skills concerning the ability to solve problems using a computer.

In a typical programming contest competitors participate in teams to solve a set of
problems. For each problem, the team submits the source code of the program developed
to solve the problem. Many well known programming contests in the world — such as
ACM-ICPC1 — are based on the automatic grading of the proposed solutions. This means
that the submitted code will be immediately evaluated by an AGS. This process normally
involves tasks like running the program over a set of predefined tests (actually a set of input
data vectors), and comparing each result (the actual output produced by the submitted
code) against the expected output value. Time and memory space consumptions are also
usually measured during the program execution and taken into account in the final grade.
This evaluation is typically complemented by the action of a human judge, who takes the
final grade decision according to the specific rules for each contest.

1.1 Automatic Grading Systems as Competitive Learning Tools
Programming contests gained popularity in programming courses as a competitive learning
tool in the form of exercises to stimulate the students’ ability to solve practical problems in
a competitive environment. An example of this was born with Mooshak2, a system originally
developed for managing programming contests [24]. Mooshak is at moment used as an
e-learning tool in several universities in programming courses and is a reference tool for
competitive learning in Portugal. In [26], the authors present an overview of this experience,
evidencing the characteristics of competitive learning that stimulates students to work harder
on problem solving using the subjects taught in each course. Students participate in several
“contests” where they have to solve one or more problems, receive immediate feedback on their
attempts and are able to compare their own progress with the progress of their colleagues.
By providing immediate feedback to students, they are encouraged to improve their skills
and to submit a new solution. The challenge associated with these competitive environments
provides a meaningful way to learn and easily acquire practical skills on programming.

1.2 Assessment methodologies: Static versus Dynamic Analysis
AGS are classified concerning the methodology followed to evaluate the submitted program.
This assessment can be done using two different techniques: static or dynamic.

Dynamic approaches depend on the output results, after running the submitted program
with a set of predefined tests. The final grade depends on the comparison between the
expected output and the output actually produced.

Static approaches take profit from the technology developed for compilers and language-
based tools. Unlike dynamic analysis, this method is able to gather information about the
source code without executing it.

1 International Collegiate Programming Contest: http://cm.baylor.edu/welcome.icpc
2 http://mooshak.dcc.fc.up.pt/
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In Section 2 we detail each approach and present an overview of the existing systems that
fall in each type.

1.3 Automatic Grading of Partially Correct Answers
As discussed in Section 1.2, existing dynamic-based AGS run the submitted program using
a set of predefined tests and compare its output with the expected output. However, this
comparison is sometimes done using a simple string comparison between the outputs, which
does not allow formatting differences between them. A simple example of this situation may
be a program that lists all the possible subsets of a giving set. If a specific order is not
explicitly asked, different valid listing options can appear; and, of course, the formatting
of the subsets can vary slightly on spacing and punctuation. However, such AGS do not
support any variant of the expected output vector.

A possible solution, followed by some AGS (such as Mooshak [24]), is to allow the manual
codification of a script to validate output differences. This option consumes time and effort;
moreover the insertion of a new test in the test set may forces a change in that script, if
it does not include all the valid options. This enables a flexibilization of the comparison
process, but it is can be restricted to the programming languages supported by the AGS or
by the host environment.

Consider now a situation where a student is asked to codify a program that outputs the
divisors list of a given number (in ascending order). A submitted program may actually
output the correct divisors, but not respect the asked order or even not output the complete
list. In classrooms, a manual grading of these answers should consider them partially correct,
allowing a score based on the severity level of the errors found. However, traditional AGS
only grade these answers if they respect the structure defined on the comparison script —
they do not support the individual evaluation of the partially correct answers.

The notion of grading partially correct answers is explored in [52], but only focused on
submitted programs with syntax errors. In this work, the authors propose an automatic
grading algorithm that combines dynamic and static marking, based on compiler theory and
matching of knowledge points [52], capable to grade programs with syntax errors. However,
based on the surveyed research work, there is no grading system capable of assessing programs
whose produced output has semantic errors, regarding the expected output.

1.4 Our Contribution
We propose an output semantic-similarity based analysis that allows the comparison between
the meaning of the actually produced output and the meaning of the expected output.
Moreover, we aim to allow not only the specification of which parts of the generated output
can differ from the expected output, but also to define how to mark partially correct answers.

More specifically, we intend to extend the traditional dynamic analysis concept by
exploiting the use of a Domain Specific Language (DSL) for an output structure specification.
This leads to a more flexible and fair grading process, closer to a manual one, by not
restricting the output comparison process. To this end, we explore how to enrich similarity-
based techniques with semantic annotations, in order to specify rules about how the outputs
should be given and compared.

SLATE 2013



132 A Flexible Dynamic System for Automatic Grading of Programming Exercises

1.5 Article Structure
This document is organized as follows. Section 2 surveys the related work in AGS and
presents the state of the art, describing their evolution in terms of the techniques applied
to assess the submitted program. Section 3 is devoted to the exposition of our proposal.
Section 4 closes the document with some conclusions and directions for future work.

2 Automatic Grading Systems for Program Evaluation

The earliest report about systems capable to automatically grade programs was published in
1960 in CACM by Hollingsworth [15], describing a "grader program" used to assess students
in machine language at Rensselaer. This grader was completely automatic and did not
require user special intervention or knowledge.

In 1965, Forsythe [11] introduced a system that follows the fundamental principle of the
modern grading systems by validating the submitted solutions with a set of tests.

In 1969, BAGS [14], a system developed at University of Sydney, was used to test the
submitted programs with two data sets. The system gives points for each of five activities:
successful compile, complete run, data set 1 correct, data set 2 correct, and time sufficiently
short. The program penalizes each extra submission after the first attempt.

Later, in 1988, Ceilidh [4] was the first computer-based assessment coursework system.
Its first release only supports C language but, in 1992, a major release that supports C
and C++ languages became available to all educational institutions. This version could be
accessed either via a command line interface or a text based terminal menu interface. From
its implementation in 1988, it had an important impact on the research and implementation
of related grading systems, including CourseMarker [12], which is its direct descendant.

Kassandra [47] was developed in 1994 at ETH Zurich. It was designed to automatically
mark Maple and Matlab exercises, implemented as a network service. After students submit
their programs, Kassandra tests them according to two test cases and gives credit if both
answers are correct. It also provides students with a complete assessment report.

With the evolution of computers, AGS increased in complexity, diversifying the tests
made to the subject programs and introducing tools for monitoring the grading process.
As referred, they can be distinguished according to the approach followed to evaluate the
submitted program. This assessment can be done employing two major different techniques:
static and dynamic. Next subsections are devoted to the analysis of this two approaches; also
a more recent hybrid technique is introduced.

2.1 Dynamic Assessment
Dynamic approaches focus on the execution of the program through a set of predefined tests,
comparing the generated output with the expected output (provided in the set of tests). It
is the most obvious approach to verify the program correctness.

There are in the literature many systems that adopt this approach, such as Ceilidh [4],
BAGS [14], TRY [40], Kassandra [47], PSGE [22], HoGG [33], Mooshak [25], JEWL [9], Quiver [8],
Infandango [17], and the tools referred in [11, 15], among many others.

Some of the dynamic-based systems, such as Better Programmer3, were developed as
Web-based submission tools, where users can exercise and evaluate their programming
skills by picking-up a problem from their repository, coding a solution and submitting

3 http://www.betterprogrammer.com

http://www.betterprogrammer.com
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it for assessment. This concept is also largely explored by several universities over the
world to support automatic grading of their programming courses, encouraging the so called
Competitive Learning (CL). Examples of CL projects are Practice-It4, Marmoset5, CodingBat6,
UVa Online Judge7, CodeLab8 and CodeWrite9, among others.

Dynamic approaches are usually based in a simple string comparison between the expected
output and the output actually produced to determine if both values are equal. Thus, the
submitted program is considered correct if and only if this condition is true, which can be a
limitation. Besides this, another important drawback of this approach is the incapability to
produce an assessment when a program does not successfully compile, does not produce an
output or does not end its execution (infinite loop).

2.2 Static Assessment
Unlike Dynamic approaches, which are incapable of analyzing the way source code is written,
Static approaches take benefit from the technology developed for compilers and language-
based tools, to gather information about the programming code without executing it. They
are supported by source code analysis, which allows to detect situations where the submitted
solution does not comply with the exercise rules.

As an example, consider a typical C programming exercise that asks the student to
implement a Graph using adjacency lists to print the shortest-path between two given nodes.
If the final output is equal to the expected one, Dynamic AGS will consider correct a solution
implemented with an adjacency matrix. However, this solution is not acceptable because it
does not satisfy all the assignment requirements – a static approach can be useful to help
detecting the used data types. Or, even more dramatic, if the user computes by hand the
shortest-path and the submitted program only prints it, the solution is also accepted using a
dynamic approach, because it is not able detect such implementation faults.

The most popular method used in this approach is based on software metrics analysis.
Metrics, such as lines of code, number of variables, statements and expressions or even the
code complexity are used as the program grading base. They are easy to calculate, though
the semantics of a program can not be analyzed. Examples of such systems are STYLE [23],
Knots [18], CAP [43], Style Checker [32] and Verilog Logiscope [30].

Besides software metrics, there are other techniques that fit on static analysis approach
such as the programming style assessment [1], syntax and semantics errors detection [45, 16],
structural similarity analysis [3, 46, 34, 49, 51], non-structural similarity analysis [50], keyword
detection [42] or even plagiarism detection [35], allowing static analysis to be a powerful
approach to evaluate how well source code is written.

2.3 Hybrid Assessment
Static approaches can not be used for testing the correctness of programs with input and
output operations. However, traditional dynamic grading systems leave aside one important
aspect when assessing programming skills: the source code quality. These assumptions

4 http://Webster.cs.washington.edu:8080/practiceit/
5 http://marmoset.cs.umd.edu/
6 http://codingbat.com/
7 http://uva.onlinejudge.org
8 http://turingscraft.com/
9 http://codewrite.cs.auckland.ac.nz/
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led to the construction of systems such as Web-CAT [44, 7], WebBot [5], Scheme-Robe [42]
or BOSS10, that combine the best of both approaches, by improving the dynamic testing
mechanism with static techniques like metrics or style analysis. This symbiosis keeps providing
immediate feedback to the users (students/competitors or instructors/judges), but enriched
by a quality analysis – which is obviously a relevant extra-value.

The first system combining both approaches was Ceilidh [13] by introducing semantic
error detection. It statically detects suspicious never-ending loops, a crucial feature to avoid
breaks during the dynamic evaluation process. This system completes the dynamic analysis
with a static verification of the program layout and structure – its indentation, identifiers,
comments; it also measures readability and complexity metrics.

Another example is ASSYST [20], used to automate some aspects of grading in introduct-
ory Ada classes, as well as a second-year C-programming course. It gives weighted grades to
students, based on the correctness (output), efficiency (run time), style and complexity of
their answers, and also based on the adequacy of the submitted tests (student self-test data).

Used in Java introductory programming courses, eGrader [3] produces detailed feedback
reports, showing to students the model solution provided by the teacher. Additionally, specific
comments on syntax and semantic errors (if any) are also provided. Its static analysis process
consists of two parts: the structural similarity, which is based on the graph representation of
the program; and the quality analysis, which is measured by software metrics.

A more recent system, AutoLEP [48], improves the traditional static grading mechanisms
with dynamic code testing, by enriching source code static analysis with a comparison of
the similarity degree. Summing up, it evaluates the program construction and how close the
source code is from the correct solution.

Another example of hybrid assessment is Quimera [10], a Web-based application able
to evaluate source code written in C language, which provides a full management system
for programming contests. Quimera allows to create and manage programming exercises
both in competitive learning and programming contest environments. Besides the traditional
dynamic approach, this system provides a static analysis of the program by measuring the
source code quality. Thus, the final grade is based not only in the source code capability of
producing the expected output, but also on its quality and accuracy.

3 Flexible Dynamic Analysis

Our proposal, a Flexible Dynamic Analyzer (FDA), is based on the traditional dynamic analysis
which is, as referred, supported by the execution of the submitted answer (the program under
assessment) over a set of predefined tests. We aim at extending this concept to allow a more
flexible comparison between the output produced by the program under assessment and the
expected output.

We propose to compare the meaning of both outputs performing a semantic-similarity
analysis to achieve a more flexible grading process. A Domain Specific Language (DSL),
specially designed to specify the output structure and semantics, will be used as the basis for
the desired semantic comparison. The DSL’s design will also support the mark of partially
correct answers.

Next subsections are devoted to detail this proposal, a flexible system able to interpret the
output meaning, concerning a predefined structure. This system produces a complete grading
report, designed to be easily integrated with a traditional dynamic analyzer. Section 3.1

10 http://www.dcs.warwick.ac.uk/boss/about.php
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presents the proposed architecture. Section 3.2 introduces the Output Semantic-Similarity
Language (OSSL), the proposed DSL used by the FDA. OSSL grammar is also presented and
discussed; the subsection ends with illustrative examples.

3.1 Architecture

Our FDA was designed as an independent module that can be easily integrated with any
AGS that uses an external evaluator. We just require that the AGS compiles the submitted
source code, and provides a compilation report and (if the compilation is successful) the
compiled program.

Moreover, to follow the trend of the evolution of systems that perform the automatic
assessment of programming exercises [6], as well as to ensure the interoperability with other
systems [36], the FDA uses the concept of Learning Object (LO) to describe a programming
exercise, its assessment instructions and the associated resources. LOs are content components,
organized in context independent and reusable digital pieces of information – a standard in the
learning domain [37]. Since the standard LO cannot be used for complex evaluation domains
such as programming exercise evaluation [28], we propose an extension of the Programming
Exercises Interoperability Language (PExIL) [38] to include the OSSL description of the
set of tests. PExIL aims at consolidating all the data required to cover the programming
exercise life-cycle, since it is created until it is graded. The associated PexilUtils generator
produces a IMS CC11 LO package, allowing the definition of Specialized Learning Objects. The
use of LOs components also ensures compatibility with specialized LOs Repositories such as
CrimsonHex [27], allowing the reuse of programming exercises among different systems.

Therefore, the FDA architecture is composed of three modules: the OSSL Processor, the
Flexible Evaluator and the Grader, as depicted in Figure 1.

Flexible Dynamic Analyser

OSSL Processor Grader

Compiled
Program

∈
¬

≈

Extended 
Learning Object

Dynamic Analysis
Grading Report

Input 1
Input n

Flexible Evaluator

Grading Instructions

Test 
Report 1

Test 
Report n

Executer Validator

Program Output

Compilation Report

Output IR 1
Output IR 2

Figure 1 Flexible Dynamic Analyzer Architecture.

11A package standard that assembles educational resources and publishes them as reusable packages.
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The OSSL Processor is the central piece of the FDA, being the responsible for producing
the set of resources required to execute, validate and grade the submission under assessment.
It receives an Extended Learning Object containing the problem description, the associated
metadata and the OSSL specification, and generates the set of Inputs, the set of the Expected
Outputs (through an intermediate representation) and the Grading Instructions.

The Flexible Evaluator is responsible for the execution and validation of the submissions.
It receives the set of Inputs, extracted from the OSSL specification by the OSSL Processor,
and executes the Compiled Program. If an execution is successful, the Flexible Evaluator
module produces a Program Output file that is validated against the respective Output IR –
the intermediate representation of the OSSL specification of the expected output, generated
by the OSSL Processor. This output intermediate representation allows to compare (at the
semantics level) the meaning of the expected output with the output actually produced.
This validation process produces a Test Report for each test performed, containing the details
about time and memory consumptions and the test results.

The Grader module produces a Grading Report resulting from the dynamic evaluation
performed, concerning the set of Test Reports produced by the Flexible Evaluator and the
Grading Instructions provided by the OSSL Processor. This Grading Report is composed of the
details about each individual test report and the submission assessment, which is calculated
regarding time and memory consumptions, the weight and score for each test and the number
of successful tests. Moreover, if the submission under assessment fails the compilation phase,
this grading process is based on the Compilation Report provided by the compiler, in order to
give feedback about the program under assessment.

3.2 OSSL: Output Semantic-Similarity Language
We believe that the development of a DSL is the most flexible approach for: (i) the extension
of an AGS dynamic analyzer to interpret different output values with the same meaning;
and (ii) to support partial grading. DSLs are programming languages adapted to a specific
application domain, which offer substantial gains in expressiveness and ease of use, when
compared with general-purpose programming languages [31]. Rather than being for a general
purpose, a DSL captures the semantics of its domain. Examples of DSLs include lex [29]
and yacc [21], used for program lexical analysis and parsing, HTML [39], used for document
markup, or even VHDL [19], used for hardware descriptions. Concerning the DSLs scope and
our goals, we propose a DSL that, given a programming exercise, allows to define:

The program output meaning;
Partially correct solutions and their penalties;
Mandatory and optional output components;
The support of case sensitive text;
The delimiter and punctuation characters used to produce the output;
Output patterns.

As discussed along Section 1, the grade of programing exercises is a complex task that
usually involves executing a program to assess its ability to produce the expected output
concerning the given input. The OSSL language aims at supporting the output structure
specification, in order to allow an easy and clear way of describing the instructions for the
automatic grading of the output produced by the program under evaluation. This allows the
interpretation of the output meaning and perform its grading, based on a semantic-similarity
specification strategy. This description follows the traditional manual assessment process,
determining partially correct answers and their respective grade.
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To be able to automatically interpret the meaning of a program output, it is essential to
categorize in a simple but formal way the format used to model that output. To represent
the abstraction of the possible output values, we divide them into two main types: the
atomic and the compound values. The Atomic category includes numeric, character, identifier
and string values. The other category – Compound values – represents tuples, unions, sets,
sequences, trees, graphs and mappings. Concerning this categorization, we propose the
grammar in Listing 1.

Listing 1 OSSL Grammar Core.
Output −> Value
Value −> Atomic | Compound
Atomic −> number | cha rac t e r | i d e n t i f i e r | s t r i n g
Compound −> Tuple | Union | Set | Seq | Mapping | Tree | Graph

An Output is defined by its Value, which can be an Atomic or a Compound value. As referred,
Atomic values can represent numbers, characters, identifier or strings. Tuples, Unions, Sets
and Sequences are represented by lists of elements that are Values. A Mapping is composed
of a Key and an associated Value. Trees are represented by their Root, composed of an
Atomic value and its Descendants. Graphs are represented by a list of arcs, being each arc a
triple composed of source and destination Nodes and its Weight. Since this is a recursive
definition, the elements of a Compound value can be atomic or compound.

In order to allow the specification of partially correct answers and also the association of
a grade, the grammar axiom Output was redefined as can be seen in Listing 2.

Listing 2 OSSL Grammar extension for support partially correct answers.
Output −> Correct Pa r t i a l l yCo r r e c t
Correct −> Value Grade
Pa r t i a l l yCo r r e c t −> (Value Percent ) ∗

An Output is composed of a Correct answer and a list of Partially Correct answers (if any).
Correct answers have an associated Grade. This grade is the base of the Partially Correct
answers assessment, which is a Percent of the correct answer grade.

To enable the automatization of each test, a new axiom was defined, including the
specification of the input value, as can be seen in Listing 3.

Listing 3 OSSL Grammar support for test automatization.
Test −> Input Output
Input −> Atomic +

In order to permit the definition of all the tests in the same specification, the grammar is
extended again with a new axiom and a new production, shown in Listing 4.

Listing 4 OSSL Grammar support for a set of tests.
TestSet −> Test +

To define completely OSSL, the abstract grammar presented above shall be transform
into a concrete one, adding some syntactic sugar. Listing 5 shows our final choice. In the final
version of the grammar, a new axiom was introduced, Ossl, composed of two elements. The
Header, that allows to identify the problem, define the number of tests included and the total
grading of the set of tests. The TestSet represents all the tests (the pairs of input/output
descriptions). Notice that the sum of the grade corresponding to each output must be equal
to the Total value defined in the Header.

SLATE 2013
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Listing 5 OSSL Grammar.
Oss l −> Header TestSet
Header −> PROBLEM " : " i d e n t i f i e r TESTS " : " number TOTAL " : " number
TestSet −> Test +
Test −> Input Output
Input −> INPUT " : " Value
Output −> OUTPUT " : " Correct Pa r t i a l l yCo r r e c t
Correct −> Value " ( " Grade " ) "
Pa r t i a l l yCo r r e c t −> ( ALSO Value " ( " Percent " ) " )∗
Value −> Atomic | Compound
Atomic −> number | cha rac t e r | i d e n t i f i e r | s t r i n g
Compound −> TUPLE Elems | Pair

| UNION Elems | MAP Entr i e s
| SET Elems | SEQ Elems
| TREE Root | GRAPH Arc +

Elems −> "<" Values ">"
Ent r i e s −> Entry +
Entry −> Key "−>" Value
Values −> Value ( " , " Value )∗
Key −> Atomic
Root −> Node Descs
Node −> Atomic
Descs −> Root ∗
Percent −> number
Grade −> number
Arc −> " ( " Node " , " Node Weight " ) "
Weight −> & | " , " Atomic
Pair −> " ( " Value " , " Value " ) "

Let us now introduce some examples of OSSL grammar usage, presenting the OSSL
specification for two simple programming exercises.

Example 1

Consider the following problem statement: Given a positive integer, compute:

a) The sequence of its divisors, in ascending order;
b) The set of its divisors.

Consider now that the set of tests defined for the proposed problem statement is composed
of two tests, the first one with the number 10 as input, and the second one with the number 18.
The correct divisors are 1, 2, 5 and 10 for the first test, and 1, 2, 3, 6, 9 and 18 for the second
test. Concerning question a), the correct answer would be the sequence of the respective
divisors. Using OSSL language, the set of tests and their corresponding grades would be
defined as described in Listing 6.

When comparing the expected output with the effectively produced one, the FDA compares
each value according to the defined order. Thereby, this specification ensures that only a
sequence of the correspondent divisors will be considered a correct answer. For instance, the
sequence <1, 2, 10, 5> is not accepted as a correct answer.

Consider now the question b). The set of tests is defined in OSSL language as described
in Listing 7.
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Listing 6 OSSL definition for question 1b).
PROBLEM: SeqDiv i so r s TESTS: 2 TOTAL:3

INPUT: 10
OUTPUT: SEQ <1 ,2 ,5 ,10> (1)

INPUT: 18
OUTPUT: SEQ <1 ,2 ,3 ,6 ,9 ,18> (2)

Listing 7 OSSL definition for the concerning question.
PROBLEM: Se tD iv i s o r s TESTS: 2 TOTAL:3

INPUT: 10
OUTPUT: SET <1 ,2 ,5 ,10> (1)

INPUT: 18
OUTPUT: SET <1 ,2 ,3 ,6 ,9 ,18> (2)

This definition ensures that any combination of the specified numbers is considered a correct
answer – the FDA will verify, for each value of the produced output, if it is a member of the
accepted set. So, <3, 18, 9, 2, 6, 1> is one of the possible correct answers for the second test
(input 18).

Consider again question a). Listing 8 illustrates how to specify that incomplete sequences,
missing their extreme values, should be accept as partially correct answers.

Listing 8 OSSL definition with partially correct answers.
PROBLEM: Se tD iv i s o r s TESTS: 2 TOTAL:3

INPUT: 10
OUTPUT: SEQ <1 ,2 ,5 ,10> (1)

ALSO SEQ <2,5,10> ( 0 . 5 )
ALSO SEQ <1,2,5> ( 0 . 5 )

INPUT: 18
OUTPUT: SEQ <1 ,2 ,3 ,6 ,9 ,18> (2)

ALSO SEQ <2 ,3 ,6 ,9 ,18> ( 0 . 5 )
ALSO SEQ <1 ,2 ,3 ,6 ,9> ( 0 . 5 )

The OSSL specification in Listing 8 allows to accept answers where the first or the last value
of the correct sequence is not outputted. In such situations, the final grade will be 50% of
the total grade.

Example 2

Consider now the following problem statement: Write a program that allows to find all the
possible paths to solve a given maze. A maze is represented through a 6 x 5 matrix, where
the Lines are numbered from 1 to 6 and the Columns are identified from A to E, as depicted
in Figure 2. Each cell represents a Position in the maze, expressed by a pair (Line, Column)
(e.g., (1,A) represents the first cell of the maze, on its left top corner).
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A
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Figure 2 The three possible paths that solve the maze.

The maze Walls are represented by a list of Coordinates indicating the positions where
each wall is in the maze. Each Coordinate is represented by a tuple (Position, Limit), where
the Limit represents the side of the cell where the wall is located. The different positions are
represented according to the following notation convention: Left (L), Top (T), Right (R) and
Bottom (B) (e.g., ((1,A),R) represents a wall on the right side of cell (1,A)).

The program receives three parameters: the start Position, the end Position, and the Walls
list, and will output the set of the correspondent possible paths.

Listing 9 represents the OSSL specification for the given problem, concerning the maze
definitions depicted in Figure 2. The input is defined by a tuple with the start position and
the end position, followed by the wall list of the maze. The output is composed of a set of
Position sequences, representing each of the three possible paths. It is also considered that, if
the program produces two of the three possible paths, it will receive 50% of the total input
grade. Moreover, if the program only outputs one of the three possible paths, it will receive
25% of the total input grade.

4 Conclusion

Along this document, the problem of automatically grading the solutions submitted by
students to programming exercises was introduced and characterized. This contextualization
gave the motivation for the research topic of this work: improve a traditional dynamic
grading system with the ability to interpret the meaning of the output, instead of a strict
syntactic comparison. Moreover, the capability of marking partially corrected solutions was
also considered. The deep study of the state of the art on AGS has shown that there is no
other system supporting both requirements that we consider crucial for the successful use of
such systems in learning environments.

We proposed an architecture for the Flexible Dynamic Analyzer (FDA) module to achieve
the identified objectives. Also, we proposed a DSL, named OSSL, to support the output
semantic specification. OSSL grammar was presented in the paper, and its use illustrated.

We strongly believe that the proposed approach is user-friendly (OSSL allows to specify
the output meaning in a simple way) and is easy to implement. We also argue that it
effectively improves the role of AGS as Learning Support Tools, ensuring the interoperability
with existent programming exercise evaluation systems that support Learning Objects.

As this is an undergoing project, obviously the future work is concerned with the proposal
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Listing 9 OSSL definition for the maze exercise.
PROBLEM: FindPaths TESTS: 1 TOTAL: 4

INPUT: TUPLE < (1 ,A) , (6 ,E) ,
SET < ( (1 ,A) ,R) , ( ( 2 ,A) ,B) , ( ( 2 ,B) ,R) , ( ( 2 ,C) ,R) ,

( ( 2 ,D) ,T) , ( ( 2 ,E) ,R) , ( ( 3 ,B) ,R) , ( ( 3 ,C) ,R) ,
( ( 3 ,D) ,R) , ( ( 4 ,A) ,R) , ( ( 4 ,B) ,R) , ( ( 4 ,C) ,R) ,
( ( 4 ,D) ,R) , ( ( 4 ,E) ,B) , ( ( 5 ,A) ,R) , ( ( 5 ,B) ,R) ,
( ( 5 ,C) ,R) , ( ( 5 ,E) ,R) > >

OUTPUT: SET < SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 1 ,B) , ( 1 ,C) , ( 2 ,C) ,
(3 ,C) , ( 4 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) >,

SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 4 ,B) , ( 5 ,B) ,
(6 ,B) , ( 6 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) >,

SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 3 ,A) , ( 4 ,A) ,
(5 ,A) , ( 6 ,A) , ( 6 ,B) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) > > (4)

ALSO SET < SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 1 ,B) , ( 1 ,C) , ( 2 ,C) ,
(3 ,C) , ( 4 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) >,

SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 4 ,B) , ( 5 ,B) ,
(6 ,B) , ( 6 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) > > ( 0 . 5 )

ALSO SET < SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 1 ,B) , ( 1 ,C) , ( 2 ,C) ,
(3 ,C) , ( 4 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) >,

SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 3 ,A) , ( 4 ,A) ,
(5 ,A) , ( 6 ,A) , ( 6 ,B) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) > > ( 0 . 5 )

ALSO SET < SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 4 ,B) , ( 5 ,B) ,
(6 ,B) , ( 6 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E)>,

SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 3 ,A) , ( 4 ,A) ,
(5 ,A) , ( 6 ,A) , ( 6 ,B) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) > > ( 0 . 5 )

ALSO SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 1 ,B) , ( 1 ,C) , ( 2 ,C) ,
(3 ,C) , ( 4 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) > (0 . 2 5 )

ALSO SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 4 ,B) , ( 5 ,B) ,
(6 ,B) , ( 6 ,C) , ( 5 ,C) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) > (0 . 2 5 )

ALSO SEQ < (1 ,A) , ( 2 ,A) , ( 2 ,B) , ( 3 ,B) , ( 3 ,A) (4 ,A) ,
(5 ,A) , ( 6 ,A) , ( 6 ,B) , ( 6 ,C) , ( 6 ,D) , ( 6 ,E) > (0 . 2 5 )

implementation. The example presented in Listing 9 illustrates well on how partially correct
answers can be mathematically seen. When the expected output is a set of values, we can
see the associated partially correct answers as subsets of the correct set. We believe that it
could be a benefit to extend the OSSL grammar to allow not only subset definitions, but also
to support ranges and other subtype definitions like subsequences or subgraphs, concerning
the compound values currently supported and their meaning in terms of partially correct
output definition. Besides that, this example also shows what is the main benefit of the
proposed output typification: support the definition of output patterns for describing both
correct and partially correct answers. These extensions will allow a simpler definition of the
correct answers and improve the readability of the output definition.

Moreover, and regarding the literature studied [41, 36], the support for automatic test
data generation is not a closed option in the future. The proposed architecture is able
to support it by exploiting PExIL functionalities and with the implementation of an OSSL
generator. However, in this initial phase of the project, it is irrelevant how the set of tests is
defined – it is not the focus of this paper. A manual definition of the set of tests will not
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interfere with the OSSL language and its main features.
After extending OSSL, we will use Quimera [10] system to integrate and test the FDA.

As soon as the new system is available, we intend to test it with real users. We plan to
design and implement an experiment in real learning environments to assess the usability
and performance of the proposed system. This experiment will also allow us to evaluate the
benefits of the learning approach defended along this document.
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