
Picat: A Scalable Logic-based Language and
System (Invited talk)
Neng-Fa Zhou

Brooklyn College, The City University of New York
2900 Bedford Avenue, Brooklyn, New York, USA
zhou@sci.brooklyn.cuny.edu

Abstract
This talk will give the design principles of the Picat language (http://www.picat-lang.org),
highlight the high-level and intuitive abstractions provided by Picat for easy programming, and
contemplate why Picat is more robust and scalable than Prolog and could be more accessible
than Prolog to ordinary programmers for scripting and modeling tasks.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Functions, Relations, Loops, Constraints, Tabling

Digital Object Identifier 10.4230/OASIcs.SLATE.2013.5

Despite the elegant concepts, new extensions (e.g., tabling and constraints), and successful
applications (e.g., knowledge engineering, NLP, and search problems), Prolog has a bad
reputation for being old and difficult. Many ordinary programmers find the implicit non-
directionality and non-determinism of Prolog to be hard to follow, and the non-logical
features, such as cuts and dynamic predicates, are prone to misuses, leading to absurd codes.
The lack of language constructs (e.g., loops) and libraries for programming everyday things
is also considered a big weakness of Prolog. The backward compatibility requirement has
made it hopeless to remedy the language issues in current Prolog systems, and there are
urgent calls for a new language.

Several successors of Prolog have been designed, including Mercury, Erlang, Oz, and
Curry. The requirement of many kinds of declarations in Mercury has made the language
difficult to use; Erlang’s abandonment of non-determinism in favor of concurrency has made
the language unsuited for many applications despite its success in the telecom industry; Oz
has never attained the popularity that the designers sought, probably due to its unfamiliar
syntax and implicit laziness; Curry is considered too close to Haskell. All of these successors
were designed in the 1990s, and now the time is ripe for a new logic-based language.

Picat aims to be a simple, and yet powerful, logic-based programming language for a
variety of applications. Picat incorporates many declarative language features for better
productivity of software development, including explicit non-determinism, explicit unification,
functions, constraints, and tabling. Picat lacks Prolog’s non-logical features, such as the
cut operator and dynamic predicates, making Picat more reliable than Prolog. Picat also
provides imperative language constructs for programming everyday things. The resulting
system will be used for not only symbolic computations, which is a traditional application
domain of declarative languages, but also for scripting and modeling tasks.

Picat is a general-purpose language that incorporates features from logic programming,
functional programming, and scripting languages. The letters in the name summarize Picat’s
features:

© Neng-Fa Zhou;
licensed under Creative Commons License CC-BY

2nd Symposium on Languages, Applications and Technologies (SLATE’13).
Editors: José Paulo Leal, Ricardo Rocha, Alberto Simões; pp. 5–6

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.picat-lang.org
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


6 Picat: A Scalable Logic-based Language and System (Invited talk)

Pattern-matching: A predicate defines a relation, and can have zero, one, or multiple
answers. A function is a special kind of a predicate that always succeeds with one answer.
Picat is a rule-based language. Predicates and functions are defined with pattern-matching
rules.
Imperative: Picat provides assignment and loop statements for programming everyday
things. An assignable variable mimics multiple logic variables, each of which holds a value
at a different stage of computation. Assignments are useful for computing aggregates and
are used with the foreach loop for implementing list comprehensions.
Constraints: Picat supports constraint programming. Given a set of variables, each of
which has a domain of possible values, and a set of constraints that limit the acceptable
set of assignments of values to variables, the goal is to find an assignment of values to
the variables that satisfies all of the constraints.
Actors: Actors are event-driven calls. Picat provides action rules for describing event-
driven behaviors of actors. Events are posted through channels. An actor can be attached
to a channel in order to watch and to process its events. Picat treats threads as channels,
and allows the use of action rules to program concurrent threads.
Tabling: Tabling can be used to store the results of certain calculations in memory,
allowing the program to do a quick table lookup instead of repeatedly calculating a value.
As computer memory grows, tabling is becoming increasingly important for offering
dynamic programming solutions for many problems.

Picat is more expressive than Prolog for scripting and modeling. With arrays, loops,
and list comprehensions, it is not rare to find problems for which Picat requires an order of
magnitude fewer lines of code to describe than Prolog. Picat is more scalable than Prolog.
The use of pattern-matching rather than unification facilitates indexing of rules. Picat is
more reliable than Prolog. In addition to explicit non-determinism, explicit unification,
and a simple static module system, the lack of cuts, dynamic predicates, and operator
overloading also improve the reliability of the language. Picat is not as powerful as Prolog
for metaprogramming and it’s impossible to write a meta-interpreter for Picat in Picat
itself. Nevertheless, this weakness can be remedied with library modules for implementing
domain-specific languages.


