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Abstract
An infinite tree is called thin if it contains only countably many infinite branches. Thin trees
can be seen as intermediate structures between infinite words and infinite trees. In this work we
investigate properties of regular languages of thin trees.

Our main tool is an algebra suitable for thin trees. Using this framework we characterize
various classes of regular languages: commutative, open in the standard topology, closed under
two variants of bisimulational equivalence, and definable in WMSO logic among all trees.

We also show that in various meanings thin trees are not as rich as all infinite trees. In
particular we observe a parity index collapse to level (1, 3) and a topological complexity collapse
to co-analytic sets. Moreover, a gap property is shown: a regular language of thin trees is either
WMSO-definable among all trees or co-analytic-complete.
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1 Introduction

Since the decidability results by Büchi [7] and Rabin [17], regular languages of infinite words
and trees have been intensively studied. Those languages can be equivalently described in
monadic second-order (MSO) logic, by nondeterministic finite automata, or in terms of
homomorphisms to finite algebras. Apart from the emptiness problem, which is known to
be decidable, one ask about decidability for other, more subtle properties of a given language.

Suppose that X is a subclass of regular languages of infinite trees, e.g. X can be the lan-
guages that are definable in first-order (FO) logic with descendant; or definable in weak MSO
(WMSO); or recognized by a nondeterministic parity automaton with priorities {i, . . . , j}.
An effective characterization for X is an algorithm which inputs a regular language of infin-
ite trees and answers if the language belongs to X. As far as decidability is concerned the
representation of the language is not very important, since there are decidable translations
between the many ways of representing regular languages of infinite trees.

Effective characterizations are a lively and important topic in the theory of regular
languages. In the case of finite words there are many celebrated results, e.g. characterizations
of FO [18], two-variable FO [21] or piecewise testable languages [19]. Many of these results
carry over to infinite words, see [23], [16], or [12]. For finite trees much less is known, but still
there are some techniques [3]. The main reason why effective characterizations are studied is
that an effective characterization of a class X requires a deep insight into the structure of the
class. Usually this insight is achieved through an algebraic framework, such as semigroups
for finite words, Wilke semigroups for infinite words, or forest algebra for finite trees. Apart
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from having a well-developed structure theory, another advantage of algebra is that many
effective characterizations can be elegantly stated in terms of identities.

Effective characterizations are technically challenging, and in fact there are very few
effective characterizations for languages of infinite trees: for languages recognized by top-
down deterministic automata one can compute the Wadge degree [14], for arbitrary regular
languages one can decide definability in the temporal logic EF [4] or in the topological class
of Boolean combinations of open sets [5]. One of the reasons why effective characterizations
are so difficult for infinite trees is that, so far, there is no satisfactory algebraic approach to
infinite trees, or even a canonical way to present a regular language. Proposed algebras (see
[4], [2]) either have no finite representation or yield no effective characterizations.

In this paper, we propose to study thin trees, which generalize both finite trees and
infinite words, but which are still simpler than arbitrary infinite trees. A tree is called thin
if it has only countably many infinite branches (or equivalently, it does not contain a full
binary tree as a minor). We believe that thin trees are a good stepping stone on the way to
understanding regular languages of arbitrary infinite trees.

Our contributions can be divided into two sets:
Effective characterizations. We characterize the following classes of regular languages of
thin trees in terms of finite sets of identities:

closed under rearranging of siblings,
closed under bisimulation equivalence (in two variants),
open in the standard topology,
definable in the temporal logic EF,
definable among all forests in WMSO logic.

The crucial ingredient of these characterizations is an observation that a regular language
of thin trees can be canonically represented by a finite algebraic object, called its syntactic
thin-forest algebra. For general trees no such representation is known.
Upper bounds. We show that in various contexts thin trees are not as rich as generic trees:

The Rabin-Mostowski index hierarchy collapses to level (1, 3) on thin trees.
The projective hierarchy of regular languages collapses to level Π1

1 on thin trees (com-
paring to ∆1

2 in the case of all trees).
We observe a gap property (see [15]): a regular language of thin trees treated as a subset
of all trees is either definable in WMSO logic or non-Borel.
If we treat thin trees as our universe then no regular language is topologically harder
than Borel sets.

2 Preliminaries

This section introduces basic notions and facts used in the proofs. To avoid technical diffi-
culties when introducing algebras, we operate on finitely branching forests instead of partial
binary trees. The difference is only technical, all the results can be naturally transferred
back to the framework of partial binary trees.

2.1 Forests
Fix a finite alphabet A. By AFor we denote the set of all A-labelled forests. Formally a forest
is a partial mapping from its set of nodes dom(t) ⊂ ω+ into A. We additionally assume
that a forest is finitely branching: for every w ∈ ω∗ there are only finitely many nodes of
the form w0, w1, w2, . . . , wn in dom(t). For w = ε those nodes are called roots of the forest
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t and for w 6= ε these are children of the node w. In both cases the list of nodes of the form
wn ordered by n is called a list of siblings in t.

A node w ∈ dom(t) is branching if it has at least two distinct children wn1, wn2 ∈ dom(t).
A node in dom(t) is a leaf of t if it has no children in t.

A forest with exactly one root is called a tree. The empty forest is denoted as 0. For
a given forest t and a node x ∈ dom(t) by t �x we denote the subtree of t rooted in x:
dom(t�x) = {0 · w ∈ ω∗ : xw ∈ dom(t)}, t�x (0 · w) = t(xw).

Let t be a forest. A sequence π ∈ ω∗ is a finite branch of t if either π = ε and t = 0
or π ∈ dom(t) and π (as an element of ω+) is a leaf of t. A sequence π ∈ ωω is an infinite
branch of t if for every sequence w ∈ ω+ such that w ≺ π we have that w is a node of t.

A forest is regular if it has finitely many distinct subtrees. A forest is thin if it has
countably many branches. The set of all thin forests is denoted as AThinFor ⊂ AFor. A forest
is thin if and only if it is a tame tree in the meaning of [13].

We say that a forest s is a prefix of a forest t if dom(s) ⊆ dom(t) and for every x ∈ dom(s)
we have s(x) = t(x). We denote it by s ⊆ t.

Let t be a forest and s ⊆ t be a prefix of t. A node y ∈ t is off s if y /∈ s and either y is
a root, or the parent of y is in s. Since a branch π of t can be treated as a prefix of t this
definition also extends to branches.

An A-labelled context is a forest over the alphabet A∪{�}, where the label � is a special
marker, called the hole, which occurs exactly once and in a leaf. A context is guarded if its
hole is not in a root. For every letter a ∈ A we denote by a� the single-letter tree context
with a in the root and the hole below it.

Since we are interested in algebraic frameworks for forests, we need a set of operations
which will allow to build forest from basic elements. Following [6] we introduce following
operations on forests. For a graphical presentation of these operations, compare Figure 1
and Figure 2 in [6]. We can

concatenate two forests s, t, which results in the forest s+ t,
compose a context p with a forest t, which results in the forest pt, obtained from p by
replacing the hole with t,
compose a context p with a context q, which results in the context pq that satisfies
(pq)t = p(qt).

We write at, ap for a composition of a single-letter context a� with t or p (thus a0 is
a forest of one node labelled a). Additionally we have an operation which allows us to
produce infinite forests:

compose a guarded context p with itself infinitely many times, which results in the forest
p∞ that satisfies p(p∞) = p∞. Note that we exclude non-guarded contexts from this
definition. (For example the result of (� + a0)∞, even if well-defined, is not finitely
branching.)

2.2 Automata and regular languages

A (nondeterministic parity) forest automaton over an alphabet A is given by a set of states
Q equipped with a monoid structure, a transition relation ∆ ⊆ Q × A × Q, a set of initial
states QI ⊆ Q and a parity condition Ω: Q→ N. We use additive notation + for the monoid
operation in Q, and we write 0 for the neutral element.

We say that a forest automaton A has index (i, j) (or shortly that A is (i, j)-automaton)
if i is the minimal and j is the maximal value of Ω on Q.
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A run of this automaton over a forest t is a labelling ρ : dom(t)→ Q of forest nodes with
states such that for any node x with children x1, . . . , xn

(ρ(x1) + ρ(x2) + · · ·+ ρ(xn), t(x), ρ(x)) ∈ ∆.

Note that if x is a leaf, then the above implies (0, t(x), ρ(x)) ∈ ∆.
A run is accepting if for every (infinite) branch π of t, the highest value of Ω(q) is even

among those states q which appear infinitely often along the branch π. The value of a run
over a forest t is obtained by adding, using +, all the states assigned to roots of the forest.
A forest is accepted if it has an accepting run whose value belongs to QI . The set of forests
accepted by an automaton is called the language recognized by the automaton.

A language is regular if it is definable by a formula of monadic second-order logic (MSO).

I Theorem 1 ([10]). A language of thin forests is regular if and only if it is recognized by
some forest automaton. Every nonempty language of thin forests contains a regular forest.

We use MSO logic to describe properties of infinite forests. An infinite forest is treated
as a relational structure, where the universe is the nodes, and the predicates are: a binary
child predicate, a binary next sibling predicate, and one unary predicate for each label in
the alphabet. Additionally, we consider WMSO: the logic with the same syntax as MSO
but with the semantical restriction that all set quantifiers range over finite subsets of the
domain. Since the property that a given set is finite is MSO-definable on finitely branching
infinite forests, so WMSO can be naturally embedded into MSO. There are examples of
languages of infinite forests that are definable in MSO but not in WMSO.

2.3 Topology
A topological space X is Polish if it is separable and has a complete metrics. Polish topo-
logical spaces are the principal objects studied in descriptive set theory.

The set of forests AFor, equipped with the natural Tikhonov topology, is an uncountable
Polish topological space. The base of the topology is given by the sets of the form {t :
t�ω≤d= r} for finite forests r and a number (depth) d.

Let X be an uncountable Polish topological space. The class of open sets in X is denoted
as Σ0

1(X). The class of complements of open sets (called closed) is denoted as Π0
1(X). The

Borel hierarchy is defined inductively, the building ingredients are countable unions and
intersections. For a countable ordinal α let:

Σ0
α(X) be the class of countable unions of sets from

⋃
β<α Π0

β(X),
Π0
α(X) be the class of countable intersections of sets from

⋃
β<α Σ0

β(X).

The class of Borel sets is the union of all classes Σ0
α and Π0

α for α < ω1. A more detailed
introduction to the Borel hierarchy can be found e.g. in [11, Chapter II]. If the space is clear
from the context we will omit it and write just Σ0

α and Π0
α.

The class of Borel sets is not closed under projection. Each set that is a projection of a
Borel set is called analytic. The class of analytic sets is denoted by Σ1

1. The superscript 1
means that the class is a part of the projective hierarchy. The rest of the projective hierarchy
is defined as follows:

Π1
i consists of the complements of the sets from Σ1

i ,
Σ1
i+1 consists of the projections of the sets from Π1

i .
The sets from the class Π1

1 are called co-analytic.
The Borel hierarchy together with the projective hierarchy constitute the so-called bold-

face hierarchy. The most important property of this hierarchy is strictness: all the inclusions
on the following diagram are strict.
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I Fact 2. Every regular language of forests is in the intersection of Σ1
2 and Π1

2 (denoted by
∆1

2).
The set of thin forests AThinFor is Π1

1(AFor)-complete, thus non-Borel.

2.4 Ranks and skeletons
The crucial tool in our analysis of thin forests is structural induction — we inductively
decompose a given forest into simpler ones. A measure of complexity of thin forests is called
a rank — a function that assigns to each thin forest a countable ordinal number. The rank
we use, denoted CB-rank (or shortly rankCB), is based on the Cantor-Bendixson derivative
on closed subsets of ωω.

Intuitively, a forest t has rankCB equal M if t contains M levels of infinite branches:
The CB-rank of the empty forest is 0,
The CB-rank of a forest with finitely many branches is 1,
if s is a prefix of t of rank 1 and for every x that is off s we have rankCB(t�x) ≤M , then
rankCB(t) ≤M + 1.

The set of forests of CB-rank bounded by a given ordinal η is denoted as AThinFor≤η.
The second tool used to analyze structural properties of thin forests are skeletons. A

skeleton can be seen as a witness that a given forest is thin. Moreover, a skeleton of a thin
forest t represents a structural decomposition of t.

A subset of nodes σ ⊆ dom(t) of a given forest t ∈ AFor is a skeleton of t if:
from every set of siblings in t exactly one is in σ,
on every infinite branch π of the forest t almost all nodes x ≺ π belong to σ.

Observe that we can identify σ with its characteristic function — a labelling of nodes of
t by {0, 1}. Therefore, σ ∈ {0, 1}For and we can treat a pair of a forest and a skeleton (t, σ)
as an element of A× {0, 1}For.

An easy inductive argument shows that a forest t has a skeleton if and only if t is a thin
forest. Moreover, for every thin forest t one can define its canonical skeleton σ(t).

3 Algebra

In this section we define thin-forest algebra. Its operations and axioms are constructed
in such a manner that the free object of this algebra is the set of all regular thin forests
and regular thin contexts. Thin-forest algebra is a common generalization of both Wilke
algebra [22] and forest algebra [6].

A thin-forest algebra is a three-sorted algebra (H,V+, V�, act, inl , inr , inf ). It consists of
two monoids H and V = V+ ∪ V� (partitioned into a subsemigroup V+ and a submonoid
V�) along with an operation of left action act : H × V → H of V on H, two operations
inl , inr : H → V� and an infinite loop operation inf : V+ → H. Instead of writing act(h, v),
we write vh (notice a reversal of arguments). Instead of writing inf (v), we write v∞. We
will call H the horizontal monoid and V the vertical monoid.

The above construction is based on forest algebra (see [6]). In fact we take forest algebra
and introduce the new operation inf ; this operation corresponds to infinite composition
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of contexts. However, since infinite composition is defined only for guarded contexts, we
are forced to make a distinction between guarded and non-guarded objects, therefore we
partition the sort V into two parts V+ and V� respectively.

3.1 Axioms and free objects
A thin-forest algebra must satisfy the following axioms:
A1. (H,+, 0) is a monoid with operation + and neutral element 0,
A2. (V, ·,�) is a monoid with operation · and neutral element �; it contains two disjoint

subalgebras: (V�, ·,�) is a monoid and (V+, ·) is a semigroup,
A3. (action axiom) (vw)h = v(wh) for every v, w ∈ V , h ∈ H,
A4. (insertion axiom) inl(h)g = h+ g, inr(h)g = g + h for every h, g ∈ H,
A5. (vw)∞ = v(wv)∞ for v, w ∈ V , excluding the case when v, w ∈ V�,
A6. (vn)∞ = v∞ for v ∈ V+ and every n ≥ 1.

Given an alphabet A we define the free thin-forest algebra over A, which is denoted by
AregThin4, as follows:
1. the horizontal monoid is the set of regular thin forests over A, with the operation of

forest concatenation;
2. the vertical monoid is the set of regular thin contexts over A (respectively guarded and

non-guarded), with the operation of context composition;
3. the action is the substitution of forests in contexts;
4. the inl operation takes a regular thin forest and transforms it into a regular thin context

with the hole to the right of all the roots in the forest (similarly for inr but the hole is
to the left of the roots);

5. the infinite loop operation takes a regular thin context and transforms it into a regular
thin forest by performing infinite composition.

I Theorem 3. The algebra AregThin4 is a thin-forest algebra. Moreover it is the free algebra
in the class of thin-forest algebras over the generator set A� = {a� : a ∈ A}.

Since the insertion operations are somewhat cumbersome to use, we will use the operation
+ to concatenate forests with contexts, meaning h+ v = inl(h)v, v + h = inr(h)v.

We note that it is possible to introduce an algebra where the free object would be the
set of all thin forests and all thin contexts (not only regular ones). This can be done
by generalizing ω-semigroups. However, since regular languages of forests are uniquely
described by regular forests which they contain, this more general algebra gives us the same
information about the language as thin-forest algebra. See [10] for more details.

3.2 Recognizability by thin-forest algebra and regularity
A morphism between two thin-forest algebras is defined in a natural way. A set L of thin
forests over an alphabet A is recognized by a morphism α : AregThin4 → (H,V ) if L = α−1(I)
for some I ⊆ H.

We will consider terms in the signature of thin-forest algebra with typed variables. Vari-
ables can be of type τH , τV , or τV+ , which means that a valuation of a term should assign
to the variable an element of the sort H, V or V+ respectively. Similarly a term is of certain
type if a valuation of this term results in an element from the corresponding sort.

Two thin forests t, s are L-equivalent if for every term σ over the signature of thin-
forest algebra of type τH of one variable x of type τH , either both or none of the forests
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568 Regular languages of thin trees

σ[x ← t], σ[x ← s] belong to L (note that we evaluate the term σ in the free thin-forest
algebra). Similarly we define the L-equivalence of contexts (but now the variable x is of
type τV ).

The relation of L-equivalence is a congruence, and the quotient of AregThin4 with respect
to L-equivalence is the syntactic thin-forest algebra for L. The syntactic morphism of L
assigns to every element of AregThin4 its equivalence class in the syntactic thin-forest algebra
of L.

I Theorem 4. A language of thin forests is recognizable by a finite thin-forest algebra if
and only if it is regular. Every regular language of thin forests is recognizable by its syn-
tactic morphism. The syntactic thin-algebra and the syntactic morphism can be effectively
calculated, based on a parity automaton.

Let L be a regular language of thin forests and α : AregThin4 → (H,V ) its syntactic
morphism. We say that an element h ∈ H is the bottom element for L if α−1(h) ∩ L = ∅
and vh = h for every v ∈ V .

Note that the bottom element is unique, since if h1 and h2 are both bottom elements,
then h1 = (�+ h2)h1 = h1 + h2 = (h1 +�)h2 = h2.

4 Applications of thin-forest algebra

In this section we show how thin-forest algebra can be used to give decidable characteriza-
tions of certain properties of languages. Many such characterizations boil down to checking
whether the syntactic algebra of a given regular language satisfies a set of identities. An
identity is a pair of terms (of the same type) in the signature of thin-forest algebra over
typed variables. An algebra satisfies an identity if for every valuation the two terms have
the same value. We usually assume that the operation v 7→ vω is a part of the signature.
This operation assigns to every v ∈ V its idempotent power, i.e. such a power vk that
satisfies vk · vk = vk. For every v there exists a unique idempotent power, since V is a
semigroup [16] (the number k is not unique, but the value vk is).

In the following subsections we show how to decide whether a given regular language of
thin forests is commutative, invariant under bisimulation, open in the standard topology,
and definable by a formula of the temporal logic EF.

4.1 Commutative languages
The notion of commutative language of finite forests is quite natural: it is a language closed
under rearranging of siblings. In the case of finite forests, a language is commutative if and
only if its syntactic algebra satisfies the identity

h+ g = g + h for g, h ∈ H. (1)

In the case of infinite forests we have more flexibility. We get different “degrees of
commutativity” by allowing rearranging of siblings finitely many times, finitely many times
on every branch, or arbitrarily many times. We think that the last (unrestricted) definition
is the most appealing. However, it is not captured by the identity (1). Consider the language
L = “every node has 0 or 2 children and every branch goes left only finite number of times”.
The language L does satisfy (1), but it is not commutative, as witnessed by two thin forests
a(a0 +a�)∞ ∈ L, a(a�+a0)∞ 6∈ L. The problem with the above example is that we would
like to be able not only to rearrange forests, but also to rearrange a forest with a context.
This property is expressed by the following identity:
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I Theorem 5. A regular language of thin forests L is commutative if and only if its syntactic
thin-forest algebra satisfies the identity

h+ v = v + h for h ∈ H and v ∈ V .

Identity (1) corresponds to a weaker notion of commutativity, where on every branch we
allow only finite number of rearrangements of siblings (see [10]).

4.2 Languages invariant under bisimulation
Two forests t0 and t1 are called bisimilar if Duplicator wins the following game, which
is played by players Spoiler and Duplicator. Spoiler begins the game by choosing some
i ∈ {0, 1} and a root node xi of the forest ti. Duplicator responds by chosing a root node
x1−i of the other forest t1−i, which has the same label (if no such node exists, the game
is terminated and Spiler wins). For i ∈ {0, 1}, let si be the forest obtained by taking the
subtree of ti rooted in xi and removing the root. If Duplicator did not lose, then a new
round of the game is played with the forests being s0 and s1. Duplicator wins if infinitely
many rounds are played without Spoiler winning.

A language of thin forests L is called invariant under bisimulation if for every forests
which are bisimilar, either both or none belong to L.

I Theorem 6. A regular language of thin forests L is invariant under bisimulation if and
only if its syntactic thin-forest algebra satisfies the following identities:

h+ v = v+ h, h+ h = h, (w∞ +w)∞ = w∞ for v ∈ V , w ∈ V+ and h ∈ H.

4.3 Open languages
In this section we give a characterization of the class of languages that are open in the
standard topology on forests (see Section 2.3). An equivalent definition says that a forest
language L is open if for every forest t ∈ L there is a finite prefix of t such that changing nodes
outside of the prefix does not affect membership in L. Checking whether a given regular
forest language L is open was known to be decidable, our contribution lies in showing that
for thin forests it can be done by testing the syntactic morphism of L:

I Theorem 7. A regular language of thin forests L is open if and only if its syntactic
morphism α : AregThin4 → (H,V ) satisfies the following condition for v ∈ V+ and h ∈ H:

if v∞ ∈ α(L) then vωh ∈ α(L).

The notion of open sets is also applicable to the case of infinite words. It is interesting
to note that the above condition also characterizes open languages of infinite words.

Moreover, one can extend the theory of ordered algebras (see [16]) to thin-forest algebras.
Then the above condition could be simply stated as v∞ ≥ vωh.

4.4 Temporal logic EF
The logic EF is a simple temporal logic which uses only one operator EF, which stands for
“Exists Finally”. Formulas of the logic EF are defined as follows:
1. every letter a is an EF formula, which is true in trees with root label a,
2. EF formulas admit Boolean operations, including negation,
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570 Regular languages of thin trees

3. if ϕ is an EF formula, then EFϕ is an EF formula, which is true in trees that have a
proper subtree where ϕ is true.

A tree t satisfies an EF formula ϕ if ϕ holds in the root of the tree t. There are some
technical difficulties with generalizing this definition to forests, therefore we will only allow
Boolean combinations of formulas of the form ϕ ∨ EFϕ to describe forests (we call them
forest EF formulas; a forest t satisfies such a formula if ϕ holds in any node of t).

A forest language L is invariant under EF-bisimulation if for every forests t0, t1 which
are EF-bisimilar either both or none belong to L. The relation of EF-bisimilarity is similar
to the relation of bisimilarity, but in the game Spoiler chooses an arbitrary node xi of ti (not
necessarily a root), and Duplicator responds with an arbitrary node x1−i of t1−i. Note that
if t1, t2 are EF-bisimilar and ϕ is an forest EF formula then t1 |= ϕ if and only if t2 |= ϕ.

The following theorem (in a version for general infinite forests) was proved in [4]:

I Theorem 8. A regular language of thin forests L can be defined by a forest EF formula if
and only if
1. it is invariant under EF-bisimulation,
2. its syntactic thin-forest algebra satisfies the identity

vωh = (v + vωh)∞ for v ∈ V+ and h ∈ H.

For forests that are not necessarily thin, we could not find how to express the first
condition in terms of identities. We show how to do it in the case of thin forests:

I Theorem 9. A regular language of thin forests L is invariant under EF-bisimulation if and
only if its syntactic thin-forest algebra satisfies the identities for v, u ∈ V , w ∈ V+, h ∈ H:

h+ v = v + h, vh = vh+ h, (w + (wv)∞)∞ = (wv)∞, (wvu)∞ = (wuv)∞.

5 Descriptive properties

5.1 Automata
First we show that it is possible to recognize regular languages of thin forests using „simple”
automata.

I Theorem 10. Every regular language of thin forests can be recognized among all forests
by a (1, 3)-automaton.

The principal idea is to guess a skeleton of a given forest and use nondeterministic Büchi
automata on the branches of this skeleton to verify the types in the syntactic algebra.

The following theorem expresses that the collapse from Theorem 10 is the best we can
get from the point of view of the alternating index hierarchy (also known as the Rabin-
Mostowski hierarchy).

I Theorem 11. There exists a regular language of thin forests L that is not recognizable
among all forests by any alternating (1, 2)-automaton nor any alternating (0, 1)-automaton.

The following theorem shows that regular languages of thin forests can be recognized by
unambiguous automata relatively to thin forests. It is especially interesting, since there are
regular languages of forests that are not unambiguous, one of the examples is the language
„exists a node labelled by the letter a” (see [8]). The following theorem implies that the
language of thin forests containing a letter a is unambiguous among thin forests.
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I Theorem 12. For every regular language of thin forests L there exists a nondeterministic
forest automaton A such that L(A)∩AThinFor = L and for every thin forest t ∈ L there exists
exactly one accepting run of A on t.

The proof is based on a modification of a technique (called algebraic automata) proposed
by Marcin Bilkowski [1]. The idea is the following: we construct an automatonA that guesses
a marking τ of nodes of the given forest t by types in the syntactic algebra of L. Then A
runs on top of τ a deterministic top-down automaton verifying the following property:

For every node x and every infinite branch π that goes through x, the type guessed
in x is consistent with the guessed types of nodes that are off π and letters of t on π.

5.2 Languages that are WMSO-definable among all forests
In this section we consider a nonstandard approach to restricting the family of all forests to
thin ones. In this setting we show that it is decidable whether a given regular language of
thin forests is WMSO-definable. The difference between the standard approach and the one
used in this section is that we do not implicitly restrict our universe to thin forests.

I Definition 13. Let L be a regular language of thin forests and ϕ be a formula of WMSO.
We say that ϕ defines L among all forests if L =

{
t ∈ AFor : t |= ϕ

}
.

Note that the class of languages definable in WMSO among all forests is not closed under
complement with respect to thin forests: the relative complement of the empty language
∅ ⊆ AThinFor is AThinFor which is not WMSO-definable among all forests.

The following fact says that even in this restricted setting we can define languages as
complicated as in the general case.

I Fact 14. The examples of WMSO-definable languages lying arbitrarily high on the finite
levels of the Borel hierarchy (see [20]) can be encoded into thin forests in a way WMSO-
definable among all forests.

The main result of this section is the following characterization.

I Theorem 15. Let L be a regular language of thin forests. The following conditions are
equivalent:
1. there exists M ∈ N such that every forest t ∈ L satisfies rankCB(t) ≤M ,
2. L is WMSO-definable among all forests,
3. L is not Π1

1(AFor)-hard,
4. the syntactic morphism for L satisfies the following condition:

if h = v(w + h)∞ or h = v(h+ w)∞ for some v ∈ V,w ∈ V+,
then h is the bottom element for L. (2)

The following list presents a sketch of the argumentation.
From 1 to 2. A direct construction of a formula.
From 2 to 3. Folklore.
From 3 to 4. A pumping argument: a counterexample to the equations can be used to

construct a continuous function f from the space of trees over ω to AFor. If a given
tree t is well-founded (does not contain an infinite branch) then the result f(t) is in L.
Otherwise the result f(t) is not thin, therefore does not belong to L. Since the set of
well-founded trees over ω is Π1

1-hard then so is L (f is a continuous reduction).

STACS’13
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From 4 to 1. Estimating: condition (2) introduces an order on types in H. The height of
this order bounds the maximal CB-rank of forests in the language L.

Note that the last condition in the theorem is effective, therefore we obtain the following
corollary.

I Corollary 16. It is decidable whether a given regular language of thin forests L is WMSO-
definable among all forests.

I Proposition 17. Assume that L is a regular language of forests that is recognized by a
nondeterministic (or equivalently alternating) (1, 2)-automaton. Assume additionally that
L contains only thin forests. Then L can be defined in WMSO among all forests.

Proof. Since L is recognizable by a (1, 2)-automaton so L is an analytic subset of AFor.
Therefore, L cannot be Π1

1-hard, thus L satisfies the condition 3 in Theorem 15. J

5.3 Topological properties
In this section we give a couple of results showing that regular languages of thin forests are
topologically simpler then generic regular languages of forests.

I Theorem 18. Every regular language of thin forests L is co-analytic as a set of forests.

Note that despite the fact that the space of thin forests AThinFor is co-analytic among all
forests, it contains arbitrarily complicated subsets. In fact, already the family of forests of
CB-rank equal 1 is an uncountable Polish topological space, so the whole boldface hierarchy
(see Section 2.3) can be constructed using only such forests.

Theorems 15 and 18 imply the following dichotomy or gap property in the spirit of [15].
I Remark. For every regular language of thin forests L exactly one of the following possib-
ilities holds, it can be effectively decided which one:

L is WMSO-definable among all forests and lies on a finite level of the Borel hierarchy,
L is Π1

1(AFor)-complete.

The following theorem shows that, when treating thin forests as our universe, there are
no topologically hard regular languages.

I Theorem 19. Let X be a Polish topological space, f : X → AThinFor be continuous and L
be a regular language of thin forests. Then f−1(L) is Borel in X.

The following theorem can be seen as complementing Theorem 19.

I Theorem 20. There exists a regular language of thin forests LW over an alphabet AW
that is Borel-hard: for every Polish topological space X and every Borel set B ⊆ X there
exists a continuous function f : X → AW

ThinFor such that f−1(LW ) = B.

The principal concept of the above language is based on a construction proposed in [9].
Using the structure of the language LW one can deduce the following corollary.

I Corollary 21. The language LW cannot be defined in WMSO among thin forests.
This statement holds true even if we provide with every forest t ∈ AW ThinFor its canonical

skeleton σ(t): there is no WMSO formula ϕ over the alphabet AW × {0, 1} such that

LW =
{
t ∈ AW ThinFor : (t, σ(t)) |= ϕ

}
.
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