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Abstract
We study the matroid secretary problems with submodular valuation functions. In these prob-
lems, the elements arrive in random order. When one element arrives, we have to make an
immediate and irrevocable decision on whether to accept it or not. The set of accepted elements
must form an independent set in a predefined matroid. Our objective is to maximize the value
of the accepted elements. In this paper, we focus on the case that the valuation function is a
non-negative and monotonically non-decreasing submodular function.

We introduce a general algorithm for such submodular matroid secretary problems. In particu-
lar, we obtain constant competitive algorithms for the cases of laminar matroids and transversal
matroids. Our algorithms can be further applied to any independent set system defined by the
intersection of a constant number of laminar matroids, while still achieving constant competitive
ratios. Notice that laminar matroids generalize uniform matroids and partition matroids.

On the other hand, when the underlying valuation function is linear, our algorithm achieves
a competitive ratio of 9.6 for laminar matroids, which significantly improves the previous result.
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1 Introduction

In the classical secretary problem [8, 11, 12], one interviewer is interviewing n candidates
for a secretary position. The candidates arrive in an online fashion and the interviewer has
to decide whether or not to hire the current candidate when he/she arrives. The goal is to
hire the best secretary. It has been shown that when the candidates are arriving in random
order, there exists an algorithm that hires the best candidate with probability 1/e, where e
is the base of the natural logarithm.

Recently, Babaioff et al. [3] formulated the matroid secretary problem. Instead of hiring
one candidate (element), in the matroid secretary problem, we seek to select a set of elements
which form an independent set in a matroid. Again, the elements arrive in random order
and the weights of the elements are revealed when they arrive. When one element arrives,
we have to make an immediate and irrevocable decision on whether to accept this element or
not. The important constraint is that the set of accepted elements must form an independent
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set in the predefined matroid. The objective is to maximize the total weights of the selected
elements. Notice that the decision on accepting a particular element will impact our ability
in accepting future elements.

In the matroid secretary problem, the value of a set of elements is the summation of
the weights on these elements, i.e., the valuation function is linear. In some applications,
however, it is more natural to measure the quality of a set by a valuation function, which is
not necessarily linear. One set of functions widely used in the optimization community are
the submodular functions. Such functions are characterized as functions with diminishing
returns. We give the formal definition in Section 2.

For example, consider the following scenario. An advertiser is targeting a few platforms
to reach a good coverage of audience. However, the coverage from different platforms may
overlap with each other. In this case, the performance of a particular set of platforms can
only be modeled as a submodular function. Assume the advertiser has to negotiate with the
platforms one by one in an online fashion and has a hard budget limit on targeting at most
k platforms. This is exactly the matroid secretary problem with a submodular valuation
function on a uniform matroid.

We can also consider multiple arriving advertisers, while assuming platforms are available
offline. One can impose constraints both on the advertisers and platforms, e.g., each advertiser
can afford k platforms, and each platform can support at most ` advertisers. This scenario
can be modeled as an intersection of two partition matroids, with a submodular valuation
function, where the objective is to maximize the value of an overall online assignment.

In this paper, we extend the matroid secretary problem to the case with submodular
valuation functions. In other words, the weights are not directly associated with elements.
Instead, there exists an oracle to query the value of any subset of the elements we have seen.
Our objective is to accept a set of elements which are independent in a given matroid with
maximum value with respect to a submodular valuation function. We refer such problems as
submodular matroid secretary problems. We refer the original matroid secretary problems,
i.e., those with linear valuation functions, as linear matroid secretary problems.

We use the competitive analysis to measure the performance of our algorithms following
the matroid secretary problem literature. More formally, let U be the set of elements andM
be a matroid defined on U . Before the process starts, an adversary assigns a submodular
valuation function f(·) : 2|U | → R+ ∪{0}, which maps any subset of U to a non-negative real
number. After that, there is a random permutation applied to the elements to decide their
arriving order to our online algorithm. Our algorithm can only query f(·) using elements
that have been seen. In other words, the algorithm does not know f(·) before any element
arrives.

Let OPTf (M) = maxS∈M f(S) be the value of the optimal independent set. The
objective of the submodular matroid secretary problem is to find an algorithm Alg which
maximizes the following ratio:

inf
f

EP,A[f(Algf (P,A))]
OPTf (M) , (1)

where Algf (P,A) is the solution generated by the algorithm given permutation P and the
internal randomness A of the algorithm with valuation function f(·). The expectation is
taken over all permutations and the internal randomness of the algorithm. We call the
algorithm is C-competitive, i.e., with competitive ratio C, if the ratio in Eqn.(1) is at least
1/C.

Our contributions. In this paper, we study the submodular matroid secretary problem
with submodular valuation functions that are non-negative and monotonically non-decreasing.
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Our contribution is two-fold. First, we develop a general simulated greedy algorithm, which is
inspired by the algorithm for the linear matroid secretary problem with transversal matroids
in [6, 17]. Our algorithm is constant competitive for the submodular matroid secretary
problem with laminar matroids and transversal matroids. Our analysis can be extended
to the case that the independent set is defined as the intersection of a constant number of
laminar matroids. Notice that laminar matroids generalize uniform matroids and partition
matroids. When applying to the linear matroid secretary problem on laminar matroids, our
algorithm improves the competitive ratio from 16000

3 [15] to 9.6. Our algorithm is also much
simpler than the one in [15].

Second, our technique in analyzing submodular functions could be of independent interest.
Consider our simulated greedy algorithm for the uniform matroid case with cardinality µ.
We maintain two sets M and N , which are initially empty. In each time, we will select an
element e ∈ U \ (M ∪ N) such that fM (e) is maximized until |M | = µ, where f(·) is the
valuation function. With probability p, e is placed into M . Otherwise, i.e., with probability
1−p, e is placed into N . We develop machinery to show that E[f(N)] = Θ(E[f(M)]), despite
the fact that the elements are greedily selected with optimal marginal values against M .
This fact is not intuitive though very important in our analysis. See our result in Section 4
in more details.

Related work. The secretary problem has been studied decades ago. It is first published
in [12] and has been folklore even earlier [10]. Several results have appeared to generalize
the classical secretary problem, while assuming that the elements arrive in random order.
For example, Kleinberg [16] gave a 1 +O(1/

√
k)-competitive algorithm for selecting at most

k elements to maximize the sum of the weights. Babaioff et al. [2] provided a constant
competitive algorithm for the Knapsack secretary problem, in which each element has a
weight and a size, and the objective is to accept a set of elements whose total size is at most
a given integer such that the total weight is maximized.

Babaioff et al. [3] systematically introduced the matroid secretary problem. The objective
is to maximize the total weight of the selected elements S, which form an independent set in
a given matroid. They gave an O(log r)-competitive algorithm for a general matroid, i.e.,
the expected total weight of the elements in S is O(1/ log r) of the optimal solution, where r
is the rank of the matroid. The competitive ratio has been recently improved to O(

√
log r)

by Chakraborty et al. [5]. However, the conjecture that the matroid secretary problem
with a general matroid allows a constant competitive algorithm is still widely open, while
constant competitive algorithms have been found for various matroids: uniform/partition
matroids [2, 16], truncated partition matroids [3], graphical matroids [1, 17], transversal
matroids [6, 17], laminar matroids [15], and regular and decomposable matroids [7]. For
general matroids, Soto [19] developed a constant-competitive algorithm in random assignment
model, i.e., the weights of the elements are assigned uniformly at random. This result can be
extended to the case where the elements arrive in an adversarial order [13].

Gupta et al. [14] studied the non-monotone submodular matroid maximization problem
for both offline and online (secretary) versions. For the online (secretary) version, they
provided a O(log r)-competitive algorithm for general matroids and a constant competitive
algorithm for uniform matroids (algorithms achieving constant competitive ratios are obtained
independently by Bateni et al.[4]) and partition matroids. Feldman et al. [9] developed a
simpler algorithm with a better competitive ratio for partition matroids for monotonically
non-decreasing submodular functions.

Structure. In Section 2, we present some preliminaries and our algorithm. We then
analyze a simple stochastic process in Section 3, which serves as a building block for later
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analysis. In Section 4, we analyze the algorithm for the cases of laminar matroids and the
intersection of constant number of laminar matroids. Due to space limitation, some of the
proofs and the analysis for the transversal matroid case are deferred to the full version [18].

2 Preliminaries

2.1 Matroids
In the matroid secretary problem, the set of accepted elements must form an independent
set defined by a given matroid.

I Definition 1 (Matroids). Let U 6= ∅ be the ground set and I be a set of subsets of U . The
systemM = (U, I) is a matroid with independent sets I if:
1. If A ⊆ B ⊆ U and B ∈ I, then A ∈ I.
2. If A,B ∈ I and |A| < |B|, there exists an element x ∈ B \A such that A ∪ {x} ∈ I.

In this paper, we work with the following two matroids.

I Definition 2 (Laminar matroids). Let U 6= ∅ be the ground set. Let F = {B1, . . . , B`} be a
family of subsets over U . F is a laminar family, if for any Bi, Bj such that |Bi| ≤ |Bj |, either
Bi ∩ Bj = ∅ or Bi ⊆ Bj . Each set Bi ∈ F is associated with capacity µ(Bi). The laminar
family F and µ(·) define a matroidM = (U, I), such that any set T ⊆ U is independent if
for all 1 ≤ i ≤ `, |T ∩Bi| ≤ µ(Bi).

In particular, each Bi defines a capacity constraint on the independent sets and a set is
independent if it satisfies all such constraints. For simplicity, we assume all Bis are distinct
and µ(Bi) < µ(Bj) if Bi ⊂ Bj . Otherwise, the capacity constraint in Bi is redundant.

I Definition 3 (Transversal matroids). Let G = (L,R,E) be an undirected bipartite graph
with left nodes L, right nodes R and edges E. In the transversal matroid defined by G, the
ground set is L and a set of left nodes S ⊆ L is independent if there exists a matching in G
such that the set of left nodes in the matching is S.

2.2 Submodular functions
In this paper, we assume the quality of the solution is measured by a submodular function.
Notice that throughout this paper, we only work with non-negative and monotonically
non-decreasing submodular functions.

I Definition 4. Let U be the ground set. Let f(·) : 2|U | → R be a function mapping any
subset of U to a real number. f(·) is a submodular function if:

∀S, T ⊆ U, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

For simplicity, for any set S ⊆ U , we define its marginal function value fS(·) as follows.
For any T ⊆ U , fS(T ) = f(S ∪ T )− f(S). For singletons, we also write fS(e) = fS({e}). It
is not difficult to see that fS(·) is submodular if f(·) is submodular.

2.3 The simulated greedy algorithm
Our general algorithm is based on the greedy algorithm, as in Algorithm 1.

STACS’13
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Algorithm 1: GREEDY
Input: Set H ⊆ U of matroid (U, I) and function f(·)
Output: A set of elements T ⊆ H and T ∈ I
T ← ∅;
while ∃ e∗ = argmaxe∈H {fT (e) | M ∪ {e} ∈ I} do

T ← T ∪ {e}; H ← H \ {e};
end
return T ;

Algorithm 2: ONLINE
Input: Matroid (U, I) and function f(·)
Output: The set of selected elements

ALG
M, N, ALG← ∅;
m← Binom(|U |, p);
Observe the first m elements denoted by
H;
M ← GREEDY(H);
for any subsequent element e do

if GREEDY(H ∪ {e}) 6= GREEDY(H)
then

N ← N ∪ {e};
if ALG ∪ {e} ∈ I then

Accept e and
ALG← ALG ∪ {e};

end
end

end

Algorithm 3: SIMULATE
Input: Matroid (U, I) and function f(·)
Output: The set of selected elements S

H, M, N, S ← ∅;
for each element e do

Flip a coin with probability p of head;
if head, H ← H ∪ {e};

end
while ∃ e∗ = argmaxe∈U\{M∪N} {fM (e) |
M ∪ {e} ∈ I} do

if e ∈ H then M ←M ∪ {e};
else N ← N ∪ {e};

end
Prune N to produce a set of elements S ∈ I;

Our simulated greedy algorithm ONLINE works as follows. (We will discuss the name
of simulated greedy in a minute.) We observe the first m elements H without any selection,
where m is sampled from Binomial distribution Binom(n, p) for some chosen probability p.
Then we compute the greedy solution GREEDY(H). After that, for any subsequent element
e, we test that whether the greedy solution will change if e is added to H hypothetically. If
so, we mark e as a candidate and place it in N . Furthermore, if ALG∪ {e} is independent in
I for candidate e and current ALG, we accept e into ALG. (Both N and ALG are initially
empty.) The final ALG will be the output of our algorithm. Observe that maintaining set
N is not necessary because N only collects elements that has passed the greedy check and
might be accepted potentially. However, we keep the notation in the algorithm because it
corresponds to the same N in SIMULATE, which is heavily used throughout the analysis.

As we mentioned earlier, ONLINE is a generalization of the algorithms in [6, 17]. In
particular, it has been observed that a simulated random algorithm in Algorithm 3 can be
used in analyzing the performance of ONLINE. (We name ONLINE as a simulated greedy
algorithm because of the corresponding greedy algorithm which simulates the online version.)

More specifically, SIMULATE works as follows. We maintain two sets M and N which
are initially empty. In each step, we select an element e ∈ U \ (M ∪N) such that fM (e) is
maximized and M ∪ {e} ∈ I. (If no such element exists, SIMULATE terminates.) Then we
toss a biased random coin with probability p to be head, which is the same probability in
sampling m in ONLINE. If the coin is head, e is placed into M . Otherwise, e is placed into
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N . Since N may not be an independent set in I after SIMULATE terminates, we prune N
to produce S ⊂ N such that S ∈ I. The actual pruning step might be different in different
application settings.

SIMULATE is useful in analyzing the performance of ONLINE with random arriving
elements, because, as the naming suggests, both M and N have the same joint distribution
in the two algorithms. This connection is extensively discussed in [6, 17]. For completeness,
we provide a proof in the full version [18]. We will guarantee that S in SIMULATE is
stochastically dominated by ALG in ONLINE. Since we assume f(·) is non-decreasing, in
analyzing the performance of ONLINE, we can focus on S in SIMULATE.
I Lemma 5. The sets of elements of H, M and N by SIMULATE have the same joint
distribution as the H, M and N generated by ONLINE with a random permutation of the
elements in U .

3 A simple stochastic process

In this section, we study a simple stochastic process which serves as a building block of
our analysis. We will apply this process to either the entire ground set U or some subsets
of the elements in U . Therefore, although we use the same notation for M and N in this
section, they can be viewed as the intersections between the set of elements that are under
consideration and the actual global M and N generated by the algorithm.

The simple stochastic process is defined by an underlying Bernoulli process, with an
infinite sequence of independent and identical random variables Xt ∈ {0, 1} for t ≥ 1. Each
variable Xt is a Bernoulli random variable with probability p to be 1.

Our stochastic process is parametrized by a constant µ ≥ 1. We maintain two sets M
and N , which are initially empty, as follows. Starting from t = 1, if Xt = 1, we place t into
M ; otherwise, t is placed in N . The process immediately terminates after |M | = µ.

We associate a non-negative weight wt to every time stamp t. In particular wt is a
mapping from the previous t − 1 random variables to a non-negative real number. (w1 is
constant by definition. If the process has been terminated before time t, we set wt = 0.) For
any set T ⊆ N, we define the weight as,

w(T ) =
∑
t∈T

wt(X1, X2, . . . , Xt−1). (2)

Define w(∅) = 0. The following proposition shows that the total weights of M and N are
close to each other.
I Proposition 6. E[w(M)] = p

1−pE[w(N)].
Notice that after the process terminates, we have |M | = µ. On the other hand, the size

of N might be very large. Our analysis will be based on Ns that are with size at most µ.
We produce an independent set S from N by a pruning process as follows.

Pruning. More formally, to address the issue of too large Ns, we define S = N if |N | ≤ µ
and S = ∅ otherwise. Clearly, we have S ⊆ N and w(S) ≤ w(N).

We want to show that w(S) is close to w(N) in expectation. However , it is not possible
for arbitrary set of {wt}. In what follows, we impose a “decreasing weight” condition on {wt},
which always holds in our applications. This condition is crucial in building the connection
between w(S) and w(N).
I Definition 7 (Decreasing weight mappings). The set of mappings {wt} forms a sequence of
decreasing weight mappings if for any i < j and x1, x2, . . . , xi−1, xi, . . . , xj−1 we have:

wi(x1, . . . , xi−1) ≥ wj(x1, . . . , xi−1, . . . , xj−1).

STACS’13
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I Proposition 8. Let β = 2e(1− p). If {wt} forms a sequence of decreasing weight mappings,
we have

E[w(N)]− E[w(S)] ≤ (µ+ 1− µβ)βµ

(1− β)2 · E[w(S)] ≤ (µ+ 1− µβ)βµ

(1− β)2 · E[w(N)]

If µ = 1, it can be improved to

E[w(N)]− E[w(S)] ≤ 1− p2

p2 E[w(S)] ≤ 1− p2

p2 E[w(N)].

We briefly discuss the intuition behind this statement. Our objective is to show that
the weight pruned from N to S is small. The random process indicates that the probability
for having a large N is exponentially decreasing on its size, e.g., by the Chernoff bound.
Therefore, the probability mass of N that is pruned is small. In terms of weight, on the
other hand, those larger Ns do have greater weights.

The condition of the decreasing weight mappings comes to rescue. In particular, in
this case, the weight of N grows roughly “linear” to its size. As the probability decreases
exponentially with the size of N , the total weight pruned can still be bounded as the
summation of a geometric sequence for those large Ns. The complete proof can be found
in [18].

4 Laminar Matroid

In this section, we study the performance of our simulated greedy algorithm SIMULATE for
the submodular matroid secretary problem with a laminar matroid. We first show that the
entire process of SIMULATE can be casted as a simple stochastic process as discussed in the
previous section. After that, we inspect the pruning stage in details. In particular, for each
Bi in the laminar matroid, we study a simple stochastic process restricted on the elements
in Bi. The loss on the entire pruning steps can be divided into losses on the Bis, which can
be bounded by Proposition 8.

Let µ be the rank of the laminar matroid. Essentially, SIMULATE will select (at most) µ
elements. We cast the SIMULATE process to the simple stochastic process with µ as follows.

In the t-th round, when the first t− 1 random coins are tossed, the current element e in
the greedy order is uniquely defined, as well as the current M and N . We define the weight
wt = fMe(e) where Me is the current elements in M .

Remark. We make two remarks regarding the connection between the two stochastic
processes. First, the original simple stochastic process terminates when |M | = µ. SIMULATE
might terminate earlier because of the limit on the number of elements. In such cases, we
assume the availability of an infinite number of dummy elements, with zero weights, which
will eventually fill up M . In particular, when any of these dummy element arrives at time t,
wt = 0 with respect to the previous random outcomes. Notice that these dummy elements
will enlarge the size of N without increasing the weights of N and S. So all conclusions
we draw in last section still hold. Second, M (as well as N and S) in the simple stochastic
process consists of time stamps, while in all processes we study later M consists of real
elements. Nevertheless, for every real element e ∈ M , we define w(e) = wt where t is the
time e appears in the greedy order of SIMULATE. Both wt and w(e) are random variables.
We have w(M) =

∑
e∈M w(e).

We extend the w(·) to elements besides those in M . In particular, w(e) = fMe
(e) for

e ∈M ∪N , i.e., e appears in the greedy order of SIMULATE, where Me is the current set
of elements in M when e appears. If e /∈M ∪N , set w(e) = 0. Notice that w(M) = f(M)
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by definition. Furthermore, each element in the offline optimal solution has probability p in
H, i.e., a head coin is associated with it. By submodularity of f(·), the expected value of
the optimal solution in H is at least p ·OPT. On the other hand, the greedy algorithm is a
2-approximation with a matroid constraint when the valuation function is monotone and
submodular. Together with Proposition 6, we have

I Lemma 9.

E[f(M)] = E[w(M)] = p

1− pE[w(N)] ≥ p

2 ·OPT

Pruning. Notice that although M is independent, N might not be independent. We
obtain S by pruning N as follows.

S = N \

( ⋃
B∈F

1|N∩B|>µ(B) · (N ∩B)
)
, (3)

where 1cond · (N ∩ B) = N ∩ B if cond is true and empty otherwise. In other words, if
one constraint Bi is violated in N , we remove all elements in Bi from N . Clearly, S is
independent. Furthermore, since ALG will be the greedy independent set of N for a random
order, it is straightforward to show that S ⊆ ALG.

Therefore, it is sufficient to bound E[f(S)]. To do that, we first provide a lower bound
for E[w(S)]. After that, we bound E[f(S)] in terms of E[w(S)].

Roadmap. Here we briefly outline our strategy in getting the two pieces of results.
To measure E[w(S)], we estimate the weight loss due to the pruning in Eqn.(3). For each
constraint Bi, we cast the stochastic process in SIMULATE in processing elements in Bi
into a simple stochastic process with µ(Bi). By invoking Proposition 8, the weight loss
w(N ∩ Bi) − w(S ∩ Bi) is 2O(µ(Bi)) · w(N ∩ Bi), which is charged to all elements in Bi
proportionally to 1e∈Nw(e) for all e ∈ Bi. The catch here is, for each element e ∈ U , the set
of {Bi} containing e has a strictly increasing {µ(Bi)} sequence. Therefore, the charges on e
form a geometric sequence which in total will not exceed a constant fraction of 1e∈N · w(e).
Since w(N) =

∑
e∈N w(e), the total weight loss is a constant fraction.

The second piece of ingredient is to make a connection between E[f(S)] and E[w(S)].
For simplicity, let us consider E[f(N)] and E[f(M)] instead to convey the idea. Recall that
w(N) =

∑
e∈N fMe

(e), where Me is the set of elements in M when e arrives. Therefore, it
is not intuitive why E[f(N)] should be large in the first place. To elaborate, we consider
function F = f(M) + 2f(N) − f(M ∪ N) during the execution of the algorithm, which
is a lower bound of 2f(N). We can view f(M) + f(N) − f(M ∪ N) as the intersection
between M and N , e.g., if f(·) is modeling a set cover. During the execution of the algorithm,
when e arrives, we have two cases: (1) fMe

(e) ≈ fNe
(e), where Me and Ne are the current

set of M and N respectively. F will grow nicely proportional to fMe
(e) in this case. (2)

fMe
(e) � fNe

(e). Notice e is placed into M with probability p, in which case F grows
proportional to fMe

(e) as well. This is because fMe∪Ne
(e) ≤ fNe

(e) � fMe
(e) due to the

submodularity of f(·). Therefore, F grows in both cases in expectation, which gives a
lower bound for E[f(N)] with respect to E[f(M)]. The analysis in bounded f(S) is more
complicated. Though the underlying idea is identical. We formally implement these two
ideas in Lemma 10 and Lemma 11.

I Lemma 10. Let β = 2e(1− p). We have

E[w(S)] ≥ (1− 2β
(1− β)3 )E[w(N)].

STACS’13
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Proof. Since for a fixed set of random outcomes, w(·) is a linear function. By Eqn.(3), we
have that

E[w(N)] ≤ E[w(S)] +
∑
B∈F

E[w(1|N∩B|>µ(B) · (N ∩B))].

Now we focus on the term E[w(1|N∩B|>µ(B) ·(N∩B))] and the simulated greedy algorithm
on elements in B, i.e., a particular constraint in F . We isolate B in the process by rearranging
the randomness as follows. First, for each element in U \B, we assign an independent random
coin to it, i.e., if this element appears in the algorithm, its random coin will be tossed.
For a fixed outcome of all random coins outside of B, the simulated greedy algorithm is a
simple stochastic process for the elements in B. The only difference, however, is the process
may terminate before |M ∩B| = µ(B). This can be easily remedied by appending dummy
elements as before. Recall that β = 2e(1− p). By Proposition 8, we have:

E[1|N∩B|>µ(B) · w(N ∩B)] ≤ (µ(B) + 1− µ(B)β)βµ(B)

(1− β)2 · E[w(N ∩B)]. (4)

It follows that

E[w(N)]

≤ E[w(S)] +
∑
B∈F

(µ(B) + 1− µ(B)β)βµ(B)

(1− β)2 · E[w(N ∩B)]

= E[w(S)] + 1
(1− β)2

∑
B∈F

∑
e∈U

E[(µ(B) + 1− µ(B)β)βµ(B) · w(e)1e∈B · 1e∈N ]

= E[w(S)] + 1
(1− β)2

∑
e∈U

E

[
w(e)1e∈N

(∑
B∈F

(µ(B) + 1− µ(B)β)βµ(B) · 1e∈B

)]

≤ E[w(S)] + 1
(1− β)2

∑
e∈U

E[w(e)1e∈N ]

∑
i≥1

(i+ 1− iβ)βi
 (5)

= E[w(S)] + 2β
(1− β)3E[w(N)]

Eqn.(5) uses the fact that the set of constrains {Bi} containing an element e has a strictly
increasing sequence of {µ(Bi)}. J

We then bound E[f(S)] as follows. For an element e, let Ne be the set of elements in
N when e appears in SIMULATE. We define g(e) = fNe

(e) if e ∈ M ∪ N and g(e) = 0
otherwise. 1

I Lemma 11. For any t > 0, let θ = 1 + (1−p)t
p . We have

E[f(S)] ≥ (1
θ
− (1− β)3

t((1− β)3 − 2β) )E[w(S)]

1 We define g(e) based on Ne instead of Se, i.e., the current set of elements in S, because Se is still a
random set even all the randomness before e’s arrival is fixed.



T. Ma, B. Tang, and Y. Wang 487

Proof. Let g(S) =
∑
e∈S g(e). Since S ⊆ N , we have f(S) ≥ g(S) by the submodularity of

f(·). We inspect the function F (S,M,N) = t ·g(S)+f(M)−f(M ∪N). By the monotonicity
of f , f(S) ≥ g(S) ≥ F (S,M,N)/t.

Define ∆e = F (S′e,M ′e, N ′e) − F (Se,Me, Ne) where M ′e (resp. N ′e and S′e) is the set M
(resp. N and S) after we process element e. If e /∈ M ∪ N , define ∆e = 0. Therefore,
F (S,M,N) =

∑
e∈U ∆e. Let Re be the sub-σ-algebra encoding all randomness up to the

time e is picked in SIMULATE. Notice that Me and Ne are Re measurable. We have
Pr[e ∈M | Re] = p and Pr[e ∈ N | Re] = 1− p.

E[∆e | Re] = t · (E[g(S′)− g(S) | Re]) + (E[f(M ′)− f(M) | Re])
− (E[f(M ′ ∪N ′)− f(M ∪N) | Re])
= t · Pr[e ∈ S | Re]fNe(e) + Pr[e ∈M | Re]fMe(e)− fMe∪Ne(e)

Then we bound E[∆e | Re] by case analysis. Notice that Pr[e ∈M | Re]+Pr[e ∈ N | Re] = 1
and Pr[e ∈ N | Re] ≥ Pr[e ∈ S | Re].
Case 1: fMe(e) ≥ θ · fNe(e).

E[∆e | Re] ≥ Pr[e ∈M | Re](fMe
(e)− fMe∪Ne

(e))− Pr[e ∈ N | Re]fMe∪Ne
(e)

≥ p

1− p (1− 1
θ

) Pr[e ∈ S | Re]fMe
(e)− Pr[e ∈ N | Re]fMe

(e)

Case 2: fMe
(e) < θ · fNe

(e).

E[∆e | Re] ≥ t · Pr[e ∈ S | Re]fNe
(e)− Pr[e ∈ N | Re]fMe∪Ne

(e)

≥ t

θ
Pr[e ∈ S | Re]fMe

(e)− Pr[e ∈ N | Re]fMe
(e)

By definition of θ, we have p
1−p (1− 1

θ ) = t/θ. So

E[∆e | Re] ≥
t

θ
Pr[e ∈ S | Re]fMe

(e)− Pr[e ∈ N | Re]fMe
(e)

Therefore

t · E[f(S)] ≥ E[F (S,M,N)] =
∑
e

ERe
[E[∆e | Re]]

≥
∑
e∈U

ERe
[ t
θ

Pr[e ∈ S | Re]fMe
(e)− Pr[e ∈ N | Re]fMe

(e)]

= t

θ
E[w(S)]− E[w(N)] (6)

≥ t

θ
E[w(S)]− (1− β)3

(1− β)3 − 2βE[w(S)]

The last inequality is by Lemma 10. So E[f(S)] ≥ ( 1
θ −

(1−β)3

t((1−β)3−2β) )E[w(S)] J

Combining all the results together, we have an algorithm with competitive ratio at most
211 with p = 0.9794 and t = 10.1415.

I Theorem 12. There is an online algorithm with competitive ratio at most 211 for the
submodular matroid secretary problem with laminar matroids.
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5 Conclusion

In this paper, we develop a general algorithm for the submodular matroid secretary problems.
In particular, we obtain constant competitive algorithms for laminar matroids and transversal
matroids. Our algorithm can also handle the intersection of a constant number of laminar
matroids, which makes our algorithm more applicable. We state the results for transversal
matroids and intersection of matroids, and defer their proofs in the full version [18], where we
also analyze the algorithm for the linear matroid secretary problem with laminar matroids.

I Theorem 13. There is an online algorithm with competitive ratio at most 95 for the
submodular matroid secretary problem with transversal matroids.

I Theorem 14. For any constant k, there is an online algorithm with competitive ratio
at most 1000k(k+1)

9 for the submodular matroid secretary problem with the intersection of k
laminar matroids.

I Theorem 15. Algorithm 2 is a 9.6-competitive algorithm for the linear matroid secretary
problem with laminar matroids.

However, our algorithm does not work on general matroid case. Consider the following
simple example on graphical matroids. There is a single heavy edge (u, v) in the graph.
There is a large number of nodes K = {u1, u2, . . . , un} and edges {(u, ui), (ui, v) | ui ∈ K}.
The weight on each such edge is very small. It is easy to verify that the probability that
our algorithm will accept (u, v) is exponentially small on n. Nevertheless, our algorithm can
handle graphical matroids using the same decomposition technique [1], i.e., by reducing the
problem to a partition matroid, which is randomly selected from two constructed partition
matroids. On the other hand, it would be interesting to characterize the independent set
constraints for which our algorithm framework is constant competitive.

In the distinction between the submodular case and linear case in matroid secretary
problem, we still cannot adapt the recent O(

√
log r) competitive algorithm in [5] as well

as the constant competitive algorithm for the random assignment model in [19] previously
on the linear case. It would be interesting to close this gap. Finally, it is still widely open
whether the matroid secretary problem permits constant competitive algorithms for general
matroids.
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