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Abstract

We consider first order formulae over the signature consisting of the symbols of the alpha-

bet, the symbol < (interpreted as a linear order) and the set MOD of modular numerical

predicates. We study the expressive power of FO2[<,MOD], the two-variable first order logic

over this signature, interpreted over finite words. We give an algebraic characterization of

the corresponding regular languages in terms of their syntactic morphisms and we also give

simple unambiguous regular expressions for them. It follows that one can decide whether a

given regular language is captured by FO2[<,MOD]. Our proofs rely on a combination of

arguments from semigroup theory (stamps), model theory (Ehrenfeucht-Fräıssé games) and

combinatorics.
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Following the pioneering work of Büchi [3], McNaughton and Papert [11] and Thomas

[21], the study of the expressive power of fragments of first order logic has grown up to an

important topic of automata theory. Part of the main results for finite words are summarized

in the table below. They are concerned with the signature [<] (the ”sequential calculus” first

considered by Büchi) and [<,MOD], where MOD stands for the set of modular predicates.

The fragments of interest include Σ1, the set of existential formulae, its Boolean closure

BΣ1, the set FO of first order formulae and its restriction FO2 to two-variable formulae.

As shown in the table below, all the corresponding fragments are already known to be

decidable except for the class FO2[<,MOD], which is the topic of this paper.

Σ1 BΣ1 FO2 FO

[<] Decidable Decidable Decidable Decidable

[12, 21] [17, 21] [20] [11, 15]

[<,MOD] Decidable Decidable Decidable Decidable

[4] [4] New result [18, 2]

We also give an algebraic characterization of FO2[<,MOD] (Theorem 6), a description

of the corresponding languages as unambiguous regular expressions (Proposition 31) and
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an equivalent definition in terms of a suitable variant of temporal logic (Proposition 30).

Our algebraic characterization QDA = FO2[<,MOD] can be viewed as an extension of

two known results (a) QA = FO[<,MOD] proved in [2, 18] and (b) DA = FO2[<] proved

in [5, 20]. However, it is not easy to extend the proofs of these equalities to our case. For

instance, the proof of (a) makes use of the successor relation, which is not expressible in

FO2[<]. Therefore our proof is closer to the proof of (b) but some technical difficulties still

have to be worked out (See Section 5).

1 Preliminaries

1.1 Words and logic

Let A be a finite alphabet. We denote by A∗ the set of all finite words over A and 1 the

empty word. Given a word u = a0 · · · an−1 of length n, we denote by α(u) the set of letters

of A occurring in u. We associate to u the relational structure Mu = {[0, n − 1], σ}, where

[i, j] is the set of integers between i and j and σ is the truth table of the predicates over u.

Basic examples of predicates are the binary predicate <, which is the usual order on integers,

and (a)a∈A that are disjoint monadic predicates marking the positions of the letters over

the structure. For instance, if u = aabbab, then a = {0, 1, 4} and b = {2, 3, 5}. We also

consider the modular predicate MODd
i , which holds at all positions equal to i modulo d,

and the 0-ary predicate Dd
i which is true if the word has length equals to i modulo d. For

u = aabbab, we have MOD2
0 = {0, 2, 4}, and D3

1 is false whereas D3
0 is true. We denote by

MOD the set of these modular predicates.

First order formulae are interpreted on words in the usual way (see [18]). For instance

the formula ∃x ∃y ∃z a(x)∧ b(y)∧ a(z)∧ x < y ∧ y < z defines the language A∗aA∗bA∗aA∗.

In this article, we focus on the first order formulae containing only two different vari-

ables. The subsequent logic is denoted by FO2[<]. For instance the two-variable formula

∃x ∃y a(x) ∧ b(y) ∧ x < y ∧ (∃x ∧ a(x) ∧ y < x) also defines the language A∗aA∗bA∗aA∗ of

the previous example. The first order logic with the order predicate can be enriched with

modular predicates. We denote by FO[<,MOD] (resp. FO2[<,MOD]) the logic built with

the same atomic propositions that FO[<] (resp. FO2[<]) except that we allow the modular

predicates. For instance the formula ∃x ∃y ∃z a(x)∧MOD2
0(x)∧ b(y)∧ a(z)∧x < y∧ y < z

defines the language (A2)∗aA∗bA∗aA∗.
Note that if required by context, we will specify the alphabet, denoting it between par-

entheses. For instance FO[<](B∗) denotes the set of the languages of B∗ definable by a

formula of FO[<].

1.2 Algebraic notions

We recall in this section the algebraic notions used in this paper.

1.2.1 Semigroups and recognizable languages

We refer to [13] for the standard definitions of semigroup theory. A semigroup is a set

equipped with a binary associative operation, which we will denote multiplicatively. A

monoid is a semigroup with a neutral element 1. Given a semigroup S, we denote by S1

either S if S is already a monoid or the monoid obtained by adding a neutral element 1 to

S otherwise. Recall that a monoid M divides another monoid N if M is a quotient of a

submonoid of N . This defines a partial order on finite monoids.
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A stamp is a surjective monoid morphism from A∗ onto a finite monoid. A language

L is recognized by a finite monoid M if there exists a stamp ϕ : A∗ → M and a subset

P of M such that L = ϕ−1(P ). A language is recognizable if it is recognized by a finite

monoid. Kleene’s theorem states that the set of recognizable languages is exactly the set of

rational (or regular) languages. The syntactic congruence of a regular language L of A∗ is

the equivalence relation ≡L defined as follow:

u ≡L v if and only if for all w,w′ ∈ A∗, wuw′ ∈ L⇔ wvw′ ∈ L.

The monoid A∗/≡L is the syntactic monoid of L and the morphism ϕ : A∗ → A∗/≡L is the

syntactic stamp.

1.2.2 Stability index, stable semigroup, stable automaton

For a stamp ϕ : A∗ → M , the set ϕ(A) is an element of the powerset monoid of M .

As such it has an idempotent power. The stability index of a stamp is the least positive

integer s such that ϕ(As) = ϕ(A2s). This set is therefore a semigroup called the stable

semigroup of ϕ. Stable semigroups are strongly related to stable automata, defined as follows.

Let A = (Q,A, ·) be a deterministic automaton and let k be a positive integer. The k-

automaton of A is the deterministic automaton Ak = (Q,Ak, ·k) where q ·k (a1a2 · · · ak) =
(· · · (q ·a1) ·a2) · · · ) ·ak). Note that if M is the transition monoid of A, and Mk the transition

monoid of Ak, then Mk is the submonoid of M generated by the image elements of words

of length k in M .

I Definition 1. Let A = (Q,B, ·) be a deterministic automaton. We say that A is stable if

for any two-letter word, there exists a letter that has the same action over the set Q, and

conversely for any letter of B, there exists a word of B2 that has the same action over Q.

As shown in the next proposition, this definition is a compatible translation of the stable

semigroup for an automaton.

I Proposition 2. Let A be a deterministic automaton. Then, there is an integer k such that

the associated k-automaton is stable.

The least k which satisfies this proposition is called the stability index of the automaton.

It is equal to the stability index of the associated stamp.

1.2.3 Stamps and varieties

A (pseudo) variety of (finite) monoids is a class of monoids closed under division and finite

products. According to Eilenberg [6], a variety of languages V is a class of languages closed

under finite union, intersection and complementation, and closed under inverse of monoid

morphism. This means that, for any monoid morphism ϕ : A∗ → B∗, X ∈ V(B∗) implies

ϕ−1(X) ∈ V(A∗). Furthermore Eilenberg [6] proved that there is a one-to-one correspond-

ence between varieties of monoids and varieties of languages.

The class of languages FO2[<,MOD] is not closed under inverse morphisms, and the Ei-

lenberg’s varieties theory does not apply. Still, this class is closed under inverse of length-

multiplying morphisms (shortened as lm-morphisms), and an algebraic characterization can

be obtained by considering a more general framework : the theory of C-varieties independ-

ently introduced by Esik and Ito [7] and Straubing [19] and developed by Pin and Straub-

ing [14].

S TAC S ’ 1 3
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Let us now recall the notion of variety of stamps. A morphism α : A∗ → B∗ is length-

multiplying if there exists an integer n such that for any letter a of A, ϕ(a) is a word of

Bn. Given two stamps ϕ : A∗ → M and ψ : A∗ → N , the product stamp is the stamp

η : A∗ → M ×N defined by η(a) = (ϕ(a), ψ(a)). A stamp ϕ : A∗ → M lm-divides another

stamp ψ : B∗ → N if and only if there exists a pair (α, β) such that α is a lm-morphism

from A∗ to B∗, β : N → M is a partial onto monoid morphism and ϕ = β ◦ ψ ◦ α. The

couple (α, β) is called an lm-division.

Then a lm-variety of stamps is a class of stamps containing the trivial stamp and closed

under lm-division and finite product. Note that if V is a variety of monoids, then the class

of all stamps whose image is a monoid in V forms a lm-variety of stamps, also denoted V.

Moreover, given a lm-variety of stamps V, the class V of all languages recognized by a stamp

in V is a lm-variety of languages. The correspondence V → V is one-to-one and onto [19].

These notions are very useful to decide membership problems for regular languages. Let us

recall a few examples.

I Example 3. A monoid M is aperiodic if there exists an integer n such that for any x ∈M ,

xn = xn+1. It has been proved by Schützenberger [15] and McNaughton and Papert [11]

that the class of aperiodic monoids forms a variety called A and the corresponding variety of

languages is exactly the first-order definable languages, with the order and letter predicates.

I Example 4. Let DA be the variety of monoids satisfying the equation

(xy)ω = (xy)ωx(xy)ω where ω is the idempotent power of the monoid. Alternatively DA is

the variety of monoids whose regular D-classes are aperiodic semigroups. The corresponding

variety of languages DA is the class of FO2[<]-definable languages [20] or equivalently the

unambiguous star-free languages [16].

I Example 5. Given a variety V, the set of all stamps whose stable semigroup is in V forms

a lm-variety of stamps denoted by QV. A language L has its syntactic stamp in QV if

and only if there is an automaton A recognizing L and a positive integer k such that the

k-automaton of A has its transition monoid in V. Straubing proved in [18] that a language

is definable in FO[<,MOD] if and only if its syntactic stamp belongs to the lm-variety of

stamps QA. We always denote by QV the lm-variety of languages associated to QV.

2 Main result

Our main result extends the algebraic characterization of FO2[<]-definable languages by

Thérien and Wilke [20] to FO2[<,MOD]-definable languages. The next theorem states that

the languages definable in FO2[<,MOD] are exactly the languages whose syntactic stamp

is in QDA.

I Theorem 6. FO2[<,MOD] = QDA

Given a regular language (given by a regular expression or by some finite automaton), one

can effectively compute the stable semigroup of its syntactic stamp. Since membership in

DA is decidable we get the following corollary.

I Corollary 7. Given a regular language L, one can decide whether L is FO2[<,MOD]-
definable.

In Section 3 we will give intuition of the power of the modular predicates. The first

inclusion FO2[<,MOD] ⊆ QDA will be proved in Section 4, using general arguments on

automata and logic. The second inclusion is proved in Section 5, using Ehrenfeucht-Fräıssé

games and algebraic tools. We will extend our main result to several other characterizations

in Section 6.
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3 FO2[<] over an enriched alphabet

Given an integer d > 1, let us denote by FO2[<,MODd] the fragment of FO2[<,MOD]
restricted to congruences modulo d. For a given language, this restriction does not lead to

any loss of generality.

I Lemma 8. Let L be a language of FO2[<,MOD]. Then there exists an integer d such

that L is in FO2[<,MODd].

We now fix a positive integer d.

I Definition 9 (Enriched alphabet). Let A be an alphabet. We call the set Ad = A× (Z/dZ)
the enriched alphabet of A, and we denote by π : A∗d → A∗ the projection defined by

π(a, i) = a for each (a, i) ∈ Ad.

For example, the word (a, 2)(b, 1)(b, 2)(a, 0) is an enriched word of abba for d = 3. We

say that abba is the underlying word of (a, 2)(b, 1)(b, 2)(a, 0).

I Definition 10 (Well-formed words). A word (a0, i0)(a1, i1) · · · (an, in) of Ad is well-formed

if for 0 6 j 6 n, ij ≡ j mod d. We denote by K the set of all well-formed words of A∗d.

I Definition 11. For a word u = a0a1 · · · an ∈ A∗, the word u = (a0, 0)(a1, 1) · · · (ai, i mod
d) · · · (an, n mod d) is called the well-formed word attached to u.

I Remark. On well-formed structures, the projection π is a one-to-one application.

The enriched word (a, 0)(b, 1)(b, 2)(a, 0) is a well-formed word for d = 3. Thanks to the

previous remark, it is the unique well-formed word having the word abba as underlying word.

I Remark. The operation u→ u is not a morphism. Indeed, if |u| 6≡ 0 mod d then uv 6= uv.

Thus we define the k-shift operation, denoted by uk, which maps the word u = u0 · · ·un

to the enriched word (u0, k mod d)(u1, k + 1 mod d) · · · (un, n + k mod d). Note that, if

|u| ≡ k mod d, then uv = u vk.

I Proposition 12. Let d be a positive integer. Then

FO2[<,MODd](A∗) = π(FO2[<](A∗d) ∩K).

The proof relies on a syntactic transformation of the formulae. We replace MODd
i by a

conjunction of enriched letters predicates. This can be done in the opposite direction as

well, as we consider only well-formed words.

We recall (see [10]) that two words are separated by a formula of FO2[<] with quantifier

depth n if and only if Spoiler wins the n rounds Ehrenfeucht-Fräıssé game with two coloured

pebbles. Thus one can state, in light of Proposition 12, the following assertion:

I Proposition 13. Let u, v be words of A∗. Then there exists a formula of FO2[<,MODd] of

quantifier depth n that separates them if, and only if, Spoiler wins the n rounds Ehrenfeucht-

Fräıssé game for FO2[<] over the well-formed pair (u, v).

4 The inclusion FO2[<, MOD] ⊆ QDA

In this section, we prove one direction of the main theorem, using the enriched alphabet and

the well-formed words. Let us first study the language K of well-formed words.

S TAC S ’ 1 3
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−0

1

2

3

0 1 2 3 −
(a, 0) 1 − − − −
(a, 1) − 2 − − −
(a, 2) − − 3 − −
(a, 3) − − − 0 −

(a, 0) (a, 1)

(a, 2)(a, 3)

(a, i), i 6= 0

(a, i)
i 6= 1

(a, i), i 6= 2

(a, i)
i 6= 3

Figure 1 Minimal automaton and transition monoid of K (for d = 4).

Consider the semigroup Bd = (Z/dZ×Z/dZ)∪{⊥} where ⊥ is a zero of Bd and for all (i, j)
and (k, `) in Z/dZ× Z/dZ,

(i, j)(k, `) =
{

(i, `) if j = k

⊥ otherwise.

The monoid B1
d is the transition monoid of the minimal automaton of K for d > 2. Let us

denote by J1 the variety of idempotent and commutative monoids.

I Proposition 14. The set of all well-formed words is recognized by a stamp in QJ1.

I Lemma 15. Let L be a language of DA(A∗d). Then the language L ∩K is in QDA(A∗d).

Proof. This comes from the fact that L ∈ DA(A∗d) ⊆ QDA(A∗d), and K ∈ QJ 1(A∗d) ⊆
QDA(A∗d). J

Now, we can use the previous result on well-formed words over modular predicates and

prove the inclusion FO2[<,MOD] ⊆ QDA.

I Theorem 16. The syntactic stamp of a FO2[<,MOD]-definable language belongs to QDA.

As suggested by one the referees, this result can be proved by using Ehrenfeucht-Fräıssé

games. The proof given below relies on finite automata and could easily be modified to

recover the inclusion FO[<,MOD] ⊆ QA [18] and similar results for other fragments of

logic.

Proof. Let L be a regular language definable in FO2[<,MOD](A∗). Then by Lemma 8,

there exists an integer d such that L is defined in FO2[<,MODd](A∗). By Proposition 12,

there exists a formula ϕ in FO2[<](A∗d) such that, L = π(L′) with L′ = L(ϕ) ∩ K. Since

FO2[<] = DA (see [20]), and thanks to Lemma 15, the language L′ is in QDA(A∗d). Let

A′ = (Q,Ad, ·, i, F ) be its minimal trim deterministic automaton. Since π is one-to-one,

the automaton π(A′), obtained by dropping the integer component on the transitions of A′,
recognizes L. As A′ is trim and recognizes only well-formed words, the labels of all the

outgoing edges from a given state have the same second component. For 0 6 i < d, let

Qi = {q ∈ Q | there exists a ∈ A such that q · (a, i) is defined }

and let QE be the set of all states of fanout 0. Then Q is a disjoint union of the sets Qi

(0 6 i < d) and QE . Observing that a word of length k can only send a state of Qi to
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a state of Qi+k mod d ∪ QE , the transition function of the d-automaton A′d is a subset of⋃
06i<d

(
Qi×Ad

d× (Qi ∪QE)
)
. Then each set Qi induces a monoid Mi, which is a submonoid

of the transition monoid of A′d. Now, going back to the projected d-automaton π(A′)d,

one can see that the action of a word u ∈ Ad on the set Qi is the action of the word

(u0, i) · · · (ud, i− 1) on Qi in the automaton A′d, described in Mi.

Q0 . . . Qi . . . Qd−1

(a, 0) Q1 − − − −
...

...
. . .

...
...

...

(a, i) − − Qi+1 − −
...

...
...

...
. . .

...

(a, d− 1) − − − − Q0

Q0 . . . Qi . . . Qd−1

a Q1 . . . Qi+1 . . . Q0

Q0 . . . Qi . . . Qd−1

u Q0 − − − −
...

...
. . .

...
...

...

ui − − Qi − −
...

...
...

...
. . .

...

ud−1 − − − − Qd−1

Q0 . . . Qi . . . Qd−1

u Q0 . . . Qi . . . Qd−1

A′ π(A′)

A′d π(A′)d

π

π

d-Automaton d-Automaton

Figure 2 Transitions monoids.

Thus the full action of the word u over Q is described in each Mi, and hence the transition

monoid of π(A′)d is a submonoid of the product monoid
d∏

i=0
Mi (full picture on Figure 2).

Finally, as DA is a variety and A′d has its transition monoid in DA, each submonoid Mi is

also in DA and so is the transition monoid of π(A′)d. We can conclude as L is recognized

by an automaton whose d-automata has its transition monoid in DA. J

5 The inclusion QDA ⊆ FO2[<, MOD]

We now come to the second part of the proof of Theorem 6. We first enrich the congruences

defined in [20] to take the modular predicates into account.

5.1 Congruence and syntactic operations over FO2[<, MOD]
I Definition 17. Let u ∈ A∗ be a word, and let a ∈ A be a letter of u. We call left a-

decomposition of u the unique triple (u0, a, u1) such that u = u0au1 and u0 does not contain

any a. We define the right decomposition in a symmetrical way.

We recall the definition of the congruence ≡n on A∗ from [20].

I Definition 18. [20] Let u, v ∈ A∗ be words. Then we have u ≡0 v.

Moreover, u ≡n v if and only if the following conditions hold:

1. α(u) = α(v), the two words have the same alphabet,

2. For each a occurring in u, if (u0, a, u1) is the left a-decomposition of u and (v0, a, v1)
that of v, then u0 ≡n v0 and u1 ≡n−1 v1,

3. For each a occurring in u, if (u0, a, u1) is the right a-decomposition of u and (v0, a, v1)
that of v, then u0 ≡n−1 v0 and u1 ≡n v1.

S TAC S ’ 1 3
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The termination of these inductive definitions has to be verified. Let suppose that u ≡n v

for some words u and v and some positive integer n. Then, thanks to the first condition, the

parameter n+ |α(u)| is equal to n+ |α(v)|. For any left or right decomposition we decompose

the words in two parts for which the parameter strictly decreases.

I Proposition 19. [20] The relation ≡nis a congruence.

This definition can be extended to the enriched alphabet and well-formed words as fol-

lows. We say that u ≡d
n v if and only if u ≡n v.

I Lemma 20. Let n, d be two positive integers, and u and v two words such that u ≡d
n v.

Then the following statements hold:

1. if u is the empty word, then so is v,

2. |u| ≡ |v| mod d,

3. if u = u0au1, v = v0bv1 with |u0a| ≡ |v0b| mod d and |u1| < d, |v1| < d, then a = b,

u1 = v1 and u0 ≡d
n−1 v0,

4. if u = u0au1, v = v0bv1 with |u0| < d, |v0| < d and |au1| ≡ |bv1| mod d, then a = b,

u0 = v0 and u1 ≡d
n−1 v1,

5. for any word w, uw ≡d
n vw and wu ≡d

n wv.

I Corollary 21. The relation ≡d
n is a congruence on A∗.

We will now connect our congruence to the logic FO2[<,MODd] through the

Ehrenfeucht-Fräıssé games for FO2[<](A∗d) (cf. Proposition 13).

I Theorem 22. Let u, v ∈ A∗ be words. If u 6≡d
n v then there is a formula of FO2[<,MODd]

of quantifier depth at most n+ |α(u)| that separates u from v.

The proof makes use of Ehrenfeucht-Fräıssé games following the arguments of [20].

5.2 Congruence and algebraic operations over QDA

We now define a slightly modified version of the Green’s preorders adapted to the stable

semigroup. Let h : A∗ →M be a stamp and let S be its stable semigroup. For any elements

x and y in M let us write:

x 6Rst y if and only if xM ∩ S ⊆ yM ∩ S
x 6Lst

y if and only if Mx ∩ S ⊆My ∩ S
x 6Hst

y if and only if x 6Rst
y and x 6Lst

y.

We also extend our definitions to modified versions of the Green’s relations.

xRst y if and only if x 6Rst
y and y 6Rst

x

xLst y if and only if x 6Lst
y and y 6Lst

x

xHst y if and only if x 6Hst
y and y 6Hst

x

We say that the stamp h is length faithful if h−1(S1) = (Ad)∗. This notion is shown to

be necessary in the next lemma and does not involve a loss of generality, as shown in the

proof of Corollary 29.

I Lemma 23. Let h : A∗ →M be a stamp and let S be its stable semigroup. If h is length

faithful, then the restriction of 6Rst
(resp. 6Lst

) to S is the usual Green relation 6R (resp.

6L) over S.
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Proof. Let x be an element of S, and y an element of M such that xy is in S. Then, since

h is length faithful, h−1(xy) is contained in (Ad)∗. Moreover, as x belongs to S, we also

have h−1(x) ⊆ (Ad)∗. Thus for any word u such that h(u) = x, and any word v such that

h(v) = y, we have |u| ≡ |uv| ≡ 0 mod d, so |v| ≡ 0 mod d. Therefore y is an element of S.

This proves that for any x in S, xM ∩S = xS, and consequently for any x, y in S, x 6Rst
y

if and only if x 6R y in the Green relation over S.

The result for the 6Lst
relation is obtained with a symmetric proof. J

I Corollary 24. Let h : A∗ →M be a length faithful stamp of QDA. Then, the restriction

of the Hst-classes to S are trivial.

We also define the Rst-decomposition :

I Definition 25. Let u be a word and let h : A∗ → M be a stamp. We call the Rst-

decomposition of u the tuple (u0, a1, u1, . . . , as, us) such that u = u0a1u1 · · · asus and:

1. |u0a1u1 · · · aiui| ≡ 0 mod d for all 0 6 i < s

2. h(u0a1u1 · · ·ui−1ai) >Rst
h(u0 · · ·uiai+1)

3. For every prefix v of ui of length multiple of d, h(u0 · · ·ui−1ai)Rst h(u0 · · · aiv)
4. For every prefix v and v′ of u0 of length multiple of d, h(v)Rst h(v′)

The positions occurring in the Rst-decomposition are the first positions multiple of d

after falling in the 6Rst
-order. The two next lemmas will link our congruence ≡n

d to the

Rst-decomposition of the lm-morphisms of QDA.

I Lemma 26. Let h : A∗ → M be a length faithful stamp in QDA, let S be its stable

semigroup. Let u ∈ S and a, x ∈M . If ax ∈ S, then uaxRst u implies uaxaRst u.

Proof. The elements u and uax are Rst-equivalent and h is length faithful. So thanks

to Lemma 23 there is an element t of S such that u = uaxt. By iteration, we obtain

u = u(axt)ω. But S belongs to DA, hence it satisfies the equation (xy)ωx(xy)ω = (xy)ω.

Thus, (axt)ωax(axt)ω = (axt)ω, then u = u(axt)ωax(axt)ω. Shall we rewrite this last

equation, we finally get u = uaxa(xt(axt)ω−1). And finally u ∈ uaxaM ∩ S, proving that

uRst uaxa. J

I Corollary 27. Let h : A∗ → M be a length faithful stamp in QDA and let u be a word.

Then if (u0, a1, u1, . . . , as, us) is the Rst-decomposition of u then (ai+1, 0) 6∈ α(aiui) for

i < s.

Proof. Let (u0, a1, u1, . . . , as, us) be the Rst-decomposition of u. Suppose now that there

exists i such that (ai+1, 0) ∈ α(aiui) for i < s. Then, thanks to the preceding Lemma,

h(aiuiai+1)Rst h(aiui) which is in contradiction with the definition of theRst-decomposition

of u. J

We now have all the tools to prove the following theorem.

I Theorem 28. Let h : A∗ →M be a length faithful stamp of QDA and let d be its stability

index. Then there exists an integer n such that for every words u and v, u ≡d
n v implies

h(u) = h(v).

Proof. Thanks to Lemma 20, if two words are equivalent for the congruence ≡d
n+1, then

their suffixes of length smaller than d are equal and the associated prefixes are equivalent for

the congruence ≡d
n. Therefore it is sufficient to prove the result for words of length multiple

of d.
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Let u and v be two words of length multiple of d, and an integer n > |α(u)||S| such that

u ≡d
n v. Let us prove by induction on |α(u)| that h(u) = h(v). If |α(u)| = 0, then u = v = 1.

Consider the result to be true up to the rank k − 1 and let u be such that |α(u)| = k.

We write (u0, a1, u1, . . . , a`, u`) the Rst-decomposition of u. One can remark that ` 6 |S|,
as each ai makes the word go down in the Rst-classes, whose number is bounded by the

size of S. Using the preceding corollary, (ui, ai+1, ui+1 · · ·u`) is a left decomposition of

xi = ui · · ·u` for i < `. As u ≡d
n v, there also exists a decomposition (v0, a1, . . . , a`, v`) of

v such that aiui ≡d
n−i aivi where (ai+1, 0) 6∈ α(aiui) and hence |α(aiui)| 6 |α(u)| − 1. As

i < `, we have n − i > (k − 1)|S| > |α(aiui)||S|. Using the induction hypothesis, for i < `,

h(aiui) = h(aivi). And hence h(u)Rst h(u1 · · · a`) = h(v1 · · · a`) >Rst
h(v). Symmetrically,

we obtain that h(v) >Rst h(u) and thus h(u)Rst h(v). Using the left/right symmetry, we

also get that h(v)Lst h(u) and hence h(v)Hst h(u). By Corollary 24, the Hst-classes are

trivial in QDA over words of length multiple of d and hence h(u) = h(v). J

I Corollary 29. QDA ⊆ FO2[<,MOD]

Proof. Let η : A∗ → M be the syntactic stamp of L and S be the stable semigroup of η.

Assume that η is in QDA. We claim that the morphism h : A∗ → M × Z/dZ defined, for

all words u, by h(u) = (η(u), |u| mod d) is length faithful. Indeed, the stable semigroup of

h is equal to S × {0} and h−1(S × {0}) = (Ad)∗.
By Theorem 28, there exists an integer n such that the congruence ≡d

n is thinner than

the congruence induced by h which is itself thinner than the syntactic congruence of L.

Therefore L is a finite union of ≡d
n- classes, each of them being, according to Theorem 22,

definable by a formula of FO2[<,MODd] of quantifier-depth at most n+ |A|d. J

6 Other characterizations

Several other characterizations of DA are known (see [5] for a survey). For example, consider

the fragment TL[Xa, Ya] of the linear temporal logic defined inductively as follow:

ϕ ≡ > | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | Xaϕ | Yaϕ.

The unary operator Xa stands for neXt a, and Ya stands for Yesterday a. For a word u and

one of its positions x, we have (u, x) |= Xaϕ if ϕ is true at the next a after x. We say that the

word u satisfiesXaϕ if (u,−1) |= Xaϕ. Symmetrically, we say that u satisfies Yaϕ if (u, |u|) |=
Yaϕ. It is a well known fact that the fragment TL[Xa, Ya] has the same expressiveness power

as the variety DA. Therefore, it is natural to look at TL[Xr mod d
a , Y r mod d

a ], where each

predicate Xr mod d
a is defined as follows. For a word u and one of its position x, we have

(u, x) |= Xr mod d
a ϕ if ϕ is true at the next a whose position is equal to r modulo d. As in

Proposition 12 we can transfer a modular information from the predicates to the letters by

changing the size of the alphabet.

I Proposition 30. Let d be a non-zero integer. Then,

TL[Xr mod d
a , Y r mod d

a ](A∗) = π(TL[X(a,r mod d), Y(a,r mod d)](A∗d) ∩K).

In [16], Schützenberger defined the monomials as the set of languages of the form

B∗0a1B
∗
1 · · · anB

∗
n, with ai ∈ A and Bi ⊆ A. A monomial L is said to be unambiguous if for

every word u in L, there exists only one decomposition u = u0a1u1 · · · anun with α(ui) ⊆ Bi.

Finally, Schützenberger proved in [16] that a language is in DA if and only if it is a disjoint
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union of unambiguous monomials. We now give a similar definition adapted to the modular

predicates. We define the modular monomials as the languages of the form

(A0
0 · · ·A0

d−1)∗a1(A1
0 · · ·A1

d−1)∗ · · · an(An
0 · · ·An

d−1)∗

with d an integer, Ai
k ⊆ A and ai ∈ A.

I Proposition 31. A language L is in QDA(A∗) if and only if L is a disjoint union of

unambiguous modular monomials.

Proof. We know by Theorem 6 and Proposition 12 that a language L is in QDA(A∗) if

and only if there exists an integer d such that L is the projection of a set of well-formed

words of a language L′ in DA(A∗d). Then L′ is a disjoint union of unambiguous monomi-

als. As the projection over well-formed words preserves disjoint union, it suffices to show

that each unambiguous monomial projects into a disjoint union of modular monomials. Let

B∗0b1B
∗
1 · · · bnB

∗
n be an enriched unambiguous monomial with bi = (ai, ri). Then the pro-

jection of its well-formed words is the rational expression

(A0
0 · · ·A0

d−1)∗A0
0 · · ·A0

r1
a1(A1

i+1 · · ·A1
i )∗A1

i+1 · · ·A1
r2
a2 · · ·

with Ai
j = {a | (a, j) ∈ Bi}, which can be rewritten as a disjoint union of unambiguous

modular monomials. J

7 Conclusion

Our main results can now be summarized in a single statement, a consequence of Propositions

12, 30, 31 and Theorem 6.

I Theorem 32. Let L be a regular language. Then, the following assertions are equivalent:

L has its syntactic stamp in QDA,

L is definable in FO2[<,MOD],
L is definable in TL[Xr mod d

a , Y r mod d
a ],

L is a disjoint union of unambiguous modular monomials.

Our results are an instance of a more general problem: given a fragment F of FO, what is

the expressive power of F[<,MOD]. In particular, if F[<] has an algebraic characterization,

is there also a natural algebraic description of F[<,MOD]? Further if F[<] is decidable,

does it imply that F[<,MOD] is also decidable?

These questions are related to non-trivial questions of semigroup theory [1]. There is some

hope that, for some sufficiently well-behaved fragment, F[<] corresponds to some variety of

monoids V and that F[<,MOD] corresponds to the semidirect product V ∗MOD where

MOD denotes the variety of all stamps onto a cyclic group. This is the case for instance

for the fragment Σ1 and BΣ1, as shown in [4]. The decidability of V ∗MOD (given that

of V) leads to another series of problems. When V ∗MOD is equal to QV the decidability

follows immediately but this is not always the case. For instance, BΣ1[<] corresponds to

the variety J but BΣ1[<,MOD] does not correspond to QJ and more sophisticated tools

using derived categories have to be used [22]. Another possible route would be to follow a

model theoretic approach as in [8, 9].
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12 D. Perrin and J.-É. Pin, First-order logic and star-free sets, J. Comput. System Sci.

32,3 (1986), 393–406.
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