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Abstract
Motivated by the goal of controlling the amount of work required to access a shared resource or
to solve a cryptographic puzzle, we introduce and study the related notions of lossy chains and
fractional secret sharing.

Fractional secret sharing generalizes traditional secret sharing by allowing a fine-grained con-
trol over the amount of uncertainty about the secret. More concretely, a fractional secret sharing
scheme realizes a fractional access structure f : 2[n] → {0, . . . ,m− 1} by guaranteeing that from
the point of view of each set T ⊆ [n] of parties, the secret is uniformly distributed over a set
of f(T ) + 1 potential secrets. We show that every (monotone) fractional access structure can
be realized. For symmetric structures, in which f(T ) depends only on the size of T , we give an
efficient construction with share size poly(n, logm).

Our construction of fractional secret sharing schemes is based on the new notion of lossy
chains which may be of independent interest. A lossy chain is a Markov chain (X0, . . . , Xn)
which starts with a random secret X0 and gradually loses information about it at a rate which
is specified by a loss function g. Concretely, in every step t, the distribution of X0 conditioned
on the value of Xt should always be uniformly distributed over a set of size g(t). We show how
to construct such lossy chains efficiently for any possible loss function g, and prove that our
construction achieves an optimal asymptotic information rate.
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1 Introduction

In this work, we introduce and study two related notions: lossy chains and fractional secret
sharing. We start by describing the latter.

Fractional secret sharing. Suppose that we wish to share a secret password between several
parties, such that the largest subset of cooperating parties will be the first to guess the
correct password. (Think of the password as a key which locks vault, where the number of
guessing attempts measures the amount of work required for unlocking the vault.)
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A simple solution that comes to mind is the following. If the password is a binary string of
length k and we have n ≤ k parties, we can give each party one or more bits of the password.
In this solution, a larger cooperating subset of parties will need a smaller expected number
of attempts to guess the password than a smaller one. This solution achieves our goal, but is
limited to specific parameters. For example, we cannot easily extend this method to n > k

parties, nor can we have finer control over the relative amount of expected work required by
different subsets of parties.

Our goal is to find a solution which gives maximal control over the amount of information
about the password revealed to each subset of parties. This motivates the notion of fractional
secret sharing. In traditional secret sharing [9, 3, 6], each subset of n parties either has full
information about the secret or has no information about the secret. Fractional secret sharing
generalizes this notion by allowing a fine-grained control over the amount of uncertainty of
each subset about a uniformly random secret. The uncertainty is specified by a fractional
access structure f : 2[n] → {0, . . . ,m− 1}. A fractional secret sharing scheme realizing f
should have the property that from the point of view of each set T ⊆ [n] of parties, the secret
is always uniformly distributed over a set of f(T ) + 1 potential secrets. Since adding a party
to a subset cannot reduce the amount of available information, we assume f to be monotone
in the sense that if T ⊆ T ′ then f(T ′) ≤ f(T ). This raises the following questions:

Can every (monotone) fractional access structure be realized? If so, how efficiently?

How to gradually forget. Motivated in part by the problem of fractional secret sharing, we
introduce the related notion of lossy chains. A lossy chain is a Markov chain (X0, . . . , Xn)
which starts with a random secret X0 and gradually loses information about it at a rate
which is specified by a predefined loss function g : [n]→ [m]. More concretely, we require
that for any 1 ≤ i ≤ n and any possible value xi in the support of Xi, the distribution of the
secret X0, conditioned on the event that Xi = xi, is uniform1 over a set of size g(i). (The
identity of this set may depend on xi.) In a similar manner to fractional access structures, we
require that the loss function g be monotone, in the sense that for i < j we have g(i) < g(j).
This raises the following questions:

Can every (monotone) loss function be realized? If so, how efficiently?

The Markov property of the chain (namely, the requirement that Xi+1 be independent
of X0, . . . , Xi−1 given Xi) is important for our motivating applications, as it rules out the
possibility of combining several values Xi in order to learn more information than that
implied by the “best” value Xi. Jumping ahead, this property will turn out to be crucial for
the construction of fractional secret sharing from lossy chains.

Why uniform? An important aspect of our notions of fractional secret sharing and lossy
chains is that they require each conditional distribution to always be uniform over a subset
of potential secrets having a specified size. One could instead consider alternative definitions
which only specify some measure of entropy, such as conditional Shannon entropy [10],
or min-entropy [8], without further restricting the distribution. Insisting on a uniform
distribution has several important advantages. First, a crude measure of uncertainty such
as entropy is not informative enough to capture all relevant properties of a distribution.

1 The uniformity requirement rules out simple solutions that are based on gradually adding independent
random noise to the initial secret (cf. [4]), see further discussion below.
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For instance, min-entropy determines the best probability of guessing the secret in the first
attempt, but says little about the expected number of attempts until the secret is correctly
guessed. Second, using the uniform distribution does not only give control over the expected
number of attempts in an optimal guessing strategy, but it also minimizes the variance of
the number of such attempts under the expectation constraint. (See full version for a proof
that the uniform distribution beats any other distribution in this respect.) Finally, in some
scenarios it may be desirable to spread the point in time in which the secret is correctly
guessed as evenly as possible (think of a password controlling a shared resource). This too is
achieved optimally by the uniform distribution. We note that one could relax the requirement
of uniformity to being statistically close to uniform. This is addressed in the full version.

1.1 Our Results
We obtain several positive and negative results about lossy chains and fractional secret
sharing.

We show that any monotone loss function g : [n] → [m] can be efficiently realized by
a lossy chain (X0, . . . , Xn) in which the bit-length of each Xi is at most n · dlogme.
Moreover, we show this bound to be asymptotically tight by demonstrating the existence
of a family of loss functions gn,m : [n]→ [m] for which some Xi must be Ω (n logm) bits
long. This asymptotic lower bound still holds even if we allow the conditional distributions
to have negligible statistical distance from uniform. Settling for a constant statistical
distance, the bit-length of each Xi can be O(log2 m), independently of n.
We show a general reduction of fractional secret sharing to lossy chains, which implies
that every monotone fractional access structure f : 2[n] → {0, . . . ,m− 1} can be realized.
For the important case of symmetric structures, in which f(T ) depends only on the size
of T , we get an efficient construction in which the share size of each party is at most
n · dlog max {n,m}e.

1.2 Overview of Techniques
Recall that a lossy chain is a Markov chain (X0, . . . , Xn), where X0 is a random secret,
and each step loses additional information about the secret. This loss is specified by a
loss function g : [n] → [m], such that for each 1 ≤ i ≤ n and xi in the support of Xi, the
distribution of X0 conditioned on Xi = xi is uniform over a set of size g(i). (See Section 3.1
for a formal definition.)

As a simple warmup example, let X0 be uniform over {0, 1}n, and let Xi include the first
n− i bits of X0. In this case, X0 conditioned on Xi = xi is distributed uniformly over a set
of size 2i. Thus, this lossy chain realizes the loss function g (i) = 2i. This simple approach
only works for a loss function g which is increasing exponentially, and can be generalized
only to loss functions g such that g (i) divides g (i+ 1).

The following alternative approach works for any monotone loss function g : [n]→ [m],
where without loss of generality g (n) = m:

1. Pick x0 uniformly from [m].
2. For i = 1, . . . , n, pick (a set) xi uniformly at random from all subsets of [m] of size g (i)

containing xi−1.
3. Output (x0, x1, . . . , xn)

Intuitively, this method starts from a set {x0} containing only the correct secret, and in
each step adds g (i)−g (i− 1) new random “distractors” from [m]. This allows us to realize a
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lossy chain for any loss function. However, storing or sending the values of such a chain may
be infeasible when m is large (e.g., think of m as the number of possible passwords). It is
therefore desirable to get a solution in which the bit-length of each Xi grows logarithmically
with m instead of linearly with m.

A natural approach is to limit the subsets represented by Xi to only be discrete intervals
of the form [j, k] = {j, j + 1, . . . , k}, where 1 ≤ j ≤ k ≤ m. Unfortunately, this simple
modification of the previous construction fails to satisfy the uniform conditional distribution
property. More concretely, given an interval [j, k] for Xi, the probability of the secret X0
being in the middle of the interval will be higher than in the edges of the interval. To avoid
this problem, we employ cyclic intervals. Intuitively, given an arbitrary ordered set, a cyclic
interval can “cycle” through the end back to the start of the set. Using recursive nesting
of such cyclic intervals, we construct a lossy chain for any loss function while keeping the
support of each Xi small. We describe our results for lossy-chains in Section 3. We present
the above construction in Section 3.2, and we establish the optimality of this construction
in Section 3.3 by using some basic linear algebraic properties of the probability vectors
associated with a lossy chain. Positive and negative results for the statistical relaxation of
lossy chains are given in the full version.

Finally, in Section 4 we describe the reduction of fractional secret sharing to lossy
chains. Recall that a fractional secret sharing scheme realizes a fractional access structure
f : 2[n] → {0, . . . ,m− 1} by ensuring that from the point of view of each set T ⊆ [n] of
parties, the secret is uniformly distributed over a set of f(T )+1 potential secrets. (See Section
4.1 for a formal definition.) In the case of a symmetric structure f , where f(T ) depends only
on the size of T , we can use the following natural construction: let g(i) = f([n− i]) + 1 and
let (X0, . . . , Xn) be a lossy chain realizing g. A fractional secret sharing scheme realizing f
can be obtained by using a threshold secret sharing scheme (such as Shamir’s scheme [9]) to
distribute the value of each Xi between the n parties with reconstruction threshold n− i. Any
set T of t parties will be able to reconstruct the values Xn−t, . . . , Xn, which by the Markov
property contain the same information about the secret X0 as Xn−t. By the definition of
g, the distribution of X0 conditioned on the value of Xn−t is uniform over a set of size
f(T ) + 1, as required. The above construction can be generalized to arbitrary fractional
access structures. However, similarly to traditional secret sharing, the complexity of the
general construction may be exponential in the number of parties.

Related work. The notion of fractional secret sharing can be viewed as a restricted instance
of non-perfect secret sharing (also referred to as ramp secret sharing). While in standard
(perfect) secret sharing schemes each set of players should either be able to fully reconstruct
the secret or alternatively should learn nothing about it, in a non-perfect secret sharing there
is also a third kind of sets that may learn partial information about the secret. Non-perfect
schemes were proposed mainly for the reason of improving the efficiency of secret sharing
by reducing the size of the shares. Unlike fractional secret sharing, in non-perfect secret
sharing there is no requirement on the type of partial information available to the third kind
of subsets. For works on non-perfect secret sharing, see [2, 11, 7, 5] and references therein.

2 Preliminaries

Notation. We let [n] denote the set of integers {1, 2, . . . , n}. We use logn to denote log2 n.
For a random variable X, we let supp(X) denote the support set of X, that is, the set of
values which X may take with nonzero probability. The support set of a real-valued vector
is the set of coordinates in which it takes nonzero values.
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Markov chains. A Markov chain is a sequence of random variables such that the distribution
of each variable in the sequence depends only on the value of the previous variable. Formally:

I Definition 1. (Markov chain) Let X̄ = (X0, X1, . . . , Xn) be a sequence of jointly
distributed random variables. We say that X̄ is a Markov chain if for every i ∈ [n] and for
any sequence of values x0 ∈ supp(X0), . . . , xi ∈ supp(Xi),

Pr [Xi = xi|Xi−1 = xi−1] = Pr [Xi = xi|Xi−1 = xi−1, . . . , X0 = x0] .

In general, Markov chains can be defined as infinite sequences of random variables with
infinite support size. However, in this work we will only consider finite Markov chains.

The above definition is equivalent to requiring that for any i and xi in the support of
Xi, the random variables (X1, . . . , Xi−1) and (Xi+1, . . . , Xn) are independent conditioned
on Xi = xi. The symmetry of the above conditional independence requirement implies the
following “reversibility” property of Markov chains:2

I Fact 1. If X̄ = (X0, X1, . . . , Xn) is a Markov chain, then so is X̄R = (Xn, Xn−1, . . . , X0).

3 Lossy Chains

In this section we define our new notion of a lossy chain (Section 3.1), present an efficient
construction of lossy chains (Section 3.2), and prove a lower bound on their efficiency
(Section 3.3).

3.1 Definitions and Basic Properties
A lossy chain is a Markov chain in which the information loss about the initial value is fully
specified by a loss function. We start by defining the latter.

I Definition 2. (Loss function) A loss function is a monotone increasing function g : [n]→
[m]. That is, for every 1 ≤ i < j ≤ n we have g(i) < g(j).

We now turn to define lossy chains.

I Definition 3. (Lossy chain) Let g : [n] → [m] be a loss function, and let X̄ =
(X0, X1, . . . , Xn) be a sequence of random variables. We say that X̄ is a lossy chain realizing
g if the following conditions hold:

X̄ is a Markov chain, and
for every i ∈ [n] and every xi in the support of Xi, the distribution of X0 conditioned on
Xi = xi is uniform over a set of size g (i).

Our goal is to construct lossy chains in which each value can be succinctly described. To
this end we use the following measure of efficiency.

I Definition 4. (Information rate) Let X̄ = (X0, X1, . . . , Xn) be a lossy chain. The
information rate of X̄ is defined as

ρ(X̄) = min
0≤i≤n

log g(n)
log |supp (Xi) |

2 For a formal proof see [1, p. 215].
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Figure 1 The cyclic interval from a4 to b4 is taken from a set S4 with a cyclic order to create S3.
Then S2 is created as a subset of S3 by taking another cyclic interval. This goes on, until S0, the
starting value is chosen from S1.

It will be convenient to assume that in a lossy chain realizing g : [n]→ [m], the initial
value X0 is uniformly distributed over a set of size g(n), and Xn has support set of size 1.
The following claim shows that this assumption is without loss of generality: any lossy chain
realizing g can be converted into a canonical form that has this property and has the same
or better information rate.

I Claim 1. (Canonical lossy chain) Let g : [n] → [m] be a loss function and let
X̄ = (X0, X1, . . . , Xn) be a lossy chain realizing g. Let xn be an arbitrary element in the
support of Xn. Let X̄ ′ = (X ′0, X ′1, . . . , X ′n) be the joint distribution defined by

Pr[X̄ ′ = (x′0, x′1, . . . , x′n)] = Pr[X̄ = (x′0, x′1, . . . , x′n) |Xn = xn].

Then X̄ ′ is a lossy chain realizing g. Moreover, X ′0 is uniform over a set of size g(n) and
supp(X ′i) ⊆ supp(Xi) for 0 ≤ i ≤ n.

3.2 An Efficient Construction
In the Introduction, we have seen a simple general construction of a lossy chain realizing
g : [n] → [m] whose information rate is Θ̃ (1/m). This construction may be infeasible for
large values of m. In this section, we show how the rate can be improved to 1/n.

We first recall the scheme described in the Introduction. Given g : [n] → [m] where
(without loss of generality) g (n) = m, the lossy chain is computed as follows.
1. Pick x0 uniformly from [m].
2. For i = 1, . . . , n, pick a set xi uniformly at random from all subsets of [m] of size g (i)

containing xi−1.
3. Output (x0, x1, . . . , xn).
This chain is inefficient in that it requires to store arbitrary subsets of [m]. In order to obtain
a more efficient variant of this construction, we restrict these subsets to be nested cyclic
intervals.

I Definition 5. (Cyclic interval) Let S = {e0, . . . , em−1} be a linearly ordered set, where
e0 < e1 < . . . < em−1. For any two integers a, b ∈ {0, . . . ,m− 1}, the cyclic interval from a

to b over S, denoted [a, b]S , is defined by:

STACS’13
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“Cyclic Intervals” lossy chain

Input: A loss function g : [n]→ [m].

Algorithm:
1. Sn ← [g(n)]
2. For i = n− 1, ..., 1

a. Pick ai ∈ {0, ..., g (i)− 1} uniformly at random
b. bi ← (ai + g (i)− 1)mod g (i+ 1)
c. set Si = [ai, bi]Si+1

3. Pick x0 uniformly at random from S1

Output: x̄ = (x0, S1, S2, . . . , Sn)

Figure 2 Lossy chain obtained via nested cyclic intervals

[a, b]S =
{
{ea, . . . , eb} a ≤ b
{ea, . . . , em−1} ∪ {e0, . . . eb} a > b

Note that for a given size k, there are exactly |S| distinct nested intervals of size k in S, one
for each starting point a. The algorithm for generating the lossy chain iteratively generates
subsets Si of size g (i) for every i ∈ [n] in decreasing order, where each subset Si is a random
cyclic interval in Si+1. See Figure 1 for a visual illustration. A precise description of the
algorithm is given in Figure 2.

We now prove that the output of the “Cyclic Intervals” algorithm from Figure 2 forms a
lossy chain realizing g. In the following, we denote by X̄ = (X0, . . . , Xn) the joint distribution
of the output. We start by showing that the output indeed forms a Markov chain.

I Lemma 1. The output distribution (X0, . . . , Xn) forms a Markov chain.

Proof. For 1 ≤ i ≤ n, the output Xi−1 is sampled based on Xi alone. This implies that
(Xn, . . . , X0) is a Markov chain and, by Fact 1, we have that (X0, . . . , Xn) is also a Markov
chain. J

I Lemma 2. The chain X̄ realizes the loss function g.

Proof. We prove that for any 1 ≤ i ≤ n and any Si ∈ supp(Xi), the distribution of X0
conditioned on the event Xi = Si is distributed uniformly over Si. Since |Si| = g(i) the
lemma will follow.

The above claim intuitively follows by symmetry. We formally prove it by induction on i.
The case i = 1 follows directly from the algorithm’s description. Suppose the claim holds
for i, and let Si+1 be in the support of Xi+1. We need to prove that X0 conditioned on
Xi+1 = Si+1 is uniformly distributed over Si+1. Indeed, when Xi+1 = Si+1 the choice of the
output x0 can be viewed as resulting from the following two step process:
1. Pick Si as a random cyclic interval in Si+1 of size g(i).
2. Pick x0 from the distribution of X0 conditioned on Xi = Si.
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Figure 3 On the left, a states graph for a simple lossy chain realizing g (i) = 2i with 4 possible
starting values. On the right, a lossy chain realizing g (i) = i + 1, also with 4 possible starting values.

The choice of Si in the first step guarantees that each x ∈ Si+1 has an equal probability to
be in Si. By the induction’s hypothesis, the second step picks x0 uniformly at random from
Si. Combining the two steps, x0 is uniformly distributed over Si+1, as required. J

Using the above two lemmas, we obtain the main theorem of this section.

I Theorem 3. For any loss function g : [n]→ [m], there is a lossy chain realizing g whose
information rate is at least 1

n−1 .

I Remark. (On computational efficiency) The description in Figure 2 does not address
the question of how the sets Si are represented and how one can efficiently enumerate the
elements of Si or sample from Si. To this end, we note that if we modify the algorithm such
that Xi contains the representation of Si by the sequence (an−1, . . . , ai), the resulting chain
still realizes g (namely, the additional information provided by this sequence does not change
the distribution of X0 conditioned on Si). Moreover, the information rate of this (slightly
redundant) representation of the sets Si is still lower bounded by 1/(n− 1). See full version
for efficient algorithms supporting this representation.

3.3 A Negative Result
In this section, we establish a limitation on the information rate of lossy chains, showing
that the cyclic intervals construction cannot be asymptotically improved in the worst case.
Specifically, we show a family of loss functions g : [n]→ [m] for which the support size of
each Xi is at least

(
m

m−n+i

)
. For proving this result, it is convenient to use the following

notion of a states graph of a Markov chain.

I Definition 6. (States graph) Let X̄ = (X0, . . . , Xn) be a Markov chain, and let Vi

denote the support set of Xi. Assume, without loss of generality, that the sets Vi are pairwise
disjoint. The states graph of X̄ is a weighted directed graph (G, f) where

G = (V,E) is a layered graph in which Vi is the set of i-th level nodes and E contains
the edges (u, v) such that, for some i, we have u ∈ Vi, v ∈ Vi+1 and v is in the support of
Xi+1 conditioned on Xi = u.
For any u ∈ Vi and v ∈ Vi+1, we have f(u, v) = Pr [Xi+1 = v|Xi = u].
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An example for a states graph of a simple lossy chain appears in Figure 3.
We define, for each node v ∈ V \V0, a probabilities vector which contains the probability

of each starting value given that Xj was chosen to be v.

I Definition 7. (Probabilities vector) Let g : [n] → [m] be a loss function such that
g(n) = m. Let X̄ = (X0, . . . , Xn) be a lossy chain realizing g with |supp(X0)| = m, and let
G be its states graph. Let v ∈ Vj be a node in layer j of G. The probabilities vector of v is a
vector v̄ ∈ Rm such that v̄ [i] = Pr [X0 = ei|Xj = v], where ei is the element with index i in
V0, and v̄ [i] is the ith coordinate of v̄. We say that a vector ū ∈ Rm fits layer j of G if ū has
g (j) entries of value 1

g(j) and the other entries are 0.

Note that if v̄ is the probabilities vector of a node v ∈ Vj , then v̄ necessarily fits layer j.
However, the converse is not necessarily true.

Our negative result relies on the fact that the probabilities vector of any node in the
states graph is a convex linear combination of the probabilities vectors of its parents (that is,
a linear combination with positive coefficients that add up to 1).

I Lemma 4. Let X̄ = (X0 . . . , Xn) be a lossy chain with states graph G = (V,E). For
any 1 ≤ j ≤ n, let v ∈ Vj be a node of G and u1, . . . , uk ∈ Vj−1 be all the nodes such that
(ui, v) ∈ E. Then v̄, the probabilities vector of v, is a convex linear combination of ū1, . . . , ūk,
the probabilities vectors of u1, . . . , uk.

The main theorem of this section shows a tight negative result on the efficiency of a lossy
chain realizing a concrete family of loss functions.

I Theorem 5. Let m,n be positive integers such that m ≥ n and let gm,n : [n]→ [m] be the
loss function defined by gm,n (i) = m − n + i. Let (X0, . . . , Xn) be a lossy chain realizing
gm,n. Then, for any 0 < i ≤ n, it holds that |supp (Xi) | ≥

(
m

m−n+i

)
.

The theorem relies on the following technical lemma, which will imply a lower bound on
the number of probabilities vectors from level i required to span a probabilities vector from
level i+ 1.

I Lemma 6. Let v̄ ∈ Rn be a 0-1 vector of Hamming weight k. Let ū1, . . . , ūm be 0-1 vectors
of Hamming weight k− 1. If v̄ is a linear combination of ū1, . . . , ūm with positive coefficients,
then m ≥ k.

We are now ready to prove Theorem 5.

Proof. Let X̄ = (X0, . . . , Xn) be a lossy chain realizing gm,n. By Claim 1, we may assume
without loss of generality that X0 is uniform over a set of size gm,n(n) = m and Xn has
support of size 1.

Let V0, . . . , Vn be the layers in the states graph of X̄. We prove by induction that, for
any i ∈ [n] and for any of the

(
m

m−n+i

)
probabilities vectors v̄ which fit layer i, there is a

node v ∈ Vi such that v̄ is the probabilities vector of v. The base case is i = n. In this case,
the probabilities vector of the (single) node in Vn is (1/m, . . . , 1/m), which is the only vector
which fits level n.

We now assume that the claim holds for layer i+ 1 and prove it for layer i. Let ū be a
vector which fits layer i. By the induction hypothesis, we know that for any vector v̄ which
fits layer i+ 1 there is a corresponding node v ∈ Vi+1. Let v ∈ Vi+1 be such a node for which
the support set of v̄ contains that of ū. By Lemma 4, v̄ is a convex linear combination of the
probability vectors of its parents ui. Note that each probabilities vector of a parent node ui
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is a scalar multiple of a 0-1 vector of weight gm,n(i) whereas v̄ is a scalar multiple of a 0-1
vector of weight gm,n(i+ 1). By Lemma 6 and the fact that gm,n(i+ 1) = gm,n(i) + 1, the
probability vectors ūi of the parent nodes ui have support sets that cover all m− n+ i+ 1
subsets of size m− n+ i of the support set of v̄. In particular, one of the ūi must coincide
with ū. Since the above holds for any ū which fits layer i, this concludes the proof of the
claim and the theorem. J

Using loss functions of the form g (i) = m− n+ i, we get the following corollary.

I Corollary 7. For every ε > 0 there is an infinite family of loss functions gn : [n]→ [m(n)],
where m(n) = dn1+εe, such that the information rate of any lossy chain realizing gn is O

( 1
n

)
.

4 Fractional Secret Sharing

In this section, we define the notion of fractional secret sharing and show how to realize it
via the use of lossy chains.

4.1 Definitions
An instance of the fractional secret sharing problem is specified by a fractional access structure.
Recall that a traditional access structure specifies which subsets of parties can reconstruct the
secret, where the remaining sets of parties should learn nothing about the secret. A fractional
access structure generalizes this by allowing full control on the amount of information learned
by each set of parties.

I Definition 8. (Fractional access structure) Let P = {p1, . . . , pn} be a finite set of
parties and let m be an integer. A function f : 2P → {0, . . . ,m− 1} is monotone if
B ⊆ C implies that f(B) ≥ f(C). A fractional access structure is a monotone function
f : 2P → {0, . . . ,m− 1}, with f (∅) = m− 1. We say that f is symmetric if f(B) depends
only on |B|.

We note that if we limit the range of f to {0,m− 1} then f corresponds to a traditional
access structure. We now formally define our notion of fractional secret sharing.

I Definition 9. (Fractional secret sharing scheme) Let f : 2P → {0, . . . ,m− 1} be
a fractional access structure and let S be a finite secret-domain. Let D be a randomized
algorithm which outputs a uniformly random s ∈ S together with an n-tuple of shares
(s1, . . . , sn). We say that D is a fractional secret-sharing scheme realizing f with secret-
domain S if there exists a positive integer k such that the following holds: For every Q ⊆ P ,
and any possible share vector sQ of parties in Q, the distribution of s conditioned on the
event that parties in Q receive the shares sQ is uniform over a subset of S of size f (Q) · k+ 1.
If the above holds with k = 1, we say that D strictly realizes f .

Note that our default notion of realizing a fractional access structure views the structure
as only specifying a kind of ratio between the amount of uncertainty of different sets, without
specifying the absolute amount of uncertainty or the size of the secret-domain. This relaxation
is needed in order to capture standard access structures as a special case. Also note that the
above definition generates a random secret along with the shares, unlike most traditional
definitions of secret sharing which do not refer to any particular distribution over the secret
domain. As in the case of traditional secret sharing, we measure the complexity by comparing
the size of the biggest share-domain to the size of the secret-domain.
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4.2 Fractional Secret Sharing from Lossy Chains
We now apply the positive results from Section 3.2 towards realizing any fractional access
structure.

I Theorem 8. For any fractional access structure f : 2P → {0, . . . ,m− 1}, there exists a
fractional secret sharing scheme which strictly realizes f .

Proof. Without loss of generality, assume that f(P ) = 0 and f(∅) = m− 1. We shall use
S = [m] as the secret-domain. Let α0, ..., αl be all the different values in the range of f in
increasing order; that is, α0 < ... < αl. By our assumptions, we have α0 = 0 and αl = m− 1.
Define a loss function g : [l] → [m] such that g (i) = αi + 1 and let X̄ be a lossy chain
realizing g. The share generation algorithm D can now proceed as follows:

1. Sample values (x0, . . . , xl) from X̄ and let s = x0;
2. For every subset of parties Q ⊆ P , let f (Q) = αj + 1. Use a traditional |Q|-out-of-|Q|

secret sharing scheme to share xj into sQ,1, . . . , sQ,|Q| (e.g., using additive secret sharing)
and give the j-th party in Q the share sQ,j .

We now show that D is a fractional secret sharing scheme strictly realizing f . Let
Q ⊆ P be a subset of parties. By the properties of the underlying |Q|-out-of-|Q| scheme,
the information available to parties in Q is equivalent to learning all values xj such that
f(Q′) = αj + 1 for some Q′ ⊆ Q. By the monotonicity of f this means the parties in Q learn
xi, where i is the index such that f(Q) = αi + 1, and possibly additional values xj for j > i.
By the Markov property of a lossy chain, the distribution of the secret s conditioned on the
above values xi and xj is uniform over a set of size g(i) = αi + 1 = f(Q), as required. J

We remark that if f(P ) 6= 0, we can add another party p′ to the set of parties and set f(Q)
to 0 for every subset Q containing p′. We can then execute the proposed algorithm and
“throw away” all the shares of p′.

Similarly to traditional secret sharing, the size of the shares produced by the above
algorithm can be exponential in the number of parties. This can be avoided in the case of
symmetric fractional access structures.

I Theorem 9. Let f : 2P → {0, . . . ,m− 1} be a symmetric fractional access structure with
f(∅) = m− 1. Then there exists a fractional secret sharing scheme D which (strictly) realizes
f with secret-domain [m], where the bit-length of each share is at most n · dlog max {n,m}e.

Proof. As before, let α1, . . . , αl be all the different values in the range of f in increasing
order and define g : [l]→ [m] such that g(i) = αi + 1. We now define D as follows:

1. Generate values x̄ = (x0, . . . , xl) for the cyclic intervals lossy chain realizing g, and let
s = x0. Furthermore, let a1, . . . , al−1 be the starting values of the cyclic intervals defining
x̄ (see Remark 3.2).

2. For every i ∈ [n], let αj be the value such that for any subset of parties Q ⊆ P of size i
we have f(Q) = αj + 1. Use Shamir’s i-out-of-n threshold secret sharing scheme to create
shares of aj and give one share to each of the parties in P .

We now show that D is a fractional secret sharing scheme. For every subset of parties
Q ⊆ P , the parties can reconstruct all the values out of x0, . . . , xn that were shared in a
threshold scheme requiring |Q| or less parties. This means that if f (Q) = αj + 1, the parties
of Q can reconstruct aj , . . . , al. By the definition of the cyclic intervals lossy chain, the
parties can reconstruct xj , . . . , xl from aj , . . . , al and since xj , . . . , xl were generated as values
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from a lossy chain realizing g we see that the secret s conditioned on Xj = xj , . . . , Xl = xl

is distributed uniformly over a set of size αj + 1, where αj + 1 = f (Q) as required.
We are left with showing that the size of share for each party is no more than n ·

dlog (max {n,m})e. Each party receives n different shares, one from each invocation of the
threshold secret sharing algorithm done by D. The secrets shared are a1, . . . , al where we
recall that all of them are values picked from at most m values. Using Shamir’s threshold
secret sharing scheme, each of the values is shared with shares of size dlog (max {n,m})e.
This amounts to a share size of at most n · dlog (max {n,m})e for each party, as required. J

5 Conclusions and Open Questions

We introduced the notion of lossy chains – Markov chains which gradually lose information
about an initial secret in a controlled fashion. We presented an efficient construction of
lossy chains and a matching negative result on the efficiency of lossy chains. Finally, we
have shown how lossy chains can be used to realize fractional secret sharing, a natural
generalization of traditional secret sharing which supports a fine-grained control over the
amount of uncertainty about the secret.

While we essentially settle the main complexity question about lossy chains, it remains
open to obtain a characterization of the best achievable information rate for a given loss
function g.

The most interesting open question regarding the complexity of fractional secret sharing
is to settle the case of symmetric fractional access structures, which naturally generalize
threshold access structures. While the latter can be realized by an ideal scheme in which the
size of each share is equal to the size of the secret (for a sufficiently large secret), we do not
know whether an analogous result holds in the fractional domain.
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