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Abstract
Winding numbers are fundamental objects arising in algebraic topology, with many applica-
tions in non-constructive complex analysis. We present a formalization in Coq of the wind-
ing numbers and their main properties. As an application of this development, we also give
non-constructive proofs of the following theorems: the Fundamental Theorem of Algebra, the
2-dimensional Brouwer Fixed-Point theorem and the 2-dimensional Borsuk-Ulam theorem.
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1 Introduction

In this paper we present a formalization in Coq of several results in complex analysis. More
precisely, we have formalized non-constructive proofs of the following theorems: the two-
dimensional Brouwer Fixed Point theorem, the two-dimensional Borsuk-Ulam theorem and
the Fundamental Theorem of Algebra. The particularity of these proofs, besides their classical
nature (in the logical sense), is that they all rely on the notion of winding number, which is an
invariant of homotopy. The winding number around a point z ∈ C of a closed curve γ basically
counts how many time γ turns counterclockwise around z. They constitute an important
notion in algebraic topology and have applications in many domains of mathematics and
physics, including complex analysis but also differential geometry and string theory. This
wide range of applications has decided us to start the formalization of this notion in Coq,
along with examples of important applications.

Finally, we are also interested in organizing our development in a reusable set of libraries
on top of Coq Standard Library. There is still some cleaning and organizing work to do on
our development, but we think the presented work is close to that goal.

Contributions
To establish these results, we had to develop a whole library on top of the Coq Standard
Library. It includes a general purpose library for metric spaces, defined using type classes [12],
that generalize several results of the Coq Standard Library of reals. We have formalized some
properties of Euclidean spaces, including the characterization of compact sets as the bounded
closed sets. Our formalization also provides definitions and various results about the complex
plane: the definition and the continuity of common functions, the existence of a complex
logarithm and a continuous lifting theorem. Finally, a crucial part of the formalization
concerns the definition of the winding number of a closed path and its main properties,
culminating in proving that the winding number is an homotopy invariant. Results about
line integrals have also been formalised but they are just briefly discussed in this paper. To
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2 Non-constructive complex analysis in Coq

define winding numbers, we have followed [11]. The proofs of the three mentioned theorems
we have formalised can be found in [5].

The classical nature of the proofs presented here is twofold. First, we decisively use
the reasoning by contradiction to obtain the different results from the homotopy invariance
theorem (although it is not used to define winding numbers or to prove the homotopy
invariance of the winding number). Secondly, the standard library of reals of Coq is a
classical axiomatization of the field of reals.

Related work

C-CoRN Project — A constructive proof of the Fundamental Theorem of Algebra
has been formalized as part as the C-CoRN project [2]. Its proof [6] relies on elementary
properties of R and C (mostly the existence of k-th roots in C, an intermediate value theorem
for polynomials and some basic polynomial arithmetic). The constructive nature and the
careful design of the proof makes it particularly suitable for extraction [3]. In contrast, we
were interested in formalizing classical mathematics, which makes our two works completely
different in nature. Yet, it does not mean we completely give up on the possibility of
extraction, as discussed in the conclusion.

Coqtail Project — Coqtail [4] is a project intended to extend the standard Coq lib-
rary by providing clean, reusable libraries for various domains of undergraduate mathematics:
arithmetic, reals, basic complex analysis, basic topology. It has been used to formalize a
proof of Lagrange’s four square theorem, to formalize power series and solve some differential
equations [1]. It seems that many of the basic definitions about complex numbers and
functions coincide in both our works, and so it is likely that the developments described here
could easily be integrated in their library.

Other proof assistants — Numerous developments based on complex analysis,
euclidean spaces or topology have been formalized in other proof assistants. One can cite
Harrison’s works in HOL Light [8, 7] on the theory of Euclidean spaces (including a proof
of the general Brouwer Fixed-Point theorem, using combinatorial arguments) and on a
complex-analytic proof of the prime number theorem.

Outline

Basic definitions and notations are described in section 2. We then present in section 3 the
metric spaces and euclidean spaces libraries. Section 4 introduces the existence of a complex
logarithm, the continuous lifting theorem and finally the definition of the winding number
and the formalization of some of its main properties. We present the non-constructive proof
of the main theorems along with their formalization in section 5. Section 6 finally concludes
this work.

2 Basic notations and definitions

We give here the basic notations and definitions, relative to the complex plane and the
euclidean spaces in general, needed to understand the Coq statements of the next sections.
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2.1 Complex plane

We begin with the definition of the complex plane. We remind that the underlying theory
of reals that we use is the one of the Coq Standard Library. It is based on an axiomatic
definition of the field of reals. It has to be noted that this axiomatic definition of reals is
fundamentally classical.

The set C is defined as R2, the imaginary and real parts being respectively the first and
second projections.

Definition C : Set := prod R R.
Definition CRe (c : C) : R := match c with ( a, _) => a end.
Definition CIm (c : C) : R := match c with ( _, b) => b end.

co : R*R -> C denotes the trivial coercion from R*R to C, so that co a b represents the
complex number a+ ib. A coercion from R to C is defined and noted IRC.

Definition IRC (r : R) : C := co r 0.
Coercion IRC : R >-> C.

It also possible to define a complex number by its polar form.

Definition polar_form (r: R) (t : R) := co (r*cos t) (r*sin t).

We declare distinguished elements of C, noted 0, 1, Ci representing respectively 0, 1 and
the purely imaginary number i. We endow C with operations noted as in R, +, -, * and /. C
then defines a ring and a field, and is declared as such, permitting to use the ring and field
tactic families. The absolut value and the conjugation operations are noted respectively Cmod
and Cconj. The complex exponential is defined using the real exponential already defined in
the standard library and the polar form:

Definition Cexp (c : C) := polar_form (exp (CRe c)) (CIm c).

The circle of radius r can then be parametrized as follows.

Definition C_circle_par (r : R) (theta : R) : C := r * Cexp (0,theta).

2.2 Euclidean space

We also define the euclidean space Rn, using an inductive product of set.

Fixpoint prod_n (E: Set) (n:nat) : Set :=
match n with
| O => unit
| S n => prod (prod_n E n) E

end.

Hence prod_n R n represents the set Rn. We define usual operations on Rn: [+], [-], [.]
and an element [0] implementing respectively the addition, the substraction, the inner
product and the element (0, . . . , 0).

TYPES 2011



4 Non-constructive complex analysis in Coq

2.3 Domains
We define useful subsets of R and C.

Definition CUnit_Disk : C -> Prop := fun x => Cmod x <= 1.
Definition CUnit_Circle : C -> Prop := fun x => Cmod x = 1.
Definition RDom_Int (a b : R) : R -> Prop := fun x => a <= x <= b.
Definition CRect (a b c d : R) : C -> Prop := fun c => a <= CRe c <= b
/\ d <= CIm c <= e.

We define the notion of star shaped subset of C.

Definition CDom_Star (K : C -> Prop) :=
forall x y : C, K x -> K y ->
forall lam : R, 0 <= lam <= 1 -> K (lam * x + (1 - IRC lam) * y).

3 Metric spaces

To prove sophisticated complex analysis results, we need elementary regularity properties of
functions on Rn, which are consequences of the metric space structure of Rn, such as Heine
theorem (continuity on a compact implies uniform continuity). There are also properties we
need for R,R2 and R3, which are true for all euclidean spaces Rn. Instead of reproving these
results each time we consider a different set, we do it in the general case. Hence, we provide
libraries for metric spaces and euclidean spaces, which are presented in this section.

3.1 Metric spaces
We define metric spaces and of top of them, the notions of continuity, uniform continuity,
open set, closed set, and so on. We mostly follow the definitions and naming already present
in Coq reals library. Our choice has been to define metric spaces as a type class [12], hence
benefiting of features like notation overloading, parametrized instances and generalized
type-class binders. The definition is as follows:

Class MetrSpace (E: Set) :=
{

d : E -> E -> R;
pr_pos : forall x y : E, 0 <= d x y;
pr_sym : forall x y : E, (d x y) = (d y x);
pr_sep : forall x y : E, (d x y = 0) <-> x = y;
pr_tri : forall x y z : E, d x y <= (d x z) + (d z y);
pt : E

}.

I Remark. Notice that we define pointed metric spaces, that is a metric space together with
a distinguished element pt of the base set. This is just a convenient choice that simplifies a
bit some proofs abound bounded sets and the writing of some tactics about continuity (that
we don’t mention in this paper).

Different instances of the class MetrSpace are declared, like R and C. We also define the
product metric space of two metric spaces as a parametrized instance:

Instance prod_MetrSpace ‘(EM : MetrSpace E, FM: MetrSpace F) :
MetrSpace (E * F).
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This allows to declare the n-dimensional euclidean space Rn as a metric space.
In the definition of limits and continuity between two metric spaces, the latter are

introduced via generalized type-class binders, which allows to write statements and proofs in
a natural way.

Definition Metr_limit_in ‘{EM: MetrSpace E, FM: MetrSpace F}
(f : E -> F) (D : E -> Prop) (a : E) (l : F) :=
forall eps : posreal -> exists eta : posreal /\
(forall x, D x -> d x a < eta -> d (f x) l < eps).

Definition MS_continue_in ‘{EM : MetrSpace E, FM : MetrSpace F}
(f : E -> F) (D : E -> Prop) (a : E) : Prop :=

Metr_limit_in f D a (f a).

Definition MS_uniform_continuity ‘{EM : MetrSpace E, FM : MetrSpace F}
(f : E -> F) (D : E -> Prop) : Prop :=
forall eps : posreal, exists delta : posreal,

(forall x y: E, D x -> D y ->
d x y < delta -> d (f x) (f y) < eps).

I Example 1. As an example, the statement that the function x ∈ R 7→ x+ 1 is uniformly
continuous on R is simply written in Coq:

MS_uniform_continuity (fun x => x + R1) (fun x => True)

The notation is light: there is no need to specify the base set nor the metric space used here,
since the type-class constraint system permits to retrieve the previously declared metric
space on R.

The definition of compact set is adapted from the one used in the Coq Reals library. It is
however a notion of compactness with respect to a set of open sets O.

Definition MS_compact_base ‘{EM: MetrSpace E}
(X: E -> Prop) (O: (E->Prop)->Prop) : Prop :=
forall I : Type, forall IM: MetrSpace I, forall f : MS_family I E,

MS_covering_open_set X f -> MS_family_base f O ->
exists D : I -> Prop, MS_covering_finite X (MS_subfamily f D).

This amounts to say that a set X is compact if whenever we have a cover C of X
constituted by open sets of O, we can find a finite subset C′ ⊆ C which is still a cover of X.
The usual compactness property is just an alias for compactness with respect to all open sets.

Definition MS_compact ‘{EM: MetrSpace E} (X: E -> Prop) : Prop :=
MS_compact_base X (fun _ => True).

In the Real library, a cover is represented by a family of open sets (Oi)i∈R indexed by R.
Here, we can use any element of Type as a set of indexes. This is indeed necessary to prove a
crucial result: compactness is equivalent to compactness with respect to an open set basis.

Theorem MS_compact_basis ‘{EM : MetrSpace E}:
forall X : E -> Prop, forall O : (E -> Prop) -> Prop,
forall Ho: MS_open_basis O, MS_compact_base O X -> MS_compact X.

TYPES 2011



6 Non-constructive complex analysis in Coq

Here, MS_open_basis O denotes the fact that a set O of open sets is such that any open
set G can be written G =

⋃
X∈O∧X⊆GX. To prove this theorem, we need to have an index

set of type Type. Indeed, from an original cover Ci, we build the cover C(i,U) where U is an
open set such that U ⊆ Ci and U ∈ O. This amounts to use prod I (E -> Prop) as a type
for indexes, which justifies the use of Type.

I Example 2. As an example of a theorem already proved for R in the standard library, the
Heine theorem is now available for all metric spaces. It states that every continuous function
on a compact set is also uniformly continuous.

Theorem MS_Heine :
forall (f:E -> F) (D:E -> Prop),

MS_compact D -> MS_continue_on f D -> MS_uniform_continuity f X.

3.2 Euclidean spaces
Rather than defining directly euclidean spaces with the particular canonical euclidean scalar
product, we define them axiomatically as a type class:

Class Euclidean (dim : nat) :=
{

scal : prod_n R dim -> prod_n R dim -> R;
scal_sym : forall x y : prod_n R dim, scal x y = scal y x;
scal_pos : forall x : prod_n R dim, 0 <= scal x x;
scal_def : forall x : prod_n R dim, scal x x = R0 -> x = Rn_zero;
scal_add1 : forall x y z : prod_n R dim, scal (Rn_plus x y) z =

scal x z + scal y z;
scal_add2 : forall x y z : prod_n R dim, scal x (Rn_plus y z) =

scal x y + scal x z;
scal_lam1 : forall x y lam, scal (Rn_dot x lam) y= lam * scal x y;
scal_lam2 : forall x y lam, scal x (Rn_dot y lam)= lam * scal x y

}.

Each instance of an euclidean space then defines an euclidean norm, defined as follows:

Definition Eucl_norm ‘{E : Euclidean n} :=
fun x : prod_n R n => sqrt (scal x x).

We define two notations for the unit disk and the unit circle of dimension n.

Definition RnUnit_Disk ‘{E : Euclidean n} :=
fun x : prod_n R n => Eucl_norm x <= 1.

Definition RnUnit_Circle ‘{E : Euclidean n} :=
fun x : prod_n R n => Eucl_norm x = 1.

From these axioms, we derive several useful properties, like the Cauchy-Schwarz inequality.

Lemma Eucl_CauchySchwartz ‘{E: Euclidean n}:
forall x y, Rabs (scal x y) <= Eucl_norm x * Eucl_norm y.

Using the euclidean norm to define a distance, we can show that each euclidean space Rn
defines a metric space instance.
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Instance Rn_MetrSpace {n : nat} : MetrSpace (prod_n R n).

An important step in our development is the Borel-Lebesgue theorem, which states that
in Rn, the compact sets (defined in terms of covering) are exactly those sets which are both
closed and bounded.

Theorem Eucl_Borel_Lebesgue:
forall n : nat, forall X : prod_n R n -> Prop,

(MS_compact X <-> MS_closed_set X /\ MS_bounded X).

In particular, to show that a closed and bounded set is compact, we reason by induction
and use the fact that a product of compacts is compact. That is where we need the equivalence
between compactness and compactness on the product basis (which, for the product metric
space, is the set of product of open sets) stated in the previous subsection.

4 Winding number theory

There are many ways to define the winding number. Mostly, two approaches are possible:
by using path integral or by proving a lifting theorem. We have formalised both definitions,
but we focus only on the latter, since it is more general and presents many advantages, as
advocated in subsection 4.4 In this section, we present the following results: the existence of a
complex logarithm, a continuous lifting theorem, and finally the notion of winding numbers.

4.1 Complex logarithm
A complex logarithm is an inverse of the complex exponential function, similarly to the
case of the real-valued functions ln and ex. However, the situation is more complicated on
C than on R. Indeed, the complex exponential is not injective (just consider the identity
ex = ex+2iπ) and hence cannot have an inverse function. This problem is usually solved by
restricting the domain of the exponential to a subset on which it is injective. In our case,
we restrict it to R×] − π, π], and hence the logarithm will be defined only on the domain
C \ R−, which is defined in Coq as:

Definition CLog_D0 := fun c => forall x : R, x <= 0 -> c <> IRC x.

We first show that every point z of this domain has a logarithm. To prove that it suffices
to notice that by the domain restriction, the polar decomposition of z = reiθ is unique. This
fact is equivalent to the following statement.

Lemma CLog_1:
forall z, CLog_D0 z ->

exists r, exists theta, 0 < r /\ -PI < theta <= PI /\
(IRC r) * Cexp (co 0 theta) = z.

Hence, its logarithm can be defined by Log(z) = ln(r) + iθ. We can then prove the
existence of a logarithm function on the domain CLog_D0. This function is necessarily
continuous.

Lemma CLog_ex_continuous :
exists log : C -> C, log C1 = C0 /\
(forall z, CLog_D0 z ->

-PI <= CIm (log z) <= PI /\ Cexp (log z) = z /\ MS_continue_in log z).

TYPES 2011



8 Non-constructive complex analysis in Coq

To prove this theorem, we crucially need the axiom of choice in its functional form:

Axiom choice :
forall (A B : Type) (R : A->B->Prop),

(forall x : A, exists y : B, R x y) ->
exists f : A->B, (forall x : A, R x (f x)).

We could obtain an actual function log : C -> C by using the principle of constructive
indefinite description.

Axiom constructive_indefinite_description :
forall (A : Type) (P : A->Prop),

(exists x, P x) -> { x : A | P x }.

This principle is stronger than the axiom of choice. In fact, we never need to obtain a
logarithm function: the statement of its existence is enough.

4.2 Complex lifting
Given a function f : C→ C continuous on K, we say that Φ : K → C is a continuous lifting
of f if Φ is continuous and ∀x ∈ K, f(x) = ‖f(x)‖eΦ(x). We can state the existence of such
a lifting for any set K, which is both compact and star-shaped.

Theorem Complex_Lifting:
forall F : C -> C, forall K : C -> Prop,
MS_compact K -> CDom_Star K -> MS_continue_on F K ->
(forall x, K x -> F x <> C0) -> exists Phi : C -> C,

(forall x : C, K x -> F x = IRC (Cmod (F x)) * Cexp (Phi x)) /\
MS_continue_on Phi K.

The proof, which we don’t detail, crucially relies on the uniform continuity of the function,
and hence on Heine theorem.

4.3 Winding numbers
A path is a continuous function γ : [a, b] → C. We moreover say it is a closed path if
γ(a) = γ(b). From now on, we only consider closed path γ such that ∀x ∈ [a, b], γ(x) 6= 0. In
Coq, a closed path is represented as a record containing its domain together with a proof of
its continuity.

Record C_lace : Type := mklace {
gam :> R -> C;
a : R;
b : R;
ab_pr: a <= b;
gam_lace : gam a = gam b;
gam_cont: forall x, RDom_Int a b x -> MS_continue_in gam (RDom_Int a b) x

}.

Given a closed path g, we say that ψ : [a, b]→ C is an argument of g if ψ is continuous
and if ∀x ∈ [a, b], g(x) = ‖g(x)‖eψ(x). This property is denoted in Coq by
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Definition cont_arg_choice (a b : R) (F : R -> C) (psi : R -> C) :=
(forall x, RDom_Int a b x -> F x = IRC(Cmod(F x))*(Cexp (psi x)))

/\ (forall x, RDom_Int a b x -> MS_continue_in psi (RDom_Int a b) x).

If γ is nowhere vanishing (meaning it never takes the value 0 on its domain) and H is an
argument of γ, we can define its winding number (around 0) by:

Definition lace_WN_param (g : C_lace) (psi : R -> C) : C :=
(psi (b g) - psi (a g))/(co 0 (2*PI)).

Moreover, we prove that whatever the choice of argument we have made, the winding
number is the same.

Lemma lace_WN_param_equal:
forall g, (forall x, RDom_Int (a g) (b g) x -> g x <> C0) ->
forall psi1 psi2,

cont_arg_choice (a g) (b g) g psi1 ->
cont_arg_choice (a g) (b g) g psi2 ->

lace_WN_param g psi1 = lace_WN_param g psi2.

I Remark. Usually, because the winding number is invariant by the choice of argument, it is
defined as an actual number using a specific continuous argument ψ obtained by the complex
lifting theorem.

n(γ, 0) = ψ(b)− ψ(a)
2iπ

We choose not to do that since it would mean using the principle of constructive indefinite
description to obtain an argument, which can be avoided. Instead, we will always carry an
assumption of the existence of a continuous argument.

An important property is that the winding number of a closed path is always an integer.

Lemma lace_WN_param_Z:
forall g psi,

(forall x, RDom_Int (a g) (b g) x -> g x <> C0) ->
cont_arg_choice (a g) (b g) g psi ->
exists z : Z, lace_WN_param g psi = IRC (IZR z).

To obtain this result, we make use of trigonometry results contained in the standard
library. Here is an informal proof.

Proof. Suppose that for every x, γ(x) is in the unit disk. Let Φ be a lifting of γ: γ(x) =
|γ(x)|eΦ(x). Then, eΦ(b)−Φ(a) = 1 (since γ(a) = γ(b). Hence, there exists some k ∈ Z such
that Φ(b)− Φ(a) = 2i(kπ). Hence n(γ, 0) = Φ(b)−Φ(a)

2iπ = k ∈ Z. J

I Example 3. As an example, we can compute the winding number of the unit circle.

Definition C_circ_unit : R -> C := fun t => Cexp (co 0 (2*PI*t)).

The winding number of the corresponding path C_circ_lace between 0 and 1 is equal
to 1. This fits the intuition of the path turning one time around the point 0.

Lemma C_circ_fact2:
forall psi, cont_arg_choice 0 1 (C_circ_lace) psi ->

lace_WN_param C_circ_lace psi = C1.

TYPES 2011



10 Non-constructive complex analysis in Coq

The final and important theorem is the invariance of the winding number by homotopy.
Formally, supposing two closed paths g0, g1 : C_lace are homotopically equivalent, that
is there exists a continuous function H : C -> C such that:

Definition CHomotopyEqu (g0 g1 : C_lace) (H : C -> C) :=
a g0 = a g1 /\ b g0 = b g1 /\
(forall x, a g0 <= x <= b g0 -> H(0,x) = g0 x) /\
(forall x, a g1 <= x <= b g1 -> H(1,x) = g1 x) /\
(MS_continue_on H (CRect 0 1 (a g0) (b g0))) /\
(forall x, RDom_Int 0 1 x -> H(u, a g0) = H(u, b g0)).

And if moreover, H never equals to O (which ensures that neither g0 nor g1 do), then the
winding numbers of g0 and g1 are equal. This is summarized in the following theorem:

Theorem Clace_WN_homotopy_invariant:
forall g0 g1 : C_lace, forall H : C -> C,
(forall c, (CRect 0 1 (a g0) (b g0) c) -> H c <> C0) ->
CHomotopyEqu g0 g1 H ->
forall psi0 psi1 : R -> C,

cont_arg_choice (a g0) (b g0) g0 psi0 ->
cont_arg_choice (a g1) (b g1) g1 psi1 ->

lace_WN_param g0 psi0 = lace_WN_param g1 psi1.

I Remark. Notice that here again, the theorem is stated without fixing a choice of argument
for the closed paths.

4.4 Winding numbers: path integral versus continuous lifting
We have presented here a definition of winding number of a closed path by using a choice of
argument for it. It is however often defined using line integrals. We can indeed define the
winding number of a closed path γ : [a, b]→ C around a point c as:

n(γ, c) = 1
2iπ

∮
γ

dz

z − c

where the line integral is defined using∮
γ

f(z)dz =
∫ b

a

f(γ(t))γ′(t)dt

We have also formalized this alternative definition and proved that it yields the same result
as the other. It has shown several disadvantages over the definition we have presented:

To define path integrals, we need a good definition of integration for complex valued
functions over R. We have experimented using the Riemann integral from the Standard
Library of Coq. It allows one to define winding numbers without the path lifting theorem,
but always reasoning on integrals rather than in terms of complex exponentials and
logarithms is definitely more difficult.
The main problem is that because we use path integrals, we also need the path γ to be
differentiable (it can be then extended for continuous paths, but it involves sophisticated
results about complex analysis we have not formalised). This is indeed a severe restriction,
since we could prove the Fundamental Theorem of Algebra, but not the Brouwer Fixed-
Point theorem or the Borsuk-Ulam theorem, which are stated for continuous functions.
In contrast, coupled with the continuous lifting theorem, our definition immediately only
requires continuity of γ.
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5 Applications of the winding number homotopy invariance

We now detail the proofs we have formalized of the Fundamental Theorem of Algebra, the
Brouwer Fixed-Point theorem and finally of the Borsuk-Ulam theorem. All these proofs rely
on corollaries of the invariance by homotopy of the winding number and classical principles.

5.1 Prerequisites
We briefly give the statements and sketch the proofs of two fundamental lemmas needed for
the proofs of the Borsuk-Ulam and Brouwer Fixed Point theorems.

I Lemma 4. Suppose f : C → C is continuous and nowhere vanishing on the unit disk.
Then if γ(t) = f(e2iπt), we have n(γ, 0) = 0.

Proof. The path γ is homotopically equivalent to the constant path t 7→ f(0). Indeed,
H(u, t) = f(u ∗ e2iπt) is such that H(0, t) = f(0) and H(1, t) = γ(t). It is moreover
continuous because f is, and vanishes nowhere. Hence, because any constant path has a
winding number equal to 0, we conclude by homotopy invariance of the winding number. J

I Lemma 5. There does not exist a map f : C → C which is continuous, odd (that is
f(−x) = −f(x)) and nowhere vanishing on the unit disk.

Proof. We will prove that if such a map f exists, then if we pose the lace γ(t) = f(eiπt),
there exists k ∈ Z such that n(γ, 0) = 2k + 1 (we skip the proof here, but it only involves
simple calculations). Hence, because of Lemma 4, it leads to a contradiction. J

5.2 Fundamental Theorem of Algebra
The first application is a classical proof of the Fundamental Theorem of Algebra, which
states that any complex polynomial has a root. A complex polynomial is represented as a
list of complex coefficients, begining with the coefficient of higher degree and ending with
the one of degree 0.

Definition C_polynom : Set := Clist.
Definition C_polynom_deg (P : C_polynom) := pred (Clength P).

But of course, we need to remove the extra elements equals to C0 in order to be able to calculate
the true degree of the polynomial. This is the job of the function C_polynom_without_zero
which has the type C_polynom -> C_polynom. The evaluation of a polynomial is done
inductively by the function C_polynom_eval : C_polynom -> C. We now prove the following
statement.

Theorem FTA: forall P : C_polynom,
(1 <= C_polynom_deg (C_polynom_without_zero a)) ->
exists x : C, C_polynom_eval P x = C0.

So suppose the existence of a polynomial P of degree n (and we note its dominating
coefficient an 6= 0) such that

Variable pr_deg : n >= 1.
Variable pr_root: forall x, C_polynom_eval a x <> C0.

We then define the lace Gamma_circle r whose underlying function is the parametrization
of the circle of radius r deformed by the polynomial P (and by hypothesis pr_root, it makes
sense to speak of its winding number):
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fun theta : R => C_polynom_eval P (C_circle_par r theta)

Now if R1 is big enough, the polynomial becomes dominated by its coefficient of larger
degree C_polynom_domcoeff P, and then the winding number is the same wether or not you
consider the other coefficients:

Definition nu (r : R) (theta : R) : C :=
C_polynom_domcoeff P * IRC (r^n) * Cexp (co 0 ((INR n)*theta)).

Lemma Alembert_theo5:
exists M : R, 0 < M /\ forall R1, forall pr : 0 < R1,
forall pr2 : M < R1, forall psi1 psi2 : R -> C,
cont_arg_choice 0 2*PI (nu_path R1 pr) psi1 ->
cont_arg_choice 0 2*PI (Gamma_circle R1) psi2 ->
lace_WN_param (nu_path R1 pr) psi1 = lace_WN_param (Gamma_circle R1) psi2.

But the winding number of ν(θ) = anr
neinθ can be shown by a simple calculation

to be equal to n. When the circle is of radius 0, the obtained path Gamma_circle 0 is
constant and hence its winding number is equal to 0. On the other hand, we can show that
whatever the positive reals R1 R2 : R, the paths Gamma_circle R1 and Gamma_circle R2
are homotopically equivalent, and so have the same winding number.

Lemma Alembert_theo3:
forall R1, 0 <= R1 -> forall R2, 0 <= R2 ->

(forall psi1 psi2 : R -> C,
cont_arg_choice 0 2*PI (Gamma_circle R1) psi1 ->
cont_arg_choice 0 2*PI (Gamma_circle R2) psi2 ->

forall Arg: R -> (R -> C), forall Harg: (forall r,
Rmin R1 R2 <= r <= Rmax R1 R2 ->
cont_arg_choice 0 2*PI (Gamma_circle r) (Arg r)),

lace_WN_param (Gamma_circle R1) psi1 = lace_WN_param (Gamma_circle R2) psi2.

The contradiction comes immediately, since when going from 0 to a real R big enough,
the winding number changes from 0 to n (by Lemma Alembert_theo5). This is contradicted
by the previous lemma Alembert_theo3 and because 1 <= n.

5.3 Brouwer Fixed-point theorem
We now prove the 2-dimensional version of the celebrated Brouwer Fixed-Point theorem.
It is a classical (in the sense of classical reasoning) corollary of the following no retraction
theorem.

Theorem No_Retraction:
~(exists r : C -> C,

(forall x, CUnit_Disk x -> CUnit_Disk (r x)) /\
(forall x, CUnit_Circle x -> r x = x) /\
(forall x, CUnit_Disk x -> MS_continue_in r CUnit_Disk x)).

Proof. Suppose by contradiction that we have such a retraction r. By hypothesis, for every x
in the unit disk, r(x) 6= 0, and r is continuous. Hence, by Lemma 4, the lace γ : t 7→ r(e2iπt)
is such that n(γ, 0) = 0. But, γ(t) = e2iπt since r is the identity on the unit circle. By
Lemma 5, however, we have n(γ, 0) 6= 0, which is contradictory. J
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We are now able to formalize a proof of the Brouwer Fixed-Point theorem, which is stated
as follows.

Theorem BrouwerFixedPoint:
forall f : C -> C, (forall x, CUnit_Disk x -> CUnit_Disk (f x)) ->

MS_continue_on f CUnit_Disk ->
exists x, CUnit_Disk x /\ f x = x.

The key point is to reason classicaly by supposing the existence of a map which has no
fixpoint and build a retract CUnit_Disk to CUnit_Circle out of it, which will lead to a
contradiction by the no retraction theorem.

Proof. The proof is carried using the following classical principle

not_all_not_ex: forall P:U->Prop, ~(forall n:U, ~P n) -> exists n:U, P n.

We suppose that f : C -> C is continuous on the unit disk and has no fixpoint, and derive
a contradiction.

Hypothesis Br_H1: forall x, CUnit_Disk x -> CUnit_Disk (f x).
Hypothesis Br_H2: forall x, CUnit_Disk x -> MS_continue_in f CUnit_Disk x.
Hypothesis Br_H3: forall x, CUnit_Disk x -> f x <> x .

We want to define a continuous retract brouwer_retract : C -> C from the unit disk
to the circle. Informally, consider a point z of the unit disk and its image f(z). Since we
have supposed that f(z) <> z, we can continue the segment that joins f(z) to z until it
reaches the unit circle. brouwer_retract z is this intersection point. Formally, given two
distinct points x0 and x of the unit disk, we need to solve the equation

(E) x0 + λ(x− x0) = 1

Finding λ amounts to solve a second degree (real) polynomial, which can be done using the
standard Coq library. Given a polynomial aX2 +bX+c, if its discriminant b2−4ac is positive,
the two roots (which are possibly equal) are given by sol_x1 a b c and sol_x2 a b c.
We use this to obtain a function LC_lambda x x0 : x <> x0 -> R that calculates the λ of
Equation (E).

Lemma line_circle_intersect (x0 x : C) (H : x <> x0) :
CUnit_Disk x0 ->

Cmod (x0 + IRC (LC_lambda x x0 H) * (x - x0)) = 1 /\
Cmod x = 1 -> LC_lambda x x0 = 1.

The map brouwer_retract is then defined, and if z is in the unit disk (we have a proof
Hunit : CUnit_Disk z), it is equal to

f z + IRC (LC_lambda z (f z) (Br_H3 z Hunit)) * (z - f z)

To conclude, we need to show that brouwer_retract is indeed a continuous retract,
which amounts to prove the three following lemmas. The first one is the continuity of
brouwer_retract on the unit disk. This proof involves a lot of bureaucracy, since we have
to show that LC_lambda is continuous on C∗.

Lemma Br_retract_continue : MS_continue_on brouwer_retract CUnit_Disk.

Secondly, restricted to the circle, brouwer_retract is the identity.
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Lemma Br_retract_circle :
forall z : C, CUnit_Circle z -> brouwer_retract z = z.

And finally brouwer_retract is actually a map from the unit disk to the unit circle.

Lemma Br_retract_unit :
forall z : C, CUnit_Disk z -> CUnit_Circle (brouwer_retract z).

These two last lemmas are direct consequences of the lemma line_circle_intersect.
Under these hypothesis, we conclude to a contradiction.

Lemma BrouwerNoFix : False.

J

5.4 Borsuk-Ulam theorem
The last application is the Borsuk-Ulam theorem, which states that for any continuous
complex-valued function f on the unit sphere, there exists a point x such that f(x) = f(−x).

Theorem BorsukUlam:
forall f : Rcube -> C, MS_continue_on f RnUnit_disk ->
exists x, RnUnit_disk x /\ f (-x) = f x.

The proof of this theorem will be a consequence of the following intermediate lemma.

Lemma BU_lemma2: #(AC)
forall f : Rcube -> C, MS_continue_on f RnUnit_disk ->
(forall x, BU_disk x -> f([-]x) = - f(x)) ->
exists p, RnUnit_circle p /\ f p = 0.

Proof. Here again, we reason by contradiction using not_all_not_ex. So we suppose having
a map f which is odd, continuous and nowhere vanishing. Then consider the following map
(where S2 is the 2-sphere):

φh : R2 → S2

φh(x, y) = (x, y,
√

1− x2 − y2)

Now, it is clear that if we pose γ(t) = f(e2iπt, 0), then γ(t) = (f ◦ φh)(e2iπt). We know
by hypothesis that f ◦ φh never vanishes on C and is continuous. Hence, by Lemma 4, we
have n(γ, 0) = 0. But by Lemma 5, because f ◦φh is nowhere vanishing, odd and continuous,
we have n(γ, 0) 6= 0 which is contradictory. J

Given this last lemma, we obtain Borsuk-Ulam Theorem.

Proof of Borsuk-Ulam Theorem. We reason classicaly by supposing the existence of a
function f : R3 → C, continuous on the unit ball and such that for every point x of the unit
ball, f(x) 6= f(−x). Then, consider the map

F (x) = f(x)− f(−x)
‖f(x)− f(−x)‖

Then F is well-defined and continuous by hypothesis, and F is clearly odd. Hence, using
BU_lemma2, there exists x in the unit sphere such that F (x) = 0, which contradicts the
hypothesis since it means f(x) = f(−x). J
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6 Conclusion and remarks

We have described in this paper a library implementing metric spaces, euclidean spaces and
winding numbers, and we have employed it to prove sophisticated results in classical complex
analysis. One future direction of research is the generalization of the results in arbitrary
dimension. In this development, we have only proved the 2-dimensional version of Brouwer
Fixed-Point and Borsuk-Ulam theorems, but their n-dimensional versions still can be proved.
The proofs are quite similar to those we have briefly sketched here. However, it requires to
use a generalization of the notion of winding number: the degree of a continuous mapping. It
can be defined for maps from Rn to Rn (which is sufficient) but also for continuous mapping
between oriented compact manifolds of the same dimension. To do this, one would need to
formalize some parts of classical homotopy theory.
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