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Abstract
In this paper we introduce a general framework that exponentially improves the space, the
degree of independence, and the time needed by min-wise based algorithms. The authors, in
SODA11, [15] introduced an exponential time improvement for min-wise based algorithms by
defining and constructing an almost k-min-wise independent family of hash functions. Here
we develop an alternative approach that achieves both exponential time and exponential space
improvement. The new approach relaxes the need for approximately min-wise hash functions,
hence gets around the Ω(log 1

ε ) independence lower bound in [23]. This is done by defining and
constructing a d-k-min-wise independent family of hash functions. Surprisingly, for most cases
only 8-wise independence is needed for the additional improvement. Moreover, as the degree of
independence is a small constant, our function can be implemented efficiently.

Informally, under this definition, all subsets of size d of any fixed set X have an equal prob-
ability to have hash values among the minimal k values in X, where the probability is over the
random choice of hash function from the family. This property measures the randomness of the
family, as choosing a truly random function, obviously, satisfies the definition for d = k = |X|.
We define and give an efficient time and space construction of approximately d-k-min-wise inde-
pendent family of hash functions for the case where d = 2, as this is sufficient for the additional
exponential improvement. We discuss how this construction can be used to improve many min-
wise based algorithms. To our knowledge such definitions, for hash functions, were never studied
and no construction was given before. As an example we show how to apply it for similarity and
rarity estimation over data streams. Other min-wise based algorithms, can be adjusted in the
same way.

1998 ACM Subject Classification F.1.2 Modes of Computation - Online computation

Keywords and phrases Streaming, Min-Wise, Hash Functions, Similarity, On line algorithms,
Sub-linear algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.70

1 Introduction

Hash functions are fundamental building blocks of many algorithms. They map values from
one domain to another, usually smaller. Although they have been studied for many years,
designing hash functions is still a hot topic in modern research. In a perfect world we could
use a truly random hash function, one that would be chosen randomly out of all the possible
mappings.

Specifically, consider the domain of all hash functions h : U → U ′, where |U | = u and
|U ′| = u′. As we need to map each of the u elements in the source into one of the u′ possible
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mappings, the number of bits needed to maintain each function is u log(u′). Since nowadays
we often have a massive amount of data to process, this amount of space is not feasible.
Nevertheless, most algorithms do not really need such a high level of randomness, and can
perform well enough with some relaxations. In such cases one can use a much smaller domain
of hash functions. A smaller domain implies lower space requirements at the price of a lower
level of randomness.

As an illustrative example, the notion of 2-wise-independent family of hash functions
assures the independence of each pair of elements. It is known that only 2 log(u′) bits are
enough in order to choose and maintain such a function out of the family.

This work is focused on the area of min-hashing. One derivative of min-hashing is
min-wise independent permutations, which were first introduced in [22, 6]. A family of
permutations F ⊆ Su (where Su is the symmetric group) is min-wise independent if
for any set X ⊆ [u] (where [u] = {0, . . . , u− 1}) and any x ∈ X, where π is chosen uniformly
at random in F , we have:

Pr[min{π(X)} = π(x)] = 1
|X|

Similarly, a family of functions H ∈ [u] → [u] (where [u] = {0, . . . , u − 1}) is called
min-wise independent if for any X ⊆ [u], and for any x ∈ X, where h is chosen uniformly
at random in H, we have:

Prh∈H[min{h(X)} = h(x)] = 1
|X|

Min hashing is a widely used tool for solving problems in computer science such as
estimating similarity [6, 4, 7], rarity [14], transitive closure [8], web page duplicate detection
[5, 21, 26, 19], sketching techniques [11, 10], and other data mining problems [18, 13, 1, 3].

One of the key properties of min hashing is that it enables to sample the universe of the
elements being hashed. This is because each element, over the random choice of hash function
from the family, has equal probability of being mapped to the minimal value, regardless
of the number of occurrences of the element. Thus, by maintaining the element with the
minimal hash value over the input, one can sample the universe.

Similarity estimation of data sets is a fundamental tool in mining data. It is often
calculated using the Jaccard similarity coefficient which is defined by |A∩B||A∪B| , where A and
B are two data sets. By maintaining the minimal hash value over two sets of data inputs
A and B, the probability of getting the same hash value is exactly |A∩B||A∪B| , which equals the
Jaccard similarity coefficient, as described in [6, 4, 7, 8].

Indyk, in [20], was first to give a construction of a small approximately min-wise inde-
pendent family of hash functions, another construction was proposed in [25]. A family of
functions H ⊆ [u]→ [u] is called approximately min-wise independent, or ε-min-wise
independent, if, for any X ⊆ [u], and for any x ∈ X, where h is chosen uniformly at random
in H, we have:

Prh∈H[min{h(X)} = h(x)] = 1
|X|

(1± ε)

where ε ∈ (0, 1) is the desired error bound, and O(log( 1
ε )) independence is needed. Pǎtraşcu

and Thorup showed in [23] that Ω(log 1
ε ) independence is needed for maintaining an approx-

imately min-wise function, hence Indyk’s construction is optimal.
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72 Exponential Space Improvement for min-wise Based Algorithms

Recently, in STOC11 [24], a new novel technique that bypasses the above lower bound was
proposed by the same authors. They showed that simple tabulation yields approximately
min-wise hash function, hence it requires constant time and space for each function.

In a previous paper [15] the authors defined and gave a construction for an approximately
k-min-wise (ε-k-min-wise ) independent family of hash functions:
A family of functions H ⊆ [u] → [u] (where [u] = {0 . . . u − 1}) is called ε-k-min-wise
independent if for any X ⊆ [u] and for any Y ⊂ X, |Y | = k we have

Pr
h∈H

[
max
y∈Y

h(y) < min
z∈X−Y

h(z)
]

= 1(|X|
|Y |
) (1± ε),

where the function h is chosen uniformly at random from H, and ε ∈ (0, 1) is the error bound.
It was also shown in [15] that choosing uniformly at random from a O(k log log 1

ε +log 1
ε )-wise

independent family of hash functions is approximately k-min-wise independence. Formerly,
most min-wise based applications used k different approximately min-wise independent hash
functions, i.e. they maintained k different samples. The authors, in [15], proposed to use
only one approximately k-min-wise independent hash function in order to maintain the k
samples, by using the k minimal hash values. As by the definition the k minimal elements are
fully independent, the estimators’ precision can be preserved. Furthermore, the use of this
function was found to reduce exponentially the running time of previous known results for
min-wise based algorithms. The authors offered a general framework, and gave examples of
how to apply it for estimating similarity, rarity and entropy of random graphs. In this paper
we take it a step forward and reduce exponentially the space and the degree of independence
needed by min-wise base algorithms. Recently, Porat and Bachrach in [2] proposed a general
technique for constructing fingerprints of massive data streams. The heart of their method
lies in using a specific family of pseudo-random hashes shown to be approximately min-wise
independent, where only one bit is needed to be maintained per function. In other words,
one can store just a single bit rather than the full element IDs.

Both approximately min-wise and k-min-wise hash functions, use low degree of independ-
ence (hence potentially low memory and runtime), and therefore are applicable for estimating
various metrics in the data stream models. In the unbounded data stream model, we
consider a stream, in which elements arrive sequentially. Due to the size of the stream, it
is only allowed to perform one pass over the data. Furthermore, the storage available is
poly-logarithmic in the size of the stream. In the windowed data stream model we consider a
predefined size window of size N over the stream, such that all the queries to the stream are
related to elements in the current window. Similarly to the unbounded streaming model, we
are only allowed one pass over the data and the storage available is poly-logarithmic in the
size of the window.

1.1 Our Contribution
In this paper we propose a new approach that ‘closes the gap’ and reduces exponentially
the space, the degree of independence, and the time needed by min-wise based algorithms,
in addition to the exponential time improvement achieved in SODA11[15]. We do this by
defining and constructing a small approximately d-k-min-wise independent family of hash
functions. As will be discussed here, many min-wise based estimators can be adjusted to
use our construction, and reduce exponentially the space and the degree of independence
consumed.

First, we extend the notion of min-wise independent family of hash functions by defining
a d-k-min-wise independent family of hash functions. Then, we show a construction of an
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approximately such family for the practical case where d = 2. The construction for general d
is a technical generalization of that case, and since d = 2 is enough for the improvements,
we omit the generalization to the full version. Finally, as a usage example, we show how to
apply it to estimating similarity and rarity over data streams.

Under our definition for d-k-min-wise hash function, all subsets of size d of any fixed set
X have an equal probability to have hash values among the minimal k values in X, where the
probability is over the random choice of hash function from the family. The formal definition
is given in section 2. The degree of independence and the space needed by our construction,
for d = 2, is a constant. The lack of dependency on k is surprising, but the intuition behind
that is the stability property of the k-th ranked element, for large enough k. Hence, the
randomness needed by the function is mainly for the independence of the d elements.

We argue that for most applications it is sufficient to use constant d = 2. This yields
the need of only 8-wise independent hash functions, which can be implemented efficiently in
practice. Our innovative approach gets around the Ω(log 1

ε ) lower bound [23] of approximately
min-wise functions, as our family, by definition, does not have to be approximately min-wise
independent.

To utilize our construction we propose a simple and general framework for exponential
space and degree of independence improvement of min-wise based algorithms, such as in
[8, 14, 5, 18, 10, 11, 1, 3, 21, 12, 16, 13, 17, 26, 19]. Formerly, min-wise based algorithms used
either k independent approximately min-wise hash functions (which can be implemented
using either [20] or [24]), or one approximately k-min-wise independent function, as was
proposed in [15]. This was done in order to sample k independent elements from the universe,
notice that even if we use tabulation [24] we would still need k independent instances of
it, hence a multiplicative factor of O(k) in independence, space and time. The k-min-wise
technique improved exponentially the time needed by min-wise based applications. Here
we take it a step forward by relaxing the need for k independent samples. We propose to
use much less degree of independence, specifically only constant degree, and amplify the
precision using probabilistic techniques. In comparison to the technique used by Porat and
Bachrach in [2], we use more space (as we maintain the elements’ IDs), but our running time
is better in more than O(log 1

ε ) factor.
At a high level, we propose to use several independent approximately d-k-min-wise

independent functions, where each samples less than k elements (where k is the same as in
k-min-wise ). The elements sampled by each function are d-wise independent, therefore we
can use Chebyshev’s inequality to bound the precision. Specifically, pair-wise is sufficient for
applying Chebyshev, and this is why d = 2 should be used. By taking the median out of the
independent samples, using Chernoff bound, the precision is amplified. The above procedure
does not change the algorithm itself, but only the way it samples, hence it is simple to adapt.
We found this to improve exponentially the space and the degree of independence (as it is
constant for each function), while maintaining the exponential time improvement in [15].

This approach can be applied in cases where the original estimators values are numeric.
In these cases it is possible to take the average and median of the sampled values, hence they
can be aggregated (as described above). The estimators’ values in most of the applications we
considered were indeed numerics, but for the other cases, in which this technique cannot be
applied, one can still achieve the exponential time improvement by using k-min-wise functions.

As illustrative examples, we propose algorithms which utilize the above framework for
similarity and rarity. See table 1.1 for comparison of results.
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74 Exponential Space Improvement for min-wise Based Algorithms

Table 1.1 Similarity and rarity algorithms comparison in the unbounded data stream model.
Time complexity is the expected per item observed, and space is given in words, in upper bounds,
for constant failure probability.

previous [14, 9] result previous result [15] this paper

Algorithm’s hashing time 1
ε2 log 1

ε
log2( 1

ε2 log log 1
ε
) O(1)

Additional algorithm’s time 1
ε2 log 1

ε2 O(1)
Space for storing functions 1

ε2 log 1
ε

1
ε2 log log 1

ε
O(1)

Space used by algorithm 1
ε2

1
ε2

1
ε2

1.2 Outline
In section 2 we define the notion of d-k-min-wise and approximately d-k-min-wise independent
families. Later, in the first part of section 3, we give an outline and the intuition behind the
approximately d-k-min-wise construction, which is given in details afterwards. In section 4
we present two usage examples of the framework, then in section 5 we conclude and propose
future work. Finally, the appendix contains a lemma needed for the completeness of the
construction given in section 3.

2 Definitions and Notations

d-k-min-wise independent family of hash functions, are generalization of min-wise and k-
min-wise independent family of hash functions. Informally, under definition 2.1 below, for
any disjoint subsets of the domain X, and Y , where |X| > k � |Y | = d, the elements of Y
have an equal probability to have hash values among the minimal k values in X ∪ Y . The
probability is over the random choice of hash function from the family. In other words, all
hash values of Y are less than the k− d+ 1 ranked hash value in X. This property measures
the randomness of the family, as choosing a truly random function, obviously, satisfies the
definition for d = k = |X|.

For the rest of this paper, for any set X we denote MINk(X) to be the set of k smallest
elements in X, and RANKk(X) to be the k-th element in X, where the elements are sorted
by value. In addition, for any set X, and hash function h we denote h(X) to be the set of all
hash values of all elements in X. Finally, we denote [u] to be the universe from which the
elements are drawn, we choose u� |X|. We use these notations to define the following:

I Definition 2.1. A family of functions H ⊆ [u]→ [u] (where [u] = {0 . . . u− 1}) is called
d-k-min-wise independent if for any X ⊆ [u], |X| = n − d, and for any Y ⊆ [u], |Y | = d,
X ∩ Y = ∅, d ≤ k, we have

Pr
h∈H

[RANKd(h(Y )) < RANKk−d+1(h(X))] =
(
k
d

)(
n
d

)
Where the function h is chosen uniformly at random from H.

For cases where we allow a small error, the respective definition is:

I Definition 2.2. A family of functions H ⊆ [u]→ [u] (where [u] = {0 . . . u− 1}) is called
approximately d-k-min-wise independent if for any X ⊆ [u], |X| = n−d, and for any Y ⊆ [u],
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|Y | = d, X ∩ Y = ∅, d ≤ k, we have

Pr
h∈H

[RANKd(h(Y )) < RANKk−d+1(h(X))] =
(
k
d

)(
n
d

) (1± ε)

Where the function h is chosen uniformly at random from H, and ε ∈ (0, 1) is the error
bound.

We will also use the following notation. We let Pr [·] denote a fully random probability
measure over [u] → [u], and let Prl [·] denote any l-wise independent probability measure
over the same domain, for l ∈ N. Finally, let t = k − d+ 1 and m = n− d = |X|, where k, d
and n are drawn from the definitions above.

3 The d-k-min-wise Construction

3.1 Construction Outline
In this section we present the outline of the construction, which should give the reader the
essence of it. In the subsequent sections we delve into the full technical details.

The main intuition behind the construction is that high enough ranked elements are
relatively stable, as opposed to lower ranked elements. As an example, consider the minimal
element which is known to be not very stable, and in contrast we show that the probability of
a high ranked element to deviate from its expected location decreases rapidly as the deviation
increases. By definition our goal is to show that every d elements have almost the same
probability to be among the k minimal elements. By utilizing the stability property and
using large enough k, we show that the amount of independence needed, i.e. l, is surprisingly
only O(d). The relationship between d, k and the amount of independence needed are given
in the detailed construction section.

We start by showing that in the fully random case, the probability for the hash values of
any d elements to be within the k minimal values, is

Pr [h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X))] =
(
k
d

)(
n
d

) = k

n

k − 1
n− 1 . . .

k − d+ 1
n− d+ 1

which yields that a totally random function is d-k-min-wise independent. We next need to
find the amount of independence needed for any l-wise independent (l ≥ 1) family of hash
functions, in order to be close enough (within a multiplicative factor of some ε ∈ (0, 1)) to
this property. In other words, for the chosen amount of independence, we will show that the
difference between the random case and l-wise independent case is ε (kd)

(nd)
.

Specifically, we will divide the universe of elements into a set φ of non-overlapping
blocks bi, for i ∈ Z. We construct the blocks s.t. b0 boundaries are roughly around the
expected location of the (k − d+ 1)-th hash value in X. For each block, we will estimate
the probability that the (k − d + 1)-th hash value in X, i.e. RANKk−d+1(h(X)), falls
within this block’s boundaries. Based on the complete probability formula, the probability
Pr [h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X))] in the l-wise case is∑

i∈φ

Pr
l

[RANKk−d+1(h(X)) ∈ bi] ·

Pr
l

[h(y1), . . . , h(yd) ≤ RANKk−d+1(h(X)) | RANKk−d+1(h(X)) ∈ bi]
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The construction yields a d-k-min-wise independent family if we show that the difference
between the fully random case and the above is ε (kd)

(nd)
.

We aim to find the appropriate values of l and k sufficient to have the probability
Prl [RANKk−d+1(h(X)) ∈ bi] decrease polynomially (roughly 1

|i|d+1 ), for each block bi.
Then, by adding to l another d degrees of independence, we can assume the elements of Y are
randomly distributed, which is utilized to bound Prl [h(y1), . . . , h(yd) ≤ RANKk−d+1(h(X))].
Eventually, we use both in order to bound the difference, and to show that it is within the
allowed error.

3.2 Construction in Details
In this section we provide a construction for an approximately d-k-min-wise independent
family of hash functions. We use the notions defined in section 2, and divide the universe
into a set φ of non-overlapping blocks, which will be defined in the next section.

I Lemma 3.1.

Pr [h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X))] = k

n

k − 1
n− 1 . . .

k − d+ 1
n− d+ 1

Proof. Consider n ordered elements divided into two groups — one of size n− d, and the
other of size d. The number of possible locations of the d elements is

(
n
d

)
. There are

(
k
d

)
possible locations in which the d elements are among the k smallest elements. Hence, the
probability for the d element to be among the k’th smallest elements is:

Pr [h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X))] =
(
k
d

)(
n
d

) = k

n

k − 1
n− 1 . . .

k − d+ 1
n− d+ 1

J

Since the blocks in φ are non-overlapping
∑
i∈φ Prl [RANKk−d+1(h(X)) ∈ bi] = 1, using

lemma 3.1 we get

Pr [h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X))] =

k

n

k − 1
n− 1 . . .

k − d+ 1
n− d+ 1

∑
i∈φ

Pr
l

[RANKk−d+1(h(X)) ∈ bi]

I Lemma 3.2. Let d, k, ε, n, and h : [u]→ [u] be as in definition 2.2, and denote ∆ =∑
i∈φ

Pr
l

[RANKk−d+1(h(X)) ∈ bi]×

[
Pr
l

[h(y1), . . . , h(yd) ≤ RANKk−d+1(h(X)) | RANKk−d+1(h(X)) ∈ bi]−
(
k
d

)(
n
d

)]

Any family of l-wise independent hash functions is approximately d-k-min-wise independent if

−ε
(
k
d

)(
n
d

) ≤ ∆ ≤ ε
(
k
d

)(
n
d

)
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Proof. Based on the complete probability formula, in the l-wise independent case

Pr
l

[h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X))] =

∑
i∈φ

Pr
l

[RANKk−d+1(h(X)) ∈ bi] ·

Pr
l

[h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X)) | RANKk−d+1(h(X)) ∈ bi]

By definition, any family of l-wise independent is approximately d-k-min-wise independent if

Pr
l

[h(y1), h(y2), . . . , h(yd) < RANKk−d+1(h(X))] =
(
k
d

)(
n
d

) (1± ε)

which is satisfied if −ε (kd)
(nd)
≤ ∆ ≤ ε (kd)

(nd)
J

3.3 Blocks partitioning
We divide the universe [0, |U |] into non-overlapping blocks. We construct the blocks around
t|U |
m as follows: for i ∈ Z, bi =

[
(1 + ε(i− 1)) t|U |m , (1 + εi) t|U |m

)
, e.g.

. . . , b−1 =
[
(1− 2ε) t|U |m , (1− ε) t|U |m

)
, b0 =

[
(1− ε) t|U |m , t|U |m

)
, b1 =

[
t|U |
m , (1 + ε) t|U |m

)
, . . .

Notice that, by the blocks partitioning and according to definition 2.2, the expected
number of hash values in X, below the upper boundary of block b0 is t. This will be utilized
for estimating the probability of any d elements in Y to be within the smallest k elements in
X ∪ Y (below the t-th ranked element in X).
We refer to blocks bi for i > 0 as ’positive blocks’ and ’negative blocks’ otherwise (i ≤ 0).
For the rest of the paper, we ignore blocks which are outside [0, |U |].

3.4 Bounding Prl [RANKt(h(X)) ∈ bi]
We now bound the probability that the t-th ranked element’s hash value in X falls into
block bi. We show that the probability is decreasing polynomially with the growth of
|i|. For convenience, we separate the bound for the negative and positive blocks, and
specifically we use 1 as an upper bound for the probabilities of b0, b1. In addition, we bound
Prl [RANKt(h(X)) ∈ bi], for i > 1, with the probability of the t-th ranked element’s hash
value falling within any block greater than i, i.e. Prl

[
∪∞j=iRANKt(h(X)) ∈ bj

]
. For i < 0

we do a similar procedure by bounding it with Prl
[
∪ij=−∞RANKt(h(X)) ∈ bj

]
.

I Lemma 3.3. For i > 1, d = 2, ε ∈ (0, 1), k > d+ 2 · 8 2
l

(6l)1+ 1
l

ε2 − 1 and l = 2d+ 2:

Pr
l

[RANKt(h(X)) ∈ bi] ≤
1

(i− 1)d+1

Proof. For block bi, X = {x1, . . . , xm} we define Zj to be the following indicator variable

Zj =
{

1 h(xj) < (1 + ε(i− 1)) t|U |m
0 otherwise
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In addition we define Z =
∑
j Zj , and Ei to be the expected value of Z. Notice that since Z

is a sum of indicator variables Ei = (1 + ε(i− 1)) tm (m) = t(1 + ε(i− 1)).
We use the above definitions to show that

Pr
l

[RANKt(h(X)) ∈ bi] ≤

Pr
l

[number of hash values smaller than the lower boundary of block bi < t] =

Pr
l

[Z < t] ≤ Pr
l

[Ei − Z ≥ Ei − t] ≤ Pr
l

[|Ei − Z| ≥ Ei − t] =

Pr
l

[|Z − Ei| ≥ t(1 + ε(i− 1))− t]

Using Markov’s inequality, as l is even:

Pr
l

[|Z − Ei| ≥ tε(i− 1)] ≤ E(|Z − Ei|l)
[tεi]l

We use the following from lemma A.1:

E(|Z − Ei|l) ≤ 8(6l)
l+1

2 (Ei)
l
2

Thus,

Pr
l

[RANKt(h(X)) ∈ bi] ≤
8(6l) l+1

2 (t(1 + ε(i− 1))) l2
[tε(i− 1)]l = 8(6l) l+1

2 (1 + ε(i− 1)) l2
t
l
2 [ε(i− 1)]l

Note that t > 2 · 8 2
l

(6l)1+ 1
l

ε2 for t = k − d+ 1, and proceed as follows:

<
8(6l) l+1

2 (1 + ε(i− 1)) l2

[2 · 8 2
l

(6l)1+ 1
l

ε2 ] l2 [ε(i− 1)]l
= 8(6l) l+1

2 (1 + ε(i− 1)) l2

2 l
2 · 8 · (6l)

l+1
2

εl
[ε(i− 1)]l

= (1 + ε(i− 1)) l2
2 l

2 (i− 1)l

= (1 + ε(i− 1)) l2
(2(i− 1)2) l2

= ( 1
2(i− 1)2 + ε

2(i− 1)) l2 ≤ ( 1
i− 1) l2

As l = 2d+ 2 is defined,

≤ ( 1
i− 1)d+1

J

The proof for the matching lemma for negative blocks is similar and thus, due to lack of
space, is omitted to the full version of the paper.

I Lemma 3.4. For i > 0, d = 2, ε ∈ (0, 1), k > d+ 2 · 8 2
l

(6l)1+ 1
l

ε2 − 1 and l = 2d+ 2:

Pr
l

[RANKt(h(X)) ∈ b−i] ≤
1

id+1
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3.5 Bounding ∆

In this section we prove the upper and lower bounds of lemma 3.2, i.e. that −ε (kd)
(nd)
≤ ∆ ≤ ε (kd)

(nd)
.

I Lemma 3.5. For d = 2, ε ∈ (0, 1), k = Ω(d + (l)1+ 1
l

ε2 ), l ≥ 2d + 2, and using (l + d)
independence:

∆ ≤ ε (kd)
(nd)

Proof.
∞∑

i=−∞
Pr
l+d

[RANKt(h(X)) ∈ bi]×

[
Pr
l+d

[h(y1), h(y2), . . . , h(yd) ≤ RANKt(h(X)) | RANKt(h(X)) ∈ bi]−
(
k
d

)(
n
d

)]

Using d degrees of independence (out of l + d) for h(y1), h(y2), . . . , h(yd), we can assume the
elements of Y are randomly distributed:

≤
∞∑

i=−∞
Pr
l

[RANKt(h(X)) ∈ bi]
[

( t
m

)d(1 + εi)d −
(
k
d

)(
n
d

)]

≤

[ 0∑
i=−∞

(
Pr
l

[
∪ij=−∞RANKt(h(X)) ∈ bj

]
− Pr

l

[
∪i−1
j=−∞RANKt(h(X)) ∈ bj

])

+
∞∑
i=1

(
Pr
l

[
∪∞j=iRANKt(h(X)) ∈ bj

]
− Pr

l

[
∪∞j=i+1RANKt(h(X)) ∈ bj

])]
×

[
( t
m

)d(1 + εi)d −
(
k
d

)(
n
d

)]
By changing the order we get a telescoping sum as follows:

=
−1∑

i=−∞
Pr
l

[
∪ij=−∞RANKt(h(X)) ∈ bj

] [
( t
m

)d(1 + εi)d − ( t
m

)d(1 + ε(i+ 1))d
]

+

Pr
l

[
∪0
j=−∞RANKt(h(X)) ∈ bj

] [
( t
m

)d −
(
k
d

)(
n
d

)]+

Pr
l

[
∪∞j=1RANKt(h(X)) ∈ bj

] [
( t
m

)d(1 + ε)d −
(
k
d

)(
n
d

)]+

∞∑
i=2

Pr
l

[
∪∞j=iRANKt(h(X)) ∈ bj

] [
( t
m

)d(1 + εi)d − ( t
m

)d(1 + ε(i− 1))d
]
≤
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Applying lemmas 3.3 and 3.4, bounding the probabilities of blocks b0 and b1 with 1:
−1∑

i=−∞

1
|i|d+1 |(

t

m
)d(1 + εi)d − ( t

m
)d(1 + ε(i+ 1))d|+

|( t
m

)d −
(
k
d

)(
n
d

) |+ |( t
m

)d(1 + ε)d −
(
k
d

)(
n
d

) |+
∞∑
i=2

1
(i− 1)d+1 |(

t

m
)d(1 + εi)d − ( t

m
)d(1 + ε(i− 1))d| =

We now substitute d (recall that d = 2)

∞∑
i=1

1
|i|3
|(k − 1
n− 2)2(ε2(2i− 1)− 2ε))|+

|(k − 1
n− 2)2 − k

n

k − 1
n− 1 |+ |(

k − 1
n− 2)2(1 + ε)2 − k

n

k − 1
n− 1 |+

∞∑
i=2

1
(i− 1)3 |(

k − 1
n− 2)2(ε2(2i− 1) + 2ε))| ≤

2k
n

k − 1
n− 1

∞∑
i=1

1
|i|3
|ε2(2i− 1)− 2ε|+

|(k − 1
n− 2)2 − k

n

k − 1
n− 1 |+ |(

k − 1
n− 2)2(1 + ε)2 − k

n

k − 1
n− 1 |+

2k
n

k − 1
n− 1

∞∑
i=2

1
(i− 1)3 |ε

2(2i− 1) + 2ε| ≤

8k
n

k − 1
n− 1ε

J

The lemma for the lower bound, i.e. −∆ ≤ ε (kd)
(nd)

, is similar and due the lack of space is
omitted to the full version of the paper.

I Lemma 3.6. For d = 2, ε ∈ (0, 1), k = Ω(d + (l)1+ 1
l

ε2 ), l ≥ 2d + 2, and using (l + d)

independence: −∆ ≤ ε (kd)
(nd)

.

We conclude with the following theorem:

I Theorem 3.7. For d = 2, ε ∈ (0, 1), k = Ω(d+ (l)1+ 1
l

ε2 ), l ≥ 2d+ 2, any 8-wise independent
family of hash functions is approximately 2-k-min-wise (ε-2-k-min-wise ).

Proof. Applying lemma 3.5 and lemma 3.6 to lemma 3.2 concludes the proof. J
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4 General Framework for min-wise Based Algorithms

In this section we propose a general framework that utilizes the construction of 2-k-min-wise
functions for improving many min-wise based algorithms, such as in [8, 14, 5, 18, 10, 11,
1, 3, 21, 12, 16, 13, 17, 26, 19]. As was mentioned before, min-wise enables us to sample
elements from the universe. In other words, sample such that each element has an equal
probability for being sampled while ignoring repetitions. Common practice was to use some
k independent approximately min-wise hash functions, where each samples one element.
Usually k depends on the error bound ε ∈ (0, 1) and the failure probability τ ∈ (0, 1), among
other constraints. The drawback is that, these functions requires super constant degree of
independence, which impacts both time and space [20, 23]. Recently, in SODA11 [15], a
new sampling method was proposed in which, instead of using and maintaining k different
functions, they used only one k-min-wise independent function. This was found to improve
exponentially the time needed for sampling in various min-wise based applications. Here
we take it a step forward by relaxing the need for k independent samples. Our technique
uses much less degree of independence, specifically only constant degree per function, and by
probabilistic techniques amplifies the precision.

We propose a procedure that does not change the algorithm itself, but only the way it
samples, hence it is simple to adapt. We found that 2-k-min-wise independent functions are
sufficient in order to preserve the precision. In details, one can use O(log 1

τ ) approximately
2-k-min-wise independent functions, where each samples k

log 1
τ

elements (where k is the same
as in k-min-wise ). For cases where the original min-wise based estimator values are numeric,
one can use the original min-wise based estimator on each sampled elements, and then
average the values using Chebyshev’s inequality. Notice that Chebyshev’s inequality can be
applied since the elements are 2-wise independent. Next, the precision is amplified by taking
the median out of the log 1

τ groups, and by using Chernoff bound the precision becomes
as desired. This procedure improves exponentially the space and time complexity (as the
space for each function is constant). For cases where the original min-wise based estimator
values are not numeric, and therefore averaging and taking the median is not applicable, the
k-min-wise technique is still valuable for the exponential time improvement. As illustrative
examples, the rest of this section describes algorithms which utilizes the above framework
for estimating similarity and rarity.

4.1 2-k-min-wise Estimator for Similarity

One of the possible uses of our framework is similarity estimation of two data streams. As
was mentioned in the introduction, the problem was studied by [14] and recently in [15]. The
use of our construction improves exponentially the space and the degree of independence of
current known results. We will now present two algorithms for solving the problem, in the
unbounded and in the windowed data stream models. The technique we use is general, and
can be utilized to improve many min-wise based algorithms since most of them handle the
min-wise functions similarly.

Based on the k-min-wise estimator from [9] (which is also formally defined in [15]) we
construct 2-k-min-wise estimator. Let h1(A), h2(A), ..., hk(A) and h1(B), h2(B), ..., hk(B)
be k pair-wise independent min hash values for the sets A and B, respectively, and h1...k(A)
be the set containing h1(A), h2(A), ..., hk(A). In addition let S(A,B) be the similarity of the
two sets. We estimate the similarity by running the following procedure log τ−1 times, and
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choosing the median value of

Ŝ(A,B) = | h1...k(A) ∩ h1...k(B) ∩ h1...k(A ∪B) |
k

, 0 < ε < 1, 0 < τ < 1, k ≥ 2ε−2

I Theorem 4.1. For an error bound ε with success probability at least 1− τ :

Ŝ(A,B)median ∈
|A ∩B|
|A ∪B|

± ε

Proof. Let xi be an indicator variable which equals 1 if the i-th element in h1...k(A ∪ B)
exists in h1...k(A) ∩ h1...k(B), and 0 otherwise. In addition, we define X =

∑k
i=1 xi. As the

indicator variables are pair-wise independent, we can use Chebyshev’s inequality to bound
the failure probability of Ŝ(A,B).

Pr (|X − k · S(A,B)| ≥ kε) ≤ k · S(A,B) · (1− S(A,B))
k2ε2

≤ 1
4kε2 ≤

1
4

We next define zj to be an indicator variable s.t. zj = 1 if the j-th iteration of Ŝ(A,B)
failed, and 0 otherwise. Respectively Z =

∑log 1
τ

j=1 zi. Since the log τ−1 values of Ŝ(A,B) are
independent, we can apply Chernoff bound to increase the success probability. The following
is the overall failure probability of the estimator:

Pr
(
Z >

log 1
τ

2

)
< ( e22 )

log 1
τ

4 < (22

e
)

− log 1
τ

4 < (22

e
)

log τ
4 < τ

J

4.2 Unbounded Data Stream Algorithm
We now present a similarity estimation algorithm in the unbounded data stream model.
Recall that in this model we consider a stream allowing only one pass over the data, and
the storage available is poly-logarithmic in the size of the stream. Our algorithm uses the
2-k-min-wise estimator, with k = 2ε−2, and runs it log 1

τ times as described above.

For each iteration of the estimator, we randomly choose a function from an approxim-
ately 2-k-min-wise independent family of hash functions, using a family of constant degree
polynomials over GF (n) (for prime n). In order to maintain the lowest k hash values of the
elements observed in the stream, we use a binary tree of size k for each stream. On element
arrival, we calculate its hash value and add it to the tree if the value is smaller than the
maximal value currently in the tree, and is not already in the tree. Notice that for large
enough stream, the expected time of these operations is constant.

At query time we iterate over the log 1
τ pairs of trees. Each of the trees has k minimal

values of the relevant stream. For each pair we take the set of the k lowest hash values
among the 2k values, h1...k(A ∪B), and intersect it with the two sets of k values, h1...k(A)
and h1...k(B). The result of the iteration is the size of the intersections divided by k. The
query returns the median among these results.

The space consumption is composed of O(k log 1
τ ) words for the trees and O(log 1

τ ) for
maintaining the hash functions. The expected running time is O(log 1

τ ) per element, and
O(k log 1

τ ) per query. When comparing this result to [15], notice that table 1.1 is for constant
failure probability.



Guy Feigenblat, Ely Porat, and Ariel Shiftan 83

4.3 Windowed Data Stream Algorithm

The similarity estimation procedure in this case is similar to the one given in [15]. The
difference is that we run it log 1

τ times in parallel, and use the 2-k-min-wise estimator (given
above). Notice that the value of k here is less than the value of k in [15] by a factor of log 1

τ .
The expected running time per element, per function, is O(1) in amortized, since the

time for hashing is constant. As we run the procedure log 1
τ times in parallel, we get a total

of O(log 1
τ ). The space consumption is composed of O(k logN) words per functions, hence

O(k logN log 1
τ ) in total.

4.4 An Improved Rarity Estimator

Similar technique can be applied for rarity estimation. Consider a stream A. #α-rare is
defined as the number of elements that appears exactly α times, and #distinct is the number
of distinct elements in the stream. The α-rarity of the stream is defined as Rα = #α−rare

#distinct .
Datar and Muthukrishnan proposed a rarity estimator in [14], using min-wise functions.

They maintain the minimal hash value and the frequency of its corresponding element for
each of the functions. We denote the frequency of the minimal hash value for the j-th
function with freq(j), the rarity is then estimated as follows:

R̂α(A) = | {j|1 ≤ j ≤ k
′, freq(j) = α} |
k′

, R̂α(A) ∈ Rα(A)± ε

For 0 < ε < 1 ,0 < τ < 1, and k′ ≥ 2ε−2 log τ−1 for an error bound ε, success probability at
least 1− τ and k′-min-wise functions.

Using our construction, one can utilize 2-k-min-wise functions to perform less iterations
and improve the overall complexity. This is done by choosing log 1

τ independent 2-k-min-wise
hash functions, s.t. k ≥ 2ε−2. For each of the functions we maintain the k minimal values
and apply the same estimator (R̂α(A)). The desired result is the median among these values.
The precision is preserved because the k values of each function are pair-wise independent,
and the log 1

τ functions are independent. Hence, we can use both Chebyshev’s inequality
and Chernoff bound, as described before for similarity in theorem 4.1.

5 Conclusion and Future Work

In this paper we introduced a general framework that exponentially improves the time, space
and the degree of independence required by min-wise based algorithms. This exponential
improvements are obtained by defining and constructing d-k-min-wise wise hash functions,
in which surprisingly for the practical case, where d = 2, only 8-wise independent is required.
Our approach gets around the Ω(log 1

ε ) independence lower bound in [23], as it relaxes the
need of approximately min-wise functions. Moreover, it does not change the algorithm itself,
but only the way it samples, hence it is simple to adapt.

There are few interesting directions for future work. First, to try to nail down the 8
independence required, or alternatively to find a matching lower bound for the approximately
d-k-min-wise functions. In addition, it would be interesting to try to close the space gap
for non-numeric estimators, where one can not utilize our framework as the probabilistic
techniques used are not applicable.
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A Appendix

I Lemma A.1. Let Zj be a set of indicator variables, let Z =
∑
j Zj, let Ei be the expected

value of Z, and let l = 6.

E(|Z − Ei|l) ≤ 8(6l)
l+1

2 (Ei)
l
2

Proof. The proof is based on Indyk’s lemma 2.2 in [20] for the case where l is constant, in
particular for the case where l = 6. Here we show how one can reduce an exponent factor.
Notice that in the original proof the probability Pr |Z − Ei| ≥ εEi, is estimated by an upper
bound, hence one can remove the previous redundant addition in each addend of the sum:

E(|Z − Ei|l) ≤ 2
∞∑
j=1

((jl − (j − 1)l) · 2e
− j2

2E2
i

Ei
)

as l = 6 the equality is bounded by

≤ 2
∞∑
j=1

(6jl−1 · 2e
− j2

2E2
i

Ei
)

by continuing the proof as in [20] we get, E(|Z − Ei|l) ≤ 8(6l) l+1
2 (Ei)

l
2

J
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