
Scheduling Resources for Executing a Partial Set
of Jobs
Venkatesan T. Chakaravarthy1, Arindam Pal2, Sambuddha Roy1,
and Yogish Sabharwal1

1 IBM Research Lab, New Delhi, India
{vechakra,sambuddha,ysabharwal}@in.ibm.com

2 Indian Institute of Technology, New Delhi.
arindamp@cse.iitd.ernet.in

Abstract
In this paper, we consider the problem of choosing a minimum cost set of resources for executing
a specified set of jobs. Each input job is an interval, determined by its start-time and end-time.
Each resource is also an interval determined by its start-time and end-time; moreover, every
resource has a capacity and a cost associated with it. We consider two versions of this problem.

In the partial covering version, we are also given as input a number k, specifying the number
of jobs that must be performed. The goal is to choose k jobs and find a minimum cost set of
resources to perform the chosen k jobs (at any point of time the capacity of the chosen set of
resources should be sufficient to execute the jobs active at that time). We present an O(logn)-
factor approximation algorithm for this problem.

We also consider the prize collecting version, wherein every job also has a penalty associated
with it. The feasible solution consists of a subset of the jobs, and a set of resources, to perform
the chosen subset of jobs. The goal is to find a feasible solution that minimizes the sum of the
costs of the selected resources and the penalties of the jobs that are not selected. We present a
constant factor approximation algorithm for this problem.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Approximation Algorithms, Partial Covering, Interval Graphs

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.199

1 Introduction

We consider the problem of allocating resources to schedule jobs. Each job is specified by
its start-time, end-time and its demand requirement. Each resource is specified by its start-
time, end-time, the capacity it offers and its associated cost. A feasible solution is a set of
resources satisfying the constraint that at any timeslot, the sum of the capacities offered by
the resources is at least the demand required by the jobs active at that timeslot, i.e., the
selected resources must cover the jobs. The cost of a feasible solution is the sum of costs of
the resources picked in the solution. The goal is to pick a feasible solution having minimum
cost. We call this the Resource Allocation problem (ResAll).

The above problem is motivated by applications in cloud and grid computing. Consider
jobs that require a common resource such as network bandwidth or storage. The resource
may be available under different plans; for instance, it is common for network bandwidth to
be priced based on the time of the day to account for the network usage patterns during the
day. The plans may offer different capacities of the resource at different costs. Moreover,

© V.T. Chakaravarthy, A. Pal, S. Roy, and Y. Sabharwal;
licensed under Creative Commons License BY

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 199–210

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917556?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.199
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

200 Scheduling Resources for Executing a Partial Set of Jobs

Figure 1 Illustration of the input

It may be possible to lease multiple units of the resource under some plan by paying a cost
proportional to the number of units.

Bar-Noy et al. [2] presented a 4-approximation algorithm for the ResAll problem (See
Section 4 therein). We consider two variants of the problem. The first variant is the partial
covering version. In this problem, the input also specifies a number k and a feasible solution
is only required to cover k of the jobs. The second variant is the prize collecting version
wherein each job has a penalty associated with it; for every job that is not covered by the
solution, the solution incurs an additional cost, equivalent to the penalty corresponding to
the job. These variants are motivated by the concept of service level agreements (SLA’s),
which stipulate that a large fraction of the client’s jobs are to be completed. We study
these variants for the case where the demands of all the jobs are uniform (say 1 unit) and
a solution is allowed to pick multiple copies of a resource by paying proportional cost. We
now define our problems formally.

1.1 Problem Definition

We consider the timeline T to be uniformly divided into discrete intervals ranging from 1
to T . We refer to each integer 1 ≤ t ≤ T as a timeslot. The input consists of a set of jobs
J , and a set of resources R.

Each job j ∈ J is specified by an interval I(j) = [s(j), e(j)], where s(j) and e(j) are the
start-time and end-time of the job j. We further assume that s(j) and e(j) are integers in the
range [1, T] for every job j. While the various jobs may have different intervals associated
with them, we consider all the jobs to have uniform demand requirement, say 1 unit.

Further, each resource i ∈ R is specified by an interval I(i) = [s(i), e(i)], where s(i) and
e(i) are the start-time and the end-time of the resource i; we assume that s(i) and e(i) are
integers in the range [1, T]. The resource i is also associated with a capacity w(i) and a
cost c(i); we assume that w(i) is an integer. We interchangeably refer to the resources as
resource intervals. A typical scenario of such a collection of jobs and resources is shown in
Figure 1.

We say that a job j (resource i) is active at a timeslot t, if t ∈ I(j) (I(i)); we denote this
as j ∼ t (i ∼ t). In this case, we also say that j (or i) spans t.

We define a profile P : T → N to be a mapping that assigns an integer value to every
timeslot. For two profiles, P1 and P2, P1 is said to cover P2, if P1(t) ≥ P2(t) for all t ∈ T .
Given a set J of jobs, the profile PJ(·) of J is defined to be the mapping determined by the
cumulative demand of the jobs in J , i.e. PJ(t) = |{j ∈ J : j ∼ t}|. Similarly, given a
multiset R of resources, its profile is: PR(t) =

∑
i∈R : i∼t w(i) (taking copies of a resource

V.T. Chakaravarthy, A. Pal, S. Roy, and Y. Sabharwal 201

into account). We say that R covers J if PR covers PJ . The cost of a multiset of resources
R is defined to be the sum of the costs of all the resources (taking copies into account).

We now describe the two versions of the problem.
PartialResAll: In this problem, the input also specifies a number k (called the parti-
ality parameter) that indicates the number of jobs to be covered. A feasible solution is a
pair (R, J) where R is a multiset of resources and J is a set of jobs such that R covers
J and |J | ≥ k. The problem is to find a feasible solution of minimum cost.
PrizeCollectingResAll: In this problem, every job j also has a penalty pj associated
with it. A feasible solution is a pair (R, J) where R is a multiset of resources and J is a
set of jobs such that R covers J . The cost of the solution is the sum of the costs of the
resources in R and the penalties of the jobs not in J . The problem is to find a feasible
solution of minimum cost.

Note that in both the versions, multiple copies of the same resource can be picked by paying
the corresponding cost as many times.

1.2 Related Work and Our Results
Our work belongs to the space of partial covering problems, which are a natural variant of
the corresponding full cover problems. There is a significant body of work that consider
such problems in the literature, for instance, see [9, 3, 10, 11, 8].

In the setting where resources and jobs are embodied as intervals, the objective of finding
a minimum cost collection of resources that fulfill the jobs is typically called the full cover
problem. Full cover problems in the interval context have been dealt with earlier, in various
earlier works [2, 4, 7]. Partial cover problems in the interval context have been considered
earlier in [5].

Our Main Result. We present an O(log(n + m)) approximation for the Par-
tialResAll problem, where n is the number of jobs andm is the number of resources
respectively.

The work in existing literature that is closest in spirit to our result is that of Bar-Noy
et al.[2], and Chakaravarthy et al.[5]. In [2], the authors consider the full cover version,
and present a 4-approximation algorithm. In this case, all the jobs are to be covered, and
therefore the demand profile to be covered is fixed. The goal is to find the minimum cost
set of resources, for covering this profile. In our setting, we need to cover only k of the jobs.
A solution needs to select k jobs to be covered in such a manner that the resources required
to cover the resulting demand profile has minimum cost.

In [5], the authors consider a scenario, wherein the timeslots have demands and a solution
must satisfy the demand for at least k of the timeslots. In contrast, in our setting, a solution
needs to satisfy k jobs, wherein each job can span multiple timeslots. A job may not be
completely spanned by any resource, and thus may require multiple resource intervals for
covering it.

We also show a constant factor approximation algorithm for the PrizeCollectin-
gResAll problem, by reducing it to the zero-one version of the ResAll problem. Jain
and Vazirani [10] provide a general framework for achieving approximation algorithms for
partial covering problems, wherein the prize collecting version is considered. In this frame-
work, under suitable conditions, a constant factor approximation for the prize collecting
version implies a constant factor approximation for the partial version as well. However,
their result applies only when the prize collecting algorithm has a certain strong property,
called the Lagrangian Multiplier Preserving (LMP) property. While we are able to achieve a

FSTTCS 2012

202 Scheduling Resources for Executing a Partial Set of Jobs

Figure 2 A Mountain M

Figure 3 A Mountain Range M = {M1, M2, M3}

constant factor approximation for the PrizeCollectingResAll problem, our algorithm
does not have the LMP property. Thus, the Jain-Vazirani framework does not apply to our
scenario. Due to space constraints, we defer the proof of our algorithm for the PrizeCol-
lectingResAll problem to the full version of the paper [6].

2 Outline of the Main Algorithm

In this section, we outline the proof of our main result:

I Theorem 1. There exists an O(log(n+m))-approximation algorithm for the
PartialResAll problem, where n is the number of jobs and m is the number of resources.

The proof of the above theorem goes via the claim that the input set of jobs can be
partitioned into a logarithmic number of mountain ranges. A collection of jobs M is called
a mountain if there exists a timeslot t, such that all the jobs in this collection span the
timeslot t; the specified timeslot where the jobs intersect will be called the peak timeslot of
the mountain (see Figure 2; jobs are shown on the top and the profile is shown below). The
justification for this linguistic convention is that if we look at the profile of such a collection
of jobs, the profile forms a bitonic sequence, increasing in height until the peak, and then
decreasing. The span of a mountain is the interval of timeslots where any job in the mountain
is active. A collection of jobsM is called a mountain range, if the jobs can be partitioned
into a sequence M1,M2, . . . ,Mr such that each Mi is a mountain and the spans of any two
mountains are non-overlapping (see Figure 3). The decomposition lemma below shows that
the input set of jobs can be partitioned into a logarithmic number of mountain ranges. For
a job j with start- and end-times s(j) and e(j), let its length be `j = (e(j)− s(j) + 1)). Let
`min be the shortest job length, and `max the longest job length. The proof of the lemma
is inspired by the algorithm for the Unsplittable Flow Problem on a line, due to Bansal et
al. [1], and it is given in Appendix A.

I Lemma 2. The input set of jobs can be partitioned into groups, M1,M2, . . . ,ML, such
that eachMi is a mountain range and L ≤ 4 · dlog `max

`min
e.

Theorem 3 (see below) provides a c-approximation algorithm (where c is a constant) for
the special case where the input set of jobs form a single mountain range. We now prove
Theorem 1, assuming Lemma 2 and Theorem 3.
Proof of Theorem 1. Let J be the input set of jobs, R be the input set of resources and
k be the partiality parameter. Invoke Lemma 2 on the input set of jobs J and obtain a par-
titioning of J into mountain rangesM1,M2, . . . ,ML, where L = 4 · dlog(`max/`min)e. The-
orem 3 provides a c-approximation algorithm A for the PartialResAll problem wherein
the input set of jobs form a single mountain range, where c is some constant. We shall
present a (cL)-approximation algorithm for the PartialResAll problem.

V.T. Chakaravarthy, A. Pal, S. Roy, and Y. Sabharwal 203

For 1 ≤ q ≤ L and 1 ≤ κ ≤ k, let A(q, κ) denote the cost of the (approximately optimal)
solution returned by the algorithm in Theorem 3 withMq as the input set of jobs, R as the
input set of resources and κ as the partiality parameter. Similarly, let OPT(q, κ) denote the
cost of the optimal solution for covering κ of the jobs in the mountain rangeMq. Theorem 3
implies that A(q, κ) ≤ c ·OPT(q, κ).

The algorithm employs dynamic programming. We maintain a 2-dimensional DP table
DP[·, ·]. For each 1 ≤ q ≤ L and 1 ≤ κ ≤ k, the entry DP[q, κ] would store the cost of
a (near-optimal) feasible solution covering κ of the jobs from M1 ∪M2 ∪ · · · ∪ Mq. The
entries are calculated as follows.

DP[q, κ] = min
κ′≤κ
{DP[q − 1, κ− κ′] +A(q, κ′)}.

The above recurrence relation considers covering κ′ jobs from the mountain Mq, and
the remaining κ − κ′ jobs from the mountain ranges M1, · · · ,Mq−1. Using this dynamic
program, we compute a feasible solution to the original problem instance (i.e., covering k
jobs from all the mountain ranges M1,M2, . . . ,ML); the solution would correspond to
the entry DP[L, k]. Consider the optimum solution OPT to the original problem instance.
Suppose that OPT covers kq jobs from the mountain rangeMq (for 1 ≤ q ≤ L), such that
k1 + k2 + · · ·+ kL = k. Observe that

DP[L, k] ≤
L∑
q=1
A(q, kq)

≤ c ·
L∑
q=1

OPT(q, kq),

where the first statement follows from the construction of the dynamic programming table
and the second statement follows from the guarantee given by algorithm A. However the
maximum of OPT(q, kq) (over all q) is a lower bound for OPT (we cannot say anything
stronger than this since OPT might use the same resources to cover jobs across multiple
subsetsMq). This implies that DP[L, k] ≤ c ·L ·OPT. This proves the (cL)-approximation
ratio.

It is easy to see that L is O(log(n + m)) as argued below. It suffices if we consider the
timeslots where some job or resource starts or ends; the other timeslots can be ignored. Such
a transformation will not affect the set of feasible solutions. Thus, without loss of generality,
we can assume that the number of timeslots T ≤ 2(n+m). Therefore, `max ≤ 2(n+m) and
`min ≥ 1. Hence, the overall algorithm has an O(log(n+m)) approximation ratio. J

I Theorem 3. There exists a constant factor approximation algorithm for the special case
of the PartialResAll problem, wherein the input set of jobs form a single mountain range
M.

The first step in proving the above theorem is to design an algorithm for handling the
special case where the input set of jobs form a single mountain. This is accomplished by the
following theorem. The proof is given in Section 3.

I Theorem 4. There exists an 8-approximation algorithm for the special case of the Par-
tialResAll problem wherein the input set of jobs for a single mountain M .

We now sketch the proof of Theorem 3. Let the input mountain range beM consisting of
mountains M1,M2, . . . ,Mr. The basic intuition behind the algorithm is to “collapse” each

FSTTCS 2012

204 Scheduling Resources for Executing a Partial Set of Jobs

Figure 4 The LSPC problem

mountain Mq into a single timeslot. A resource interval i is said to intersect a mountain M
if the interval i and the span of M overlap; the resource i is said to fully span the mountain
M , if the span of M is contained in the interval i; the resource i is said to be contained in
the mountain M , if the interval i is contained in the span of M . It may be possible that
for a resource interval i and a mountain M , neither i fully spans M nor is i contained in
M . However, at a factor three loss in the approximation ratio, we can transform an input
instance into an instance satisfying the following property. The resource intervals in the
modified instance can be classified into two categories: (1) narrow resources i having the
property that the interval i is contained in the span of a specific single mountain M ; (2)
wide resources i having the property that if i intersects any mountain M , then it fully spans
the mountain.

The notion of collapsing mountains into timeslots is natural when the input instance con-
sists only of wide resources. This is because we can collapse the mountains M1,M2, . . . ,Mr

into timeslots 1, 2, . . . , r. Furthermore, for each wide resource i, consider the sequence of
mountainsMp,Mp+1, . . . ,Mq (for some p ≤ q) that are fully spanned by the resource i; then
we represent i by an interval that spans the timeslots [p, q]. However, the case of narrow
resources is more involved because a narrow resource does not fully span the mountain con-
taining it. Based on the above intuition, we define a problem called the Long Short Partial
Cover (LSPC). The algorithm for handling a mountain range goes via a reduction to the
LSPC problem.

Problem Definition (LSPC): We are given a demand profile over a range [1, T], which
specifies an integral demand dt at each timeslot t ∈ [1, T]. The input resources are of two
types, short and long. A short resource spans only one timeslot, whereas a long resource
can span one or more timeslots. Each resource i has a cost c(i) and a capacity w(i). The
input also specifies a partiality parameter k. A feasible solution S consists of a multiset of
resources S and a coverage profile. A coverage profile is a function that assigns an integer
kt for each timeslot t satisfying kt ≤ dt. The solution should have the following properties:
(i)

∑
t kt ≥ k; (ii) at any timeslot t, the sum of capacities of the resource intervals from S

active at t is at least kt; (iii) for any timeslot t, at most one of the short resources spanning
the timeslot t is picked (however, multiple copies of a long resource may be included). The
objective is to find a feasible solution having minimum cost. See Figure 4 for an example
(in the figure, short resources are shaded).

The advantage with the LSPC problem is that the demands are restricted to single
timeslots; in contrast, in the PartialResAll problem, the demands or jobs can span mul-
tiple timeslots. Theorem 5 (see below) shows that the LSPC problem can be approximated
within a factor of 16. The reduction from the PartialResAll problem restricted to a
single mountain range (as in Theorem 3) to the LSPC problem goes by representing each
mountain in the input mountain range M by a single timeslot in the LSPC instance; the

V.T. Chakaravarthy, A. Pal, S. Roy, and Y. Sabharwal 205

wide resources will correspond to long resources in the LSPC instance. The reduction
handles the narrow resources using the short resources; the constraint (iii) in the LSPC
problem definition is crucially employed in this process. The reduction from the case of
single mountain range to the LSPC problem is deferred to the full version of the paper[6]
and a complete proof of Theorem 3 also appears there.

I Theorem 5. There exists a 16-approximation algorithm for the LSPC problem.

The algorithm claimed in the above theorem is inspired by the work of [5]. In that paper,
the authors study a variant of the problem; in that variant, there are only long resources
and a solution S must satisfy a set of k timeslots t1, t2, . . . , tk ∈ [1, T], where a timeslot t is
satisfied, if the sum of capacities of the resources in S active at t is at least the demand dt; a
solution is allowed to pick multiple copies of any resource (both long and short). The LSPC
problem differs in two ways: first, a solution can satisfy the demand at a timeslot partially
and secondly, only one copy of a short resource can be picked. These two differences give rise
to complications and as a result, our algorithm is more involved. The algorithm is provided
in Section 4.

3 A Single Mountain: Proof of Theorem 4

In this section, we give an 8-factor approximation algorithm for the case of the Par-
tialResAll problem, where the input jobs form a single mountain.

The basic intuition is as follows. Given the structure of the jobs, we will show that there
is a near-optimal feasible solution that exhibits a nice property: the jobs discarded from the
solution are extremal either in their start-times or their end-times.

I Lemma 6. Consider the PartialResAll problem for a single mountain. Let J =
{j1, j2, . . . , jn} be the input set of jobs. Let S = (RS , JS) be a feasible solution such that RS
covers the set of jobs JS with |JS | = k. Let CS denote its cost. Let L =< l1, l2, . . . , ln >

denote the jobs in increasing order of their start-times. Similarly, let R =< r1, r2, . . . , rn >

denote the jobs in decreasing order of their end-times. Then, there exists a feasible solution
X = (RX , JX) having cost at most 2 · CS such that

J \ JX = {li : i ≤ q1} ∪ {ri : i ≤ q2} (1)

for some q1, q2 ≥ 0 where |J \ JX | = n− k.

Proof. We give a constructive proof to determine the sets JX and RX .
We initialize the set JX=J . At the end of the algorithm, the set JX will be the desired

set of jobs covered by the solution. The idea is to remove the jobs that extend most to the
right or the left from the consideration of JX . The most critical aspect of the construction
is to ensure that whenever we exclude any job from consideration of JX that is already part
of JS , we do so in pairs of the leftmost and rightmost extending jobs of JS that are still
remaining in JX . We terminate this process when the size of JX equals the size of JS , i.e.,
k. We also initialize the set U = φ. At the end of the algorithm, this set will contain the
set of jobs removed from J that belonged to JS while constructing JX .

We now describe the construction of JX formally. We maintain two pointers l-ptr and
r-ptr; l-ptr indexes the jobs in the sequence L and r-ptr indexes the jobs in the sequence R.
We keep incrementing the pointer l-ptr and removing the corresponding job from JX (if it
has not already been removed) until either the size of JX reaches k or we encounter a job

FSTTCS 2012

206 Scheduling Resources for Executing a Partial Set of Jobs

(say l-job) in JX that belongs to JS ; we do not yet remove the job l-job. We now switch to
the pointer r-ptr and start incrementing it and removing the corresponding job from JX (if
it has not already been removed) until either the size of JX reaches k or we encounter a job
(say r-job) in JX that belongs to JS ; we do not yet remove the job r-job. If the size of JX
reaches k, we have the required set JX .

Now suppose that |JX | 6= k. Note that both l-ptr and r-ptr are pointing to jobs in JS .
Let l-job and r-job be the jobs pointed to by l-ptr and r-ptr respectively (note that these two
jobs may be same).

We shall remove one or both of l-job and r-job from JX and put them in U . We classify
these jobs into three categories: single, paired and artificially paired.

Suppose that |JX | ≥ k + 2. In this case, we have to delete at least 2 more jobs; so we
delete both l-job and r-job and add them to U as paired jobs. In case l-job and r-job are the
same job, we just delete this job and add it to U as a single job. We also increment the l-ptr
and r-ptr pointers to the next job indices in their respective sequence. We then repeat the
same process again, searching for another pair of jobs.

Suppose that |JX | = k + 1. In case l-job and r-job are the same job, we just delete this
job and get the required set JX of size k; We add this job to the set U as a single job. On
the other hand, if l-job and r-job are different jobs, we remove l-job from JX and add it to
U as artificially paired with its pair as the job r-job ; note that we do not remove r-job from
JX .

This procedure gives us the required set JX . We now construct RX by simply doubling
the resources of RS ; meaning, that for each resource in RS , we take twice the number of
copies in RX . Clearly CX = 2 · CS . It remains to argue that RX covers JX . For this, note
that U = JS − JX and hence |U | = |JX − JS | (because |JX | = |JS | = k). We create an
arbitrary bijection f : U → JX − JS . Note that JX can be obtained from JS by deleting
the jobs in U and adding the jobs of JX − JS .

We now make an important observation:

I Observation 7. For any paired jobs or artificially paired jobs j1, j2 added to U , all the jobs
in JX are contained within the span of this pair, i.e., for any j in JX , sj ≥ min{s(j1), s(j2)}
and ej ≤ max{e(j1), e(j2)}. Similarly for any single job j1 added to U , all jobs in JX are
contained in the span of j1.

For every paired jobs, j1, j2, Observation 7 implies that taking 2 copies of the resources
covering {j1, j2} suffices to cover {f(j1), f(j2)}. Similarly, for every single job j, the resources
covering {j} suffice to cover {f(j)}. Lastly for every artificially paired jobs j1, j2 where
j1 ∈ U and j2 /∈ U , taking 2 copies of the resources covering {j1, j2} suffices to cover
{f(j1), j2}.

Hence the set RX obtained by doubling the resources RS (that cover JS) suffices to cover
the jobs in JX . J

Recall that Bar-Noy et al. [2] presented a 4-approximation algorithm for the ResAll
problem (full cover version). Our algorithm for handling a single mountain works as follows.
Given a mountain consisting of the collection of jobs J and the number k, do the following
for all possible pairs of numbers (q1, q2) such that the set JX defined as per Equation 1
in Lemma 6 has size k. For the collection of jobs JX , consider the issue of selecting a
minimum cost set of resources to cover these jobs; note that this is a full cover problem.
Thus, the 4-approximation of [2] can be applied here. Finally, we output the best solution
across all choices of (q1, q2). Lemma 6 shows that this is an 8-factor approximation to the
PartialResAll problem for a single mountain.

V.T. Chakaravarthy, A. Pal, S. Roy, and Y. Sabharwal 207

4 LSPC Problem: Proof of Theorem 5

Here, we present a 16-approximation algorithm for the LSPC problem.
We extend the notion of profiles and coverage to ranges contained within [1, T]. Let

[a, b] contained in [1, T] be a timerange. By a profile over [a, b], we mean a function Q that
assigns a value Q(t) to each timeslot t ∈ [a, b]. A profile Q defined over a range [a, b] is
said to be good, if for all timeslots t ∈ [a, b], Q(t) ≤ dt (where dt is the input demand at
t). In the remainder of the discussion, we shall only consider good profiles and so, we shall
simply write “profile” to mean a “good profile”. The measure of Q is defined to be the sum∑
t∈[a,b] Q(t).
Let S be a multiset of resources and let Q be a profile over a range of timeslots [a, b]. We

say that S is good, if it includes at most one short resource active at any timeslot t. We say
that S covers the profile Q, if for any timeslot t ∈ [a, b], the sum of capacities of resources
in S active at t is at least Q(t). Notice that S is a feasible solution to the input problem
instance, if there exists a profile Q over the entire range [1, T] such that Q has measure k
and S is a cover for Q. For a timeslot t ∈ [1, T], let Qsh

S (t) denote the capacity of the unique
short resource from S active at t, if one exists; otherwise, Qsh

S (t) = 0.
Let S be a good multiset of resources and let Q be a profile over a range of timeslots

[a, b]. For a long resource i ∈ S, let fS(i) denote the number of copies of i included in S. The
multiset S is said to be a single long resource assignment cover (SLRA cover) for Q, if for
any timeslot t ∈ [a, b], there exists a long resource i ∈ S such that w(i)fS(i) ≥ Q(t)−Qsh

S (t)
(intuitively, the resource i can cover the residual demand by itself, even though other long
resources in S may be active at t).

We say that a good multiset of resources S is an SLRA solution to the input LSPC
problem instance, if there exists a profile Q over the range [1, T] having measure k such that
S is an SLRA cover for Q. The lemma below shows that near-optimal SLRA solutions exist.

I Lemma 8. Consider the input instance of the LSPC problem. There exists an SLRA
solution having cost at most 16 times the cost of the optimal solution.

The lemma follows from a similar result proved in [5] and the proof is deferred to the
full version of the paper[6]. Surprisingly, we can find the optimum SLRA solution S∗ in
polynomial time, as shown in Theorem 9 below. Lemma 8 and Theorem 9 imply that S∗ is
a 16-factor approximation to the optimum solution. This completes the proof of Theorem 5.

I Theorem 9. The optimum SLRA solution S∗ can be found in time polynomial in the
number of resources, number of timeslots and H, where H = maxt∈[1,T] dt.

The rest of the section is devoted to proving Theorem 9. The algorithm goes via dynamic
programming. The following notation is useful in our discussion.

Let S be a good set consisting of only short resources, and let [a, b] be a range. For a
profile Q defined over [a, b], S is said to be an h-free cover for Q, if for any t ∈ [a, b],
Qsh
S (t) ≥ Q(t) − h. The set S is said to be an h-free q-cover for [a, b], if there exists a

profile Q over [a, b] such that Q has measure q and S is a h-free cover for Q.
Let S be a good multiset of resources and let [a, b] be a range. For a profile Q defined
over [a, b], the multiset S is said to be an h-free SLRA cover for Q, if for any timeslot
t ∈ [a, b] satisfying Q(t) − Qsh

S (t) > h, there exists a long resource i ∈ S such that
w(i)fS(i) ≥ Q(t)−Qsh

S (t). For an integer q, we say S is an h-free SLRA q-cover for the
range [a, b], if there exists a profile Q over [a, b] such that Q has measure q and S is a
h-free SLRA cover for Q.

FSTTCS 2012

208 Scheduling Resources for Executing a Partial Set of Jobs

Intuitively, h denotes the demand covered by long resources already selected (and their
cost accounted for) in the previous stages of the algorithm; thus, timeslots whose residual
demand is at most h can be ignored. The notion of “h-freeness” captures this concept.

We shall first argue that any h-free SLRA cover S for a profile Q over a timerange [a, b]
exhibits certain interesting decomposition property. Intuitively, in most cases, the timeline
can be partitioned into two parts (left and right), and S can be partitioned into two parts
S1 and S2 such that S1 can cover the left timerange and S2 can cover the right timerange
(even though resources in S1 may be active in the right timerange and those in S2 may be
active in the left timerange). In the cases where the above decomposition is not possible,
there exists a long resource spanning almost the entire range. The lemma is similar to a
result proved in [5] (see Lemma 4 therein). The proof is deferred to the full version of the
paper[6].

I Lemma 10. Let [a, b] be any timerange, Q be a profile over [a, b] and let h be an integer.
Let S be a good set of resources providing an h-free SLRA-cover for Q. Then, one of the
following three cases holds:

The set of short resources in S form a h-free cover for Q.
Time-cut: There exists a timeslot a ≤ t∗ ≤ b − 1 and a partitioning of S into S1 and
S2 such that S1 is an h-free SLRA-cover for Q1 and S2 is an h-free SLRA-cover for Q2,
where Q1 and Q2 profiles obtained by restricting Q to [a, t∗] and [t∗ + 1, b], respectively.
Interval-cut: There exists a long resource i∗ ∈ S such that the set of short resources in
S forms a h-free cover for both Q1 and Q2, where Q1 and Q2 are the profiles obtained
by restricting Q to [a, s(i∗)− 1] and [e(i∗) + 1, b] respectively.

We now discuss our dynamic programming algorithm. Let H = maxt∈[1,T] dt be the
maximum of the input demands. The algorithm maintains a table M with an entry for each
triple 〈[a, b], q, h〉, where [a, b] ⊆ [1, T], 0 ≤ q ≤ k and 0 ≤ h ≤ H. The entry M([a, b], q, h)
stores the cost of the optimum h-free SLRA q-cover for the range [a, b]; if no solution exists,
thenM([a, b], q, h) will be∞. Our algorithm outputs the solution corresponding to the entry
M([1, T], k, 0); notice that this is optimum SLRA solution S∗.

In order to compute the table M , we need an auxiliary table A. For a triple [a, b], q and
h, let A([a, b], q, h) be the optimum h-free q-cover for [a, b], (using only the short resources);
if no solution exists A([a, b], q, h) is said to be ∞. We first describe how to compute the
auxiliary table A. For a triple consisting of t ∈ [1, T], q ≤ k and h ≤ H, define γ(t, q, h)
as follows. If q > dt, set γ(t, q, h) = ∞. Consider the case where q ≤ dt. If q ≤ h, set
γ(t, q, h) = 0. Otherwise, let i be the minimum cost short resource active at t such that
w(i) ≥ q − h; set γ(t, q, h) = c(i); if no such short resource exists, set γ(q, t, h) =∞.

Then, for a triple 〈[a, b], q, h〉, the entry A([a, b], q, h) is governed by the following recur-
rence relation. Of the demand q that need to be covered, the optimum solution may cover
a demand q1 from the timeslot t, and a demand q − q1 from the range [a, b− 1]. We try all
possible values for q1 and choose the best:

A([a, b], q, h) = min
q1≤min{q,db}

A([a, b− 1], q − q1, h) + γ(b, q1, h).

It is not difficult to verify the correctness of the above recurrence relation.
We now describe how to compute the table M . Based on the decomposition lemma

(Lemma 10), we can develop a recurrence relation for a triple [a, b], q and h. We compute
M([a, b], q, h) as the minimum over three quantities E1, E2 and E3 corresponding to the

V.T. Chakaravarthy, A. Pal, S. Roy, and Y. Sabharwal 209

E1 = A([a, b], q, h).
E2 = min

t∈[a,b−1]
q1≤q

M([a, t], q1, h) +M([t+ 1, b], q − q1, h).

E3 = min
(i∈L,α≤H) : αw(i)>h
q1,q2,q3 : q1+q2+q3=q

α · c(i)

+A([a, s(i)− 1], q1, h)
+M([s(i), e(i)], q2, αw(i))

+A([e(i) + 1, b], q3, h)

Figure 5 Recurrence relation for M

three cases of the lemma. Intuitive description of the three quantities is given below and
precise formulas are provided in Figure 5. In the figure, L is the set of all long resources1.

Case 1: No long resource is used and so, we just use the corresponding entry of the
table A.
Case 2: There exists a time-cut t∗. We consider all possible values of t∗. For each
possible value, we try all possible ways in which q can be divided between the left and
right ranges.
Case 3: There exists a long resource i∗ such that the timeranges to the left of and
to the right of i∗ can be covered solely by short resources. We consider all the long
resources i and also the number of copies α to be picked. Once α copies of i are picked,
i can cover all timeslots with residual demand at most αw(i) in an SLRA fashion, and
so the subsequent recursive calls can ignore these timeslots. Hence, this value is passed
to the recursive call. We also consider different ways in which q can be split into three
parts - left, middle and right. The left and right parts will be covered by the solely short
resources and the middle part will use both short and long resources. Since we pick α
copies of i, a cost of αc(i) is added.

We set M([a, b], q, h) = min{E1, E2, E3}. For the base case: for any [a, b], if q = 0 or h = H,
then the entry is set to zero.

We now describe the order in which the entries of the table are filled. Define a partial
order ≺ as below. For pair of triples z = ([a, b], q, h) and z′ = ([a′, b′], q′, h′), we say that
z ≺ z′, if one of the following properties is true: (i)[a′, b′] ⊆ [a, b]; (ii) [a, b] = [a′, b′] and
q < q′; (iii) [a, b] = [a′, b′], q = q′ and h > h′. Construct a directed acyclic graph (DAG)
G where the triples are the vertices and an edge is drawn from a triple z to a triple z′, if
z ≺ z′. Let π be a topological ordering of the vertices in G. We fill the entries of the table
M in the order of appearance in π. Notice that the computation for any triple z only refers
to triples appearing earlier than z in π.

Using Lemma 10, we can argue that the above recurrence relation correctly computes all
the entries of M .

References

1 N. Bansal, Z. Friggstad, R. Khandekar, and M. Salavatipour. A logarithmic approximation
for unsplittable flow on line graphs. In SODA, 2009.

1 The input demands dt are used in computing the table A(·, ·, ·)

FSTTCS 2012

210 Scheduling Resources for Executing a Partial Set of Jobs

2 A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber. A unified approach to
approximating resource allocation and scheduling. Journal of the ACM, 48(5):1069–1090,
2001.

3 R. Bar-Yehuda. Using homogeneous weights for approximating the partial cover problem.
J. Algorithms, 39(2):137–144, 2001.

4 R. Bhatia, J. Chuzhoy, A. Freund, and J. Naor. Algorithmic aspects of bandwidth trading.
ACM Transactions on Algorithms, 3(1), 2007.

5 V. Chakaravarthy, A. Kumar, S. Roy, and Y. Sabharwal. Resource allocation for covering
time varying demands. In ESA, 2011.

6 V. Chakaravarthy, A. Pal, S. Roy, and Y. Sabharwal. Scheduling resources for executing a
partial set of jobs. CoRR, abs/1210.2906, 2012.

7 D. Chakrabarty, E. Grant, and J. Könemann. On column-restricted and priority covering
integer programs. In IPCO, pages 355–368, 2010.

8 R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial covering
problems. J. Algorithms, 53(1):55–84, 2004.

9 N. Garg. Saving an ε: a 2-approximation for the k-MST problem in graphs. In STOC,
2005.

10 K. Jain and V. Vazirani. Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and Lagrangian relaxation. J. ACM, 48(2):274–296,
2001.

11 J. Könemann, O. Parekh, and D. Segev. A unified approach to approximating partial
covering problems. Algorithmica, 59(4), 2011.

A Proof of Lemma 2

We first categorize the jobs according to their lengths into r categories C1, C2, · · · , Cr,
where r = dlog `max

`min
e. The category Ci consists of all the jobs with lengths in the range

[2i−1`min, 2i`min). Thus all the jobs in any single category have comparable lengths: any
two jobs j1 and j2 in the category satisfy `1 < 2`2, where `1 and `2 are the lengths of j1 and
j2 respectively.

Consider any category C and let the lengths of the jobs in C lie in the range [α, 2α). We
claim that the category C can be partitioned into 4 groups G0, G1, G2, G3, such that each Gi
is a mountain range. To see this, partition the set of jobs C into classes H1, H2, . . . ,Hq, . . .

where Hq consists of the jobs active at timeslot q · α. Note that every job belongs to some
class since all the jobs have length at least α; if a job belongs to more than one class, assign
it to any one class arbitrarily. Clearly each class Hq forms a mountain. For 0 ≤ i ≤ 3, let
Gi be the union of the classes Hq satisfying q ≡ i mod 4. Since each job has length at most
2α, each Gi is a mountain range. Thus, we get a decomposition of the input jobs into 4r
mountain ranges. J

	Introduction
	Problem Definition
	Related Work and Our Results

	Outline of the Main Algorithm
	A Single Mountain: Proof of Theorem 4
	LSPC Problem: Proof of Theorem 5
	Proof of Lemma 2

