
Safety Verification of Communicating
One-Counter Machines
Alexander Heußner1, Tristan Le Gall2, and Grégoire Sutre3

1 ULB, Brussels, Belgium & University of Bamberg, Bamberg, Germany
2 CEA, LIST, DILS/LMeASI, Gif-sur-Yvette, France
3 Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Abstract
In order to verify protocols that tag messages with integer values, we investigate the decidability
of the reachability problem for systems of communicating one-counter machines. These systems
consist of local one-counter machines that asynchronously communicate by exchanging the value
of their counters via, a priori unbounded, Fifo channels. This model extends communicating
finite-state machines (Cfsm) by infinite-state local processes and an infinite message alphabet.
The main result of the paper is a complete characterization of the communication topologies that
have a solvable reachability question. As already Cfsm exclude the possibility of automatic veri-
fication in presence of mutual communication, we also consider an under-approximative approach
to the reachability problem, based on rendezvous synchronization.

1998 ACM Subject Classification F.1.1 Models of Computation, D.2.4 Program Verification

Keywords and phrases Counter Machines, Fifo Channels, Reachability Problem, Data Words

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.224

1 Introduction

One of the most challenging and imperative problems in computer science today is the
verification of the nowadays ubiquitous distributed systems, as these are increasingly applied
in vital and sensitive areas. Such systems consist of several processes that asynchronously
exchange data over a network topology. A well-established model, known as communicating
finite-state machines (Cfsm), combines local finite-state machines with point-to-point,
unbounded Fifo queues that pass messages from a finite alphabet. Cfsm laid the foundation
for a family of infinite-state models parametrized by the computational power of the local
machines, such as communicating Petri nets [10] and pushdown systems [14, 13].

However, basic safety verification questions, like reachability, are known to be undecidable
for Cfsm already on simple topologies [6, 17]. One important line of current research is the
influence of the underlying communication topology to these verification questions when
we restrict the interplay between communication and the local machine’s power [14, 7, 13].
In this paper, we extend this research towards the verification of communicating machines
that locally use counters and can exchange these via message passing, thus introducing two
additional sources of infinity to Cfsm’s unbounded channels. Infinite message alphabets are
demanded in practice to model protocols based on (a priori unbounded) sequence numbers.

Motivating Example. A simple sliding window protocol is depicted in Figure 1. A sender
transmits a sequence number (ignoring additional data) to a receiver that advances the
expected sequence number if it got the right message, demands to resend the expected

© A. Heußner, T. LeGall, G. Sutre;
licensed under Creative Commons License BY-NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 224–235

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917554?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.224
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Heußner, T. LeGall, and G. Sutre 225

se
nd

er

re
ce
iv
erc1!x x++

x := c2?

error
x == c1? x++

c2!x

x--

x--

x == c1?

c1

c2

Figure 1 A simple sliding window protocol: sender on the left, receiver on the right.

message, or fails if the sequence number was already received. Checking the correctness of
such protocols (here, whether the error state is reachable) is the main topic of this paper.

Contributions. We present the formal model of systems of communicating one-counter
machines. This model is parametrized by a communication topology, specifying point-to-
point Fifo channels between processes. Processes are one-counter machines that can send or
receive the contents of their local counter. We consider an extension of one-counter machines
where tests are not limited to zero-tests x = 0, but can be any unary Presburger predicate
ϕ(x). Channels are a priori unbounded, and messages are natural numbers. Different ways of
relating these messages to the machine’s local counters are investigated. As our main result,
we establish a complete classification of the topologies over which the reachability problem for
systems of communicating one-counter machines is decidable. The underlying proof relies, on
the one hand, on a reduction from the well-known undecidability of the reachability problem
for two-counters Minsky machines. On the other hand, we use a reduction technique that
inductively combines one-counter machines along a hierarchical order, which is based on the
topology. This way, the reachability problem is reduced to the case of two processes that are
connected by one channel. We show that the reachability problem is decidable in this setting.

Our decidability results are based on summarizing the behavior of a process between
each communication action. Recall that the reachability relation of a one-counter machine is
definable in Presburger arithmetic (see, e.g., [11]). But Presburger-definable binary relations
are not closed under transitive closure, which makes them unsuitable for our summarization-
based approach. As key ingredient to our proofs, we exhibit a class of binary Presburger
predicates that corresponds exactly to one-counter reachability relations. Our characterization
entails that this class is effectively closed under transitive closure, and that one-counter
reachability relations are effectively closed under intersection.

As the undecidable topologies include cyclic architectures, that nevertheless are important
in practice to permit mutual communication, we also consider an under-approximative
approach based on eager runs, i.e., runs where a send action is directly followed by its
reception. We characterize the strongly-connected topologies that have a decidable eager-
reachability problem. In particular, the topology of our motivating example, which is a cycle
of length two, allows to decide the verification problem (for eager runs).

Related Works. The basic undecidability result for Cfsm [6] is the corner stone for most
ongoing research on models based local machines that communicate over Fifo channels.
Prominent approaches to regain decidability for reachability/safety are restrictions on the
size of the channels or the message alphabets (already in [6, 17]), as well as the focus on lossy
channel systems [9, 1]. Recent research dealt with the influence of the underlying topology on
decidability questions, e.g., systems mixing lossy and perfect channels [7]. Communicating
pushdown machines focus on a typing of channel ends that forces the decoupling of pushdown
and channel actions [14, 13]. Restricting the local pushdown alphabet to a singleton, but

FSTTCS 2012

226 Safety Verification of Communicating One-Counter Machines

extending the finite message alphabet to an infinite one leads in our case to an incomparable
model. However, we similarly arrive at favorable decidability results for tree-like architectures,
which are more restricted than those in [13] even when regarding only eager communication.

Cfsm-style systems with infinite message alphabets were discussed in [15], but this work
focused on the definition of a static analysis technique, and thus the practical implementation
of verification algorithms. Also closely related are data words and their different underlying
automata models that rely on an infinite input/output alphabet and local registers [3, 4].
However, these automata only allow to use an equality test on the infinite data alphabet and
not to modify and test registers like counters do.

Counter machines are a classical formalism in computer science [16]. Besides the two-
counters (Minsky) machines, which are Turing-complete, the verification of one-counter
automata has gained a renewed interest recently [8, 12, 2]. Using one-counter automata with
Presburger tests also appears in [5], yet only as symbolic representation of reachability sets
and not as operational model for the underlying programs.

Outline. We introduce systems of communicating one-counter machines in Section 2. Sec-
tion 3 presents our main result: the characterization of communication topologies that have
a solvable reachability question. The proof of the positive case is provided in Section 4.
Section 5 presents preliminary results on the decidability of the reachability question when
we only consider eager runs. Some conclusions and perspectives are given in Section 6.

2 Systems of Communicating One-Counter Machines

Given a (possibly infinite) alphabet M , let M∗ denote the set of all finite words over M ,
ε ∈ M∗ the empty word, and u · v the concatenation of two words u, v ∈ M∗. For a set
of values X and a finite set of indices I, we write XI for the set of all mappings from I

to X. Such mappings may be interpreted as I-indexed X-valued vectors. Let xi denote the
i-th component of a vector x ∈ XI . Two constant vectors are introduced, for convenience:
0 ∈ NI , which maps every index to 0, and ε ∈ (M∗)I , which maps every index to ε.

Communication Topologies. In our framework, channels are point-to-point. Each channel c
has a source endpoint src(c), and a destination endpoint dst(c). These endpoints are pairs (p, ∗)
where p is the process communicating at the endpoint, and ∗ ∈ {•, ◦} is the communication
type of the endpoint. We introduce the types • and ◦ to model two communication policies
that relate the message and the local counter of a machine before and after communication
on an endpoint. We assert that ◦ is more restrictive than •, namely, that the value of the
local counter is “lost” by a communication with type ◦. This difference is formalized in the
semantics introduced subsequently. First, let us formally define communication topologies.

I Definition 2.1. A topology is a quadruple T = 〈P,C, src, dst〉 where P is a finite, non-empty
set of processes, C is a finite, possibly empty set of channels, src : C → P × {•, ◦} is a source
mapping, and dst : C → P × {•, ◦} is a destination mapping.

For better readability, we slightly abuse notation by identifying an endpoint (p, ∗) with its
process p or its type ∗, depending on the context. For instance, we write src(c) = p instead
of src(c) = (p, ∗) for some ∗ ∈ {•, ◦}. Given a process p ∈ P , we let C(p) denote the set of
all channels with source or destination p. Formally, C(p) = {c ∈ C | src(c) = p ∨ dst(c) = p}.
The communication type of a process p on a channel c ∈ C(p) that is not a self-loop, written
typ(p, c), is the unique ∗ ∈ {•, ◦} such that (p, ∗) is an endpoint of c.

A. Heußner, T. LeGall, and G. Sutre 227

For each channel c ∈ C, we let c denote the binary relation on the set of processes
P defined by p c

q if p = src(c) and q = dst(c). Naturally, any topology may be viewed
as the labeled directed graph (P, { c }c∈C). We assume some familiarity with classical
notions on directed graphs, such as weak connectedness, strong connectedness, leaf nodes,
etc. We also introduce the undirected binary relation c , defined by p c

q if p c
q or

p
c
q. An undirected path in T is an alternating sequence (p0, c1, p1, . . . , cn, pn), of processes

pi ∈ P and channels ci ∈ C, such that pi−1
ci pi for all i ∈ {1, . . . , n}. Moreover, the

undirected path is called simple when p0, . . . , pn are distinct. A simple undirected cycle in
T is an undirected path (p0, c1, p1, . . . , cn, pn), with n ≥ 1, such that p1, . . . , pn are distinct,
c1, . . . , cn are distinct, and p0 = pn. A simple undirected shunt in T is a simple undirected
path (p0, c1, p1, . . . , cn, pn), with n ≥ 2, such that typ(p0, c1) = • and typ(pn, cn) = •.

I Definition 2.2. Let T be a topology. T is called cycle-free if it contains no simple
undirected cycle. T is called shunt-free if it contains no simple undirected shunt.

I Remark. Our notion of shunt is close to the confluence criterion presented in [13] for
communicating pushdown processes. Simply put, confluence permits to synchronize two
pushdown stacks, and a shunt permits to synchronize two counters, as will be seen later.
However, shunts require at least one additional, intermediary process whereas confluence can
be established directly between two processes. In our case, the topology p c q with channel
endpoints of type • is shunt-free, and will be shown to have a decidable reachability problem.

Systems of Communicating One-Counter Machines. Classically, one-counter machines
are finite-state automata, equipped with a counter, represented by a variable x, that holds
a non-negative integer value. The counter is initially set to zero, and can be incremented,
decremented (provided that it remains non-negative), and tested for zero. In this paper, we
consider an extension of counter machines where tests can be any unary Presburger predicate
ϕ(x). Such Presburger tests do not increase the expressive power of one-counter machines in
terms of recognized languages [5]. We will show in the next section that the same property
holds for their binary reachability relations. Presburger tests will be handy to merge several
communicating one-counter machines in a single communicating one-counter machine.

Recall that Presbuger arithmetic is the first-order theory of the natural numbers with
addition. A n-ary Presburger predicate is a Presburger formula ϕ with exactly n free variables.
As usual, we write ϕ(x1, . . . , xn) to indicate that x1, . . . , xn are the free variables of ϕ. We
let Pn denote the set of all n-ary Presburger predicates.

I Definition 2.3. A system of communicating one-counter machines is a pair
S = 〈T , (Mp)p∈P 〉 where T is a topology and, for each process p in P ,Mp is a quintuple
Mp = 〈Sp, Ip, F p, Ap,∆p〉, called a communicating one-counter machine, where

Sp is a finite set of states,
Ip, F p ⊆ Sp are subsets of initial states and final states,
Ap ⊆ Acnt ∪Ap

com is a finite set of actions, where
Acnt = {add(k) | k ∈ Z} ∪ {test(ϕ) | ϕ ∈ P1}
Ap

com = {c ! | c ∈ C ∧ src(c) = p} ∪ {c ? | c ∈ C ∧ dst(c) = p}
∆p ⊆ Sp ×Ap × Sp is a finite set of transition rules.

We give the operational semantics JSK of a system of communicating one-counter ma-
chines S as a labeled transition system. A configuration of JSK is triple σ = (s,x,w) where
s maps each process p to a state in Sp, x maps each process p to a counter value in N, and
w maps each channel c to a word over the set of natural numbers. Formally, the set of

FSTTCS 2012

228 Safety Verification of Communicating One-Counter Machines

configurations of JSK is (
∏

p∈P S
p)×NP × (N∗)C . An initial configuration is a configuration

(s,x,w) such that x = 0, w = ε, and sp ∈ Ip for all p ∈ P . Analogously, a final configuration
is a configuration (s,x,w) such that x = 0, w = ε, and sp ∈ F p for all p ∈ P . The transition
relation of JSK, written →, is the set of all triples (σ1, a, σ2), where σ1 = (s1,x1,w1) and
σ2 = (s2,x2,w2) are configurations, and a is an action in Ap, for some p ∈ P , satisfying the
following conditions:

(sp
1, a, s

p
2) ∈ ∆p and sq

1 = sq
2 for all q ∈ P with q 6= p,

if a = add(k) then xp
2 = xp

1 + k, xq
1 = xq

2 for all q ∈ P with q 6= p, and w1 = w2,
if a = test(ϕ(x)) then the valuation {x 7→ xp

1} satisfies ϕ(x), x1 = x2 and w1 = w2,
if a = c !, then
wc

2 = wc
1 · x

p
1 and wd

1 = wd
2 for all d ∈ C with d 6= c, and

if src(c) = • then x1 = x2 ; otherwise xq
1 = xq

2 for all q ∈ P with q 6= p.
if a = c ?, then
wc

1 = xp
2 · wc

2 and wd
1 = wd

2 for all d ∈ C with d 6= c, and
if dst(c) = • then x1 = x2 ; otherwise xq

1 = xq
2 for all q ∈ P with q 6= p.

For readability, we write σ1
a−→ σ2 in place of (σ1, a, σ2) ∈ →. Notice that we do not

explicitly index actions by the process that fires them, but we assert that one implicitly
knows which process moves on each transition. A run of JSK is a finite, alternating sequence
ρ = (σ0, a1, σ1, . . . , an, σn) of configurations σi and actions ai, satisfying σi−1

ai−→ σi for all i.
We say that ρ is a run from σ0 to σn, and, abusing notation, we shortly write ρ = σ0

∗−→ σn.
The length of ρ is n, and is denoted by |ρ|. A run of length zero consists of a single
configuration. A full run of JSK is a run from an initial configuration to a final configuration.

The semantics of counter operations add(k) and test(ϕ) is the usual one. A send or
receive action on a channel appends or removes a message in N, as one would expect. However,
there are additional restrictions on the interplay of the communicated message and the local
counter. If the endpoint of the channel has type •, the message must equal the value of
the counter before and after the action. So the value of the counter is not modified by a
communication on this endpoint. On the contrary, if the endpoint has type ◦, then the local
counter value is “lost” by a communication on this endpoint:

an emission transfers the value of the counter from the process to the channel; the counter
is non-deterministically set to an arbitrary value after the emission.
a reception transfers the message from the channel to the local counter; the behavior
mirrors that of an emission.

Exchange of Messages from a Finite Alphabet. On the contrary to classical communicating
finite-state machines (Cfsm), communicating one-counter machines cannot (directly) send
or receive messages from an arbitrary finite alphabet M . However, they are able to perform
these actions indirectly, as follows. Assume, without loss of generality, that M is a finite set
of natural numbers. Sending a message m ∈M on a channel c, like a Cfsm would, simply
amounts to setting the local counter to m, and performing an emission on c. Receiving a
message m ∈ M from a channel c, like a Cfsm would, is done by performing a reception
from c, and checking that the received message is m. To realize this check, the machine

simply sets its counter to m before the reception, for an endpoint with type •,
or checks that the counter equals m after the reception, for an endpoint with type ◦.

Note that in this simulation of Cfsm-style communications, the counter is forcibly set to
the (bounded) value corresponding to the message being exchanged, even for endpoints with
type •. We show, in the next section, another simulation of Cfsm-style communications
where one of the two peers is able to retain the value of its counter.

A. Heußner, T. LeGall, and G. Sutre 229

3 A Characterization of Topologies with Solvable Reachability

We investigate the power of systems of communicating one-counter machines with regard to
their communication topology. Therefore, we introduce the reachability problem parametrized
by a given topology. Recall that a full run of JSK is a run from an initial configuration to a
final configuration.

I Definition 3.1. Given a topology T , the reachability problem for systems of communicating
one-counter machines with topology T , denoted by Rp-Sc1cm(T), is defined as follows:
Input: a system of communicating one-counter machines S with topology T ,
Output: whether there exists a full run in JSK.

The main result of the paper is a complete classification of the topologies that have a
solvable reachability problem. We observe that, in absence of shunts, systems of commu-
nicating one-counter machines are still more expressive than Cfsm, but their reachability
problems are decidable for the same topologies, namely, cycle-free topologies [17].

I Theorem 3.2. Given a topology T , Rp-Sc1cm(T) is decidable if and only if T is cycle-free
and shunt-free.

The proof of the theorem is presented at the end of this section for the “only if” direction,
and in Section 4 for the “if” direction. Before that, let us provide a decomposition of
topologies that are cycle-free and shunt-free. Observe that a weakly-connected topology is
cycle-free if and only if there is a unique simple undirected path between every two processes.

I Proposition 3.3. Let T be a weakly-connected topology with at least two processes. If
T is cycle-free and shunt-free, then there are two distinct processes r, r′, with r c

r′ for
some channel c, such that, for every simple undirected path (p0, c1, p1, . . . , cn, pn, d, q) with
p0 ∈ {r, r′} and q 6∈ {r, r′}, the process q has type ◦ on the channel d.

An example illustrating the proposition is provided in Figure 2(a). This weakly-connected
topology is cycle-free and shunt-free. Therefore, its underlying undirected graph is a tree.
The processes r and r′ may be seen as two “roots”, connected by a channel. All other
processes are descendants of these two “roots”, and have type ◦ on the channel (input or
output) that leads to the root, as required by Proposition 3.3. Note, however, that r and r′
are allowed to have type • on all channels. Recall that a process with type ◦ on a channel
“loses” the value of its counter when it communicates over this channel. On the contrary, no
loss of information occurs with type •. But an endpoint with type • can simulate an endpoint
with type ◦, by artificially “losing” the value of the local counter. We formalize this property
by introducing the partial order v on {◦, •} defined by ◦ < •. This partial order is extended
to endpoints in the natural way: (p, ∗) v (p′, ∗′) if p = p′ and ∗ v ∗′. Given two topologies
T = 〈PT , CT , srcT , dstT 〉 and U = 〈PU , CU , srcU , dstU 〉, we say that U is a sub-topology of T
if PU ⊆ PT , CU ⊆ CT , and, for every channel c ∈ CU , it holds that srcU (c) v srcT (c) and
dstU (c) v dstT (c). As one would expect, sub-topologies have an easier reachability problem.

I Proposition 3.4. For every topology T and for every sub-topology U of T , Rp-Sc1cm(U)
is reducible to Rp-Sc1cm(T).

Cycle-freeness and Shunt-freeness of Decidable Topologies. In the remainder of this
section, we prove the “only if” direction of Theorem 3.2, namely that Rp-Sc1cm(T) is
undecidable if T contains a simple undirected cycle or a simple undirected shunt. As seen
in Section 2, systems of communicating one-counter machines can simulate Cfsm, and

FSTTCS 2012

230 Safety Verification of Communicating One-Counter Machines

r r′

p1 p2p3

c

q1 q2

(a) p q

. . .

. . .
. . .(b)

(c) p q

Figure 2 Topologies: (a) weakly connected cycle-free and shunt-free topology, (b) topology
containing a leaf process q with type ◦ on its pendant channel, (c) decidable two-processes case.

the simulation preserves the topology. Moreover, the reachability problem for Cfsm with
topology T is known to be undecidable if T contains a simple undirected cycle [17, 14].
It follows that Rp-Sc1cm(T) is undecidable if T contains a simple undirected cycle. The
following lemma completes the proof of the “only if” direction of Theorem 3.2.

I Lemma 3.5. For every topology T containing a simple undirected shunt, Rp-Sc1cm(T)
is undecidable.

We explain the main ideas of the proof on the topology p c r d q where r has type ◦
on channels c and d, p has type • on c and q has type • on d. Let us call this topology T .
Notice that (p, c, r, d, q) is a simple undirected shunt. We show that the reachability problem
for two-counters (Minsky) machines, which is known to be undecidable [16], is reducible to
Rp-Sc1cm(T). Given a two-counters machineM, one counter, say x, is maintained by p,
and the other, say y, is maintained by q. Both processes p and q run a copy ofM, but they
internalize (as add(0) actions) the counter actions ofM that do not involve their counter.
We only need to make sure that p and q take the same control path ofM. To this end, p
and q send to r the transition rules that they traverse, and r checks that these rules are
the same. However, p and q must not lose the value of their counter when communicating
with r. So the simulation of Cfsm presented in Section 2 cannot be used. Instead, p and q
encode the transition rules within the counter value itself, send it to r, and let r decode and
check this information.

Assume that M contains K > 0 transition rules, encoded as 0, . . . ,K − 1. Instead of
storing the values x and y of x and y in their local counters, p and q store K · x and K · y,
respectively. So, increments and decrements inM are multiplied by the constant K in p
and q. On the sender side, when p or q takes a transition rule encoded by δ ∈ {0, . . . ,K− 1},
it increments its counter by δ, sends it to r, and decrements its counter by δ to restore its
value. On the receiver side, when r performs a c ? action, its counter is set to the message
m = δ + (K · x) sent by p, and r extracts the transition rule δ by computing (m mod K).
The transition rules taken by q are decoded by r similarly.

The simulation guarantees that the two-counters machine has a full run if and only if
the constructed system of communicating one-counter machines, with topology T , has a
full run. It follows that Rp-Sc1cm(T) is undecidable. Note that, by Proposition 3.4, the
reachability problem Rp-Sc1cm(T) would also be undecidable (and even more so) if r had
type • instead of ◦ on its output channels.

I Remark. We need at least one intermediary process r between p and q, to decode and
check their messages. Indeed, direct communications between p and q would synchronize
their local counters, thus making it impossible to maintain two counters.

A. Heußner, T. LeGall, and G. Sutre 231

4 Decidability of Cycle-free and Shunt-free Topologies

This section is devoted to the proof of the “if” direction of Theorem 3.2, namely that
Rp-Sc1cm(T) is decidable if T is cycle-free and shunt-free. Without loss generality, we only
consider weakly-connected topologies. The proof comprises three independent parts. Firstly,
we provide a characterization, in terms of Presburger predicates, of reachability relations of
one-counter machines. Secondly, we show that any leaf process with type ◦ on its pendant
channel may be merged into its parent, thereby reducing the size of the topology. Iterating
this reduction leads to a topology with only two processes and one channel. We show, in the
third part, that Rp-Sc1cm(T) is decidable for such topologies.

Counter reachability relations of one-counter machines. A one-counter machine is a
communicating one-counter machine M = 〈S, I, F,A,∆〉 with no communication action,
i.e., A ⊆ Acnt. To fit our framework, we identify M with the system 〈U , (Mp)p∈{p}〉 of
communicating one-counter machines, where U = 〈{p}, ∅, src, dst〉 is the topology with a single
process p and no channel. We let Rp-1cm denote the reachability problem for one-counter
machines, formally Rp-1cm = Rp-Sc1cm(U). It is well-known that Rp-1cm is decidable
since reachability is decidable for the more general class of pushdown systems.

In the next subsections, we show that, under certain conditions, two processes can be
merged in a single “product” process (with only one counter). To do so, we summarize the
behavior of a process between each communication action. This subsection is devoted to the
characterization and computation of these summaries.

LetM = 〈S, I, F,A,∆〉 be a one-counter machine. The counter reachability relation of
M is the set of all pairs (x, y) ∈ N× N such that, for some s ∈ I and t ∈ F , there exists a
run from (s, x) to (t, y). To characterize counter reachability relations, we introduce the
following class of binary Presburger predicates. We consider two distinguished Presburger
variables x and y. In short, one-counter Presburger predicates can express properties of x, of
y, and of their differences x − y and y − x. Formally, the class of one-counter Presburger
predicates is generated by the grammar:

ψ ::= ϕ(x) | ϕ(y) | ∃z · (x = y + z ∧ ϕ(z)) | ∃z · (y = x + z ∧ ϕ(z)) | ψ∧ψ | ψ∨ψ | tt | ff

where ϕ ranges over the set P1 of unary Presburger predicates. The binary relation defined
by a one-counter Presburger predicate ψ is the set of all pairs (x, y) ∈ N× N such that the
valuation {x 7→ x, y 7→ y} satisfies ψ.

We first show that counter reachability relations are definable by one-counter Presburger
predicates, for the class of one-counter machines with zero-tests only. Formally, a one-counter
machineM = 〈S, I, F,A,∆〉 is called basic if A ⊆ {add(k) | k ∈ Z} ∪ {test(x = 0)}.

I Lemma 4.1. For every basic one-counter machineM, the counter reachability relation of
M is defined by a one-counter Presburger predicate.

However, the converse of the lemma does not hold. Consider, for instance, the one-counter
Presburger predicate ψ = ∃k · (x = k + k)∧ (x = y). In a basic one-counter machine, it is not
possible to check that a given, a priori unknown value x is even without “losing” this value.
We need the additional expressive power stemming from Presburger tests.

We now show that counter reachability relations (of arbitrary one-counter machines)
are precisely the relations definable by one-counter Presburger predicates. This entails, in
particular, that counter reachability relations are closed under intersection. We will use this

FSTTCS 2012

232 Safety Verification of Communicating One-Counter Machines

property in the proof of Lemma 4.4. On the logical side, we obtain that the class of relations
definable by one-counter Presburger predicates is closed under transitive closure.

I Theorem 4.2. For every binary relation R ⊆ N × N, the two following assertions are
equivalent:

R is the counter reachability relation of a one-counter machine,
R is defined by a one-counter Presburger predicate.

I Remark. The proof of Theorem 4.2 is constructive, in the sense that a one-counter
Presburger predicate is computable from a given one-counter machine, and vice versa.

Merging leaf processes. We show how to reduce the number of processes in a system of
communicating one-counter machines, by merging a leaf process with type ◦ on its pendant
channel into its parent. Let U = 〈PU , CU , srcU , dstU 〉 be a topology, and select a distinguished
process p in PU . We add to the topology a new process q 6∈ PU and a new channel c 6∈ CU
between p and q. Formally, we consider any topology T = 〈P,C, src, dst〉 with set of processes
P = PU ∪ {q} and set of channels C = CU ∪ {c}, whose source and destination mappings
coincide with those of U on C, and such that p c q. Observe that C(q) = {c}, hence, q is a
leaf process with pendant channel c. The topology T is depicted on Figure 2(b).

I Lemma 4.3. If p has type • on c and q has type ◦ on c then Rp-Sc1cm(T) is reducible
to Rp-Sc1cm(U).

Let us explain the main ideas of the proof. Assume that c is directed as p c q. Consider
a system of communicating one-counter machines S = 〈T , (Mp)p∈P 〉. To simulate S over the
topology U , we merge processes p and q in a single “product” process p̂. So, the communicating
one-counter machinesMp are kept unchanged for all processes in p ∈ P \ {p, q}. But the
process p̂ must simulate both processes p and q, as well as the channel c in-between. We
choose a specific interleaving of p and q where c is almost always empty, and such that p̂,
which has a single counter, is able to retain both p’s counter and q’s counter.

In essence, p̂ behaves as p, but also maintains, in its state, the local state of q as well as
an abstraction of q’s counter. We abstract q’s counter by the set {0,⊥,=}, where 0 means
zero, ⊥ means some unknown value, and = means that q’s counter holds the same value as
p’s counter. Furthermore, the process q is always scheduled first. Since c is the only channel
with source or destination q, this means, in particular, that every reception by q from c
occurs immediately after the matching emission by p on c. When p̂ simulates an emission
by p on c and the matching reception by q, it internalizes this synchronization c ! · c ?, and
sets q’s abstract counter to =. Indeed, since q has type ◦ on c, the reception by q from c
overwrites its counter with the value of p’s counter. Then, p̂ simulates, in one step, the
behavior of q from this matching reception to the next reception. Observe that the next
reception of q from c will, again, overwrite its counter. Therefore, thanks to Theorem 4.2,
this behavior of q can be summarized in a single Presburger test, that accounts for the local
state reached by q. This way, p̂ does not need to maintain the value held by q’s counter.
The construction guarantees that S has a full run if and only if the resulting system of
communicating one-counter machines, with topology U , has a full run.

The proof for the other direction q c p is similar. However, instead of scheduling q first,
it is now scheduled last.

Two processes connected by one channel. We now consider the topology depicted on
Figure 2(c), with two distinct processes p and q and a channel from p to q with type • on
both endpoints. Formally, T = 〈{p, q}, {c}, src, dst〉 with src(c) = (p, •) and dst(c) = (q, •).

A. Heußner, T. LeGall, and G. Sutre 233

I Lemma 4.4. Rp-Sc1cm(T) is reducible to Rp-1cm.

Informally, given a system of communicating one-counter machines S = 〈T , (Mp)p∈P 〉,
we construct a one-counter machine N that simulates the “product” of p and q. As in the
proof of Lemma 4.3, we schedule the sender last (here, p) and the receiver first (here, q).
Thus, emissions c ! and receptions c ? occur consecutively, with no other action in between.
Since p and q have type • on c, each sequence of actions c ! · c ? may occur only if p’s
counter and q’s counter hold the same value. So N internalizes each synchronization c ! · c ?,
and simulates, in one step, the behavior of p and q from one synchronization to the next.
This is possible thanks to Theorem 4.2, which entails that counter reachability relations are
(effectively) closed under intersection. The construction guarantees that S has a full run if
and only if the constructed one-counter machine N has a full run.

Wrap up. We now have the necessary ingredients to prove the “if” direction of Theorem 3.2.
Consider a weakly-connected topology T that is both cycle-free and shunt-free. We show
that Rp-Sc1cm(T) is reducible to Rp-1cm. If T contains only one process, then T contains
no channel as it is cycle-free, hence, Rp-Sc1cm(T) is obviously reducible to Rp-1cm.
Assume that T contains at least two processes. By Proposition 3.3, there exists two distinct
processes r, r′ and a channel c, with r c

r′, such that, for every simple undirected path
(p0, c1, p1, . . . , cn, pn, d, q) with p0 ∈ {r, r′} and q 6∈ {r, r′}, the process q has type ◦ on the
channel d. Moreover, according to Proposition 3.4, we may replace some endpoints (p, ◦) by
(p, •), as the reachability problem Rp-Sc1cm(T) is reducible to the reachability problem for
the transformed topology. So we assume, without loss of generality, that for every simple
undirected path (p0, c1, p1, . . . , cn, pn, p, d, q) with p0 ∈ {r, r′}, the process p has type • on
the channel d. In particular, r and r′ have type • on c.

Since T is cycle-free, its underlying undirected graph (P, { c }c∈C) is a tree. Pick a leaf
process q that is distinct from r and r′ (if any). Let T − q denote the topology obtained from
T by removing the process q as well as its pendant channel. The simple undirected path from
r to q ends with a channel p d

q that satisfies C(q) = {d}, p has type • on d and q has type
◦ on d. It follows from Lemma 4.3 that Rp-Sc1cm(T) is reducible to Rp-Sc1cm(T − q). By
iterating this elimination technique in a bottom-up fashion, we obtain that Rp-Sc1cm(T) is
reducible to Rp-Sc1cm(U) where U is the topology consisting of the two processes r, r′ and
the single channel c. According to Lemma 4.4, Rp-Sc1cm(U) is reducible to Rp-1cm. We
conclude that Rp-Sc1cm(T) is reducible to Rp-1cm. Since the latter decidable, we get that
the former is decidable, too.

5 Systems with Eager Communication

As seen in our motivating example of Figure 1, cyclic topologies are the backbone of
communication protocols. However, already for Cfsm, the reachability problem is undecidable
in presence of cycles, which is also mirrored in Theorem 3.2. In this section, we consider a
restriction to so-called eager runs. This restriction provides an under-approximative answer
to the reachability problem Rp-Sc1cm(T) considered in the previous sections. Eager runs
are close to globally 1-bounded runs, and have been successfully applied, in combination with
other restrictions, to the reachability analysis of communicating pushdown processes [13].

I Definition 5.1. A full run ρ = (σ0, a1, σ1, . . . , an, σn) in JSK is called eager if, for every
channel c and for every index i ∈ {1, . . . , n− 1}, it holds that ai = c ! if and only if ai+1 = c ?.

FSTTCS 2012

234 Safety Verification of Communicating One-Counter Machines

Thus, eagerness transforms asynchronous message-passing communications into rendezvous
synchronizations. This may seem rather restrictive. Actually, eagerness is equivalent, up
to re-ordering1, to the requirement that all other channels be empty when one channel is
transferring a message [13]. Therefore, eagerness encompasses half-duplex communication.

The eager-reachability problem Rp-Sc1cm-eager(T) is defined in the same way as
Rp-Sc1cm(T) except that we search for a full run that must be eager. By definition, this prob-
lem provides an under-approximative answer to Rp-Sc1cm(T). This under-approximation
is exact when the topology is cycle-free. Indeed, for such topologies, full runs can be
re-ordered into eager ones [13]. It follows from Theorem 3.2 that, for every cycle-free topo-
logy T , Rp-Sc1cm-eager(T) is decidable if and only if T is shunt-free. Hence, eagerness
is only interesting in presence of cycles. For the remainder of this section, we focus on
cyclic communication. The following proposition establishes the decidability frontier of the
eager-reachability problem for the particular case of strongly-connected topologies.

I Proposition 5.2. Given a strongly-connected topology T , Rp-Sc1cm-eager(T) is decid-
able if and only if T contains at most two processes.

We first consider the simplest strongly-connected topology with two processes p c q d p,
where all channel endpoints have type •. Then, eagerness allows us to reverse the direction
of a channel, leading to p c q d p. With the same encoding as in Lemma 3.5, we may
tag each message by the channel c or d that it is sent over. As eager message passing only
uses one channel at a time, we can assert that all messages are now passed over one common
channel. Hence we can apply the decidability result of Lemma 4.4 on two processes connected
by one channel. This construction can be extended to more than two channels between p
and q. A strongly-connected topology may also contain self-loops, but they become irrelevant
by the restriction to eager runs. Finally, we extend this result to topologies with channel
endpoints of type ◦ by Proposition 3.4 (generalized to eager-reachability).

For the converse, consider a strongly-connected component with at least three processes.
We may assume, without loss generality, that all channel endpoints have type ◦. The
component necessarily contains (a) a directed cycle of length at least three, i.e., assuming
for simplicity that the length is three, a sub-topology Ta of the form p c q d r e p, or
(b) two directed cycles, each of length two, that are disjoint except for one common process,
i.e., a sub-topology Tb of the form q c p d r e p f q. We show a reduction from the
reachability problem for two-counters machines. The restriction to eager runs guarantees
that each send is immediately followed by the matching receive. We use this restriction to
implement a protocol that gives one distinguished process access to the two counters, the
latter being stored and passed around in the topology without getting lost. In the case of
Ta, process p simulates the two-counters machine by maintaining one of the counters locally,
and the other at r. To let p use the other counter, the protocol ensures that we switch the
counters by using q as buffer. In the case of Tb, the two-counters machine is simulated by p,
while q and r are used as registers for either one of the two counters.

Let us come back to the sliding window protocol of Figure 1. Assume that, in both
processes, receptions have precedence over transmissions. This priority ensures that channels
are used in a half-duplex way. By [13], every full run can then be re-ordered into an eager
one. Since the topology of Figure 1 falls in the scope of the previous proposition, we can
decide whether the protocol is safe or not (when priority is given to receptions).

1 A run ρ can be re-ordered into a run ρ′ if ρ can be transformed into ρ′ by iteratively commuting adjacent
transitions that (i) are from different processes, and (ii) do not form a matching send/receive pair.

A. Heußner, T. LeGall, and G. Sutre 235

6 Conclusion and Perspectives

Systems of communicating one-counter machines introduce two additional sources of infinity
with respect to Cfsm, namely, the infinite message alphabet and the local counters. Thanks
to a characterization of one-counter reachability relations in terms of binary Presburger
predicates, we have obtained a complete classification of the topologies having a solvable reach-
ability question. This shows, in particular, that decidable topologies are the same as for the
weaker model of Cfsm (provided that they contain no shunt). To address topologies allowing
mutual communications, we have considered an under-approximative approach by restricting
runs to eager ones. As a preliminary result, we have characterized the strongly-connected
topologies that have a solvable eager-reachability question. A complete characterization of
decidable topologies for eager reachability is currently under investigation. Further, we plan
to extend our results from counters to stacks, i.e., to systems of communicating pushdown
machines that can exchange the value of their stacks.

References
1 P. Abdulla, B. Jonsson. Verifying programs with unreliable channels. Information and

Computation, 127(2):91–101, 1996.
2 S. Böhm, S. Göller, P. Jančar. Bisimilarity of one-counter processes is PSPACE-complete.

In Proc. CONCUR’10, LNCS 6269, pp. 177–191. Springer, 2010.
3 M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin. Two-variable logic on

data words. ACM Trans. Computational Logic, 12(4):27, 2011.
4 B. Bollig, A. Cyriac, P. Gastin, K. Narayan Kumar. Model checking languages of data

words. In Proc. FOSSACSS’12, LNCS 7213, pp. 391–405. Springer, 2012.
5 A. Bouajjani, P. Habermehl, R. Mayr. Automatic verification of recursive procedures with

one integer parameter. Theoretical Computer Science, 295:85–106, 2003.
6 D. Brand, P. Zafiropoulo. On communicating finite-state machines. Research Report 1053,

IBM Zürich Research Laboratory, 1981.
7 P. Chambart, P. Schnoebelen. Mixing lossy and perfect fifo channels. In Proc. CONCUR’08,

LNCS 5201, pp. 340–355, 2008.
8 S. Demri, R. Lazic, A. Sangnier. Model checking freeze LTL over one-counter automata.

In Proc. FOSSACS’08, LNCS 4962, pp. 490–504. Springer, 2008.
9 A. Finkel. Decidability of the termination problem for completely specified protocols. Dis-

tributed Computing, 7(3):129–135, 1994.
10 A. Finkel, G. Memmi. Fifo nets: a new model of parallel computation. In Proc. TCS’83,

LNCS 145, pp. 111–121. Springer, 1983.
11 A. Finkel, G. Sutre. Decidability of reachability problems for classes of two counters auto-

mata. In Proc. STACS’00, LNCS 1770, pp. 346–357. Springer, 2000.
12 S. Göller, C. Haase, J. Ouaknine, J. Worrell. Branching-time model checking of parametric

one-counter automata. In Proc. FOSSACS’12, LNCS 7213, pp. 406–420. Springer, 2012.
13 A. Heußner, J. Leroux, A. Muscholl, G. Sutre. Reachability analysis of communicating

pushdown systems. Logical Methods in Computer Science, 8(3:23):1–20, 2012.
14 S. La Torre, P. Madhusudan, G. Parlato. Context-bounded analysis of concurrent queue

systems. In Proc. TACAS’08, LNCS 4963, pp. 299–314. Springer, 2008.
15 T. LeGall, B. Jeannet. Lattice automata In Proc. SAS’07, LNCS 4634, pp. 52–68.

Springer, 2007.
16 M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
17 J.K. Pachl. Reachability problems for communicating finite state machines. Research

Report CS-82-11, Dept. of C.S. Univ. of Waterloo, 1982.

FSTTCS 2012

	Introduction
	Systems of Communicating One-Counter Machines
	A Characterization of Topologies with Solvable Reachability
	Decidability of Cycle-free and Shunt-free Topologies
	Systems with Eager Communication
	Conclusion and Perspectives

