
k-delivery traveling salesman problem on tree
networks∗

Binay Bhattacharya1 and Yuzhuang Hu2

1 School of Computing Science, Simon Fraser University,
Burnaby, Canada, V5A 1S6
binay@cs.sfu.ca

2 School of Computing Science, Simon Fraser University,
Burnaby, Canada, V5A 1S6
huyuzhuang@gmail.com

Abstract
In this paper we study the k-delivery traveling salesman problem (TSP) on trees, a variant of the
non-preemptive capacitated vehicle routing problem with pickups and deliveries. We are given n
pickup locations and n delivery locations on trees, with exactly one item at each pickup location.
The k-delivery TSP is to find a minimum length tour by a vehicle of finite capacity k to pick
up and deliver exactly one item to each delivery location. We show that an optimal solution for
the k-delivery TSP on paths can be found that allows succinct representations of the routes. By
exploring the symmetry inherent in the k-delivery TSP, we design a 5

3 -approximation algorithm
for the k-delivery TSP on trees of arbitrary heights. The ratio can be improved to ( 3

2−
1

2k ) for the
problem on trees of height 2. The developed algorithms are based on the following observation:
under certain conditions, it makes sense for a non-empty vehicle to turn around and pick up
additional loads.
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1 Introduction

In the capacitated vehicle routing problem with pickups and deliveries (CVRPPD), we
are given an undirected complete graph G=(V , E), with edge costs satisfying the triangle
inequality, and each vertex is associated with a pickup or a delivery load. A vehicle, or a
fleet of vehicles with finite capacity k, traverses the edges of G and serves all the pickup
and delivery nodes. During the traversal, the vehicle should never exceed its capacity. The
objective is to find a minimum length tour, which starts at the depot and traverses all
the nodes of G while satisfying the pickup/delivery demands of the nodes. CVRPPD can
capture many real-world transportation and distribution problems. It is a generalization
of the traveling salesman problem, and is therefore NP-hard. The problem can further be
generalized based on whether preemption of loads of vehicles is allowed. The preemptive
version allows the vehicle to temporarily unload the items at an intermediate point of the
network which will later be picked up for the delivery. In this note we consider the case
where the preemption of loads is not allowed. It is not difficult to see that any solution to
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CVRPPD without preemption is an upper bound on the optimal solution where preemption
is allowed. A survey of these problems can be found in [5, 6].

In this paper, we focus on a variant of CVRP with pickups and deliveries, called the
k-delivery traveling salesman problem.

1.1 k-Delivery traveling salesman problem (k-delivery TSP)
Here the vertex set V = Vp ∪ Vd is partitioned into a set Vp of pickup vertices and a set Vd of
delivery vertices. Each vertex of Vp provides an item, and each vertex of Vd requires one item.
A vehicle with capacity k starts from a depot and gathers items from the pickup vertices,
and delivers them to the delivery vertices before returning to the depot. All the items are
identical, therefore an item picked up from a vertex in Vp can be delivered to any vertex in
Vd. We assume here |Vp| = |Vd|, and the capacity k < |Vp|. The objective of the k-delivery
TSP is to determine a minimum cost tour of the nodes of G subject to the vehicle capacity
constraint.

The k-delivery TSP is also called the capacitated pickup and delivery TSP (CPDTSP) in
[8]. Lim et al. [8] showed that the problem can be solved optimally in time O(n2/min(k, n))
on paths, where n is the number of vertices of G. The authors proved in the same paper
that the k-delivery TSP is NP-hard in the strong sense even for trees with height 2, using
a reduction from the 3-partition problem. A 2-approximation algorithm for the k-delivery
TSP on trees is later given in [7]. This algorithm follows a rule that the vehicle would
continue to pick up (or deliver) items if possible. The best known approximation ratio of 5
for the k-delivery TSP on general graphs is due to Charikar et al. in [4]. The first constant
factor approximation algorithm for the problem was proposed by Chalasani et al. in [2]. A
restricted version of the problem was considered in [1].

1.2 Our results
Our results described in this paper are summarized as follows:

1. For the k-delivery TSP on paths, a linear time algorithm is proposed to find the optimal
solution. This improves the running time O(n2/k) of the algorithm in [8].

2. For the k-delivery TSP on trees, we improve the approximation ratio to 5
3 . The best

known approximation ratio 2 is due to Lim et al. in [7]. This ratio can be improved to
3
2 −

1
2k for trees with height 2.

All the developed algorithms use a come-back rule. Under this rule the vehicle would
not be allowed to cross a particular edge e if some certain condition is met. According to
the come-back rule, the vehicle postpones delivering its load immediately and picks up more
items instead for a better solution. As a consequence, on its way to pick up more loads,
the vehicle may traverse several edges without delivering any items, even when it has a
non-empty load. This is somewhat contrary to our intuition. However, in this paper we show
that this strategy is effective for the k-delivery TSP on paths and trees.

2 Lower bounds

We describe a widely used lower bound, called the flow bound, for tree networks for the
considered problems. Some notations used to describe the lower bound are similar to the
one used in [3] and [8].
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It is assumed in this paper that the depot node is located at the root of the tree network.
The vehicle starts and ends its tour at the depot node. The flow bound for the k-delivery
TSP on trees is described below. Denote a subtree rooted at vertex u by Tu and the parent
of u by p(u). For each vertex v of G, we associate a label a(v) with it, which is set to 1 if it
is a pickup vertex, and -1 if it is a delivery vertex. For trees, we define g(v) =

∑
t∈Tv

a(t) to
be the net number of items of all the vertices in Tv. Then any k-delivery TSP tour must
traverse edge e = (p(v), v) at least 2max{d |g(v)|

k e, 1} times.
Note here that the flow bound described above is a preemptive lower bound. For all the

problems we solved, we bound our solutions to the optimum of the preemptive version of
these problems.

3 Linear time algorithm for the k-delivery TSP on paths

As implied by the flow bound, an optimal solution of the problem on paths may contain
O(n2/k) edges. The algorithm in [8] takes O(n2/k) time since it constructs the final optimal
solution by explicitly enumerating its edge sequences. However, in this paper we show that
our optimal schedule has a succinct linear size representation and the optimal schedule can
be computed in linear time.

vu
e

1 1 1

2

3 3 3

4 4

2 2

4

Figure 1 A succinct representation of an optimal solution for the k-delivery TSP on a path where
k=2. A white circle represents a pickup vertex and a black circle represents a delivery vertex.

In the succinct representation (see Figure 1), the solution comprises several subroutes,
r1, r2, · · · , rt. Each vertex is marked to be picked up or delivered by one such subroute. For
each subroute ri, where 1 ≤ i ≤ t, the vehicle travels along the path from the leftmost vertex
to the rightmost vertex, which are marked by this subtour. In the meantime, the vehicle
services all the vertices marked by the subtour. After reaching the rightmost vertex, the
vehicle comes back to the leftmost vertex marked by the next subtour ri+1, and the above
process continues. It is clear that such a representation needs only O(n) space.

Let P =< v1, v2, ..., vn > be the path network where the depot is located at v1. Note that
v1 could be a pickup or a delivery vertex. Define g(vi) =

∑i
t=1 a(vt) to be the net number

of items among vertices to the left of v (including v). Using the values g(v) of the nodes
v of P , we partition P into path segments Pi with endpoints qi and q′i, i = 1, 2, .., where
g(q′i) = 0, and g(w) is nonzero for all the remaining vertices w of the segment Pi. The vehicle
traverses Pi from the left if g(qi) > 0, otherwise Pi is traversed from the right. Note that
any feasible schedule will traverse every edge of the path at least twice. Therefore, without
any loss of generality we assume that, except the last vertex, g(w) > 0 for all w of P . The
main contribution of our algorithm is a strategy called come-back-path. The procedure scans
the path from left to right and maintains a route number and two stacks. The route number

FSTTCS 2012
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represents the number of the current subtour, and is used to mark each vertex for a succinct
representation. A stack called vehicle-stack is used to simulate the behaviour of the vehicle;
pushing a vertex to vehicle-stack has the same effect as loading one item from the vertex
into the vehicle, and popping a vertex from vehicle-stack means the vehicle delivers one item
to the vertex. During the processing, a pickup vertex is put into vehicle-stack if the current
vehicle load is less than k, otherwise, it is stored in another stack called repository-stack.

The algorithm can be briefly stated as follows:

Procedure come-back-path {
Scan the vertices from left to right.
Step (a) (The vertex is a pickup vertex.) The vertex is pushed into vehicle-stack if

the size of the stack is less than k. Otherwise it is pushed into repository-stack.
Step (b) (The vertex is a delivery vertex.) An item from vehicle-stack is popped and

delivered to the delivery vertex.
If the next vertex to be processed is also a delivery vertex, check if the total size
of the two stacks is a multiple of k.
If the condition is true, the action is not to proceed to the next delivery vertex.
Instead a new subroute is created, and the vehicle goes back to pick up more
loads. This is accomplished by transferring loads from repository-stack to fill up
vehicle-stack. The size of vehicle-stack is now k.

}
We define b1(t) and b2(t) to be the number of items in vehicle-stack and repository-stack

respectively at time step t. By our assumption, the vehicle is moving from left to right.
Let the vehicle reach a delivery vertex u at time step t′. The come-back-path strategy
applies when the next vertex v is also a delivery vertex. The triggering condition for the
come-back-path strategy here is whether (b1(t′) + b2(t′)) mod k = 0. In other words, the
vehicle is allowed to cross edge e = (u, v) from delivery vertex u to delivery vertex v only if
(b1(t′) + b2(t′)) mod k 6= 0. Otherwise, the current subtour is terminated and the vehicle
comes back to pick up the topmost (b2(t′) mod k) items in repository-stack. To ease the
analysis, we assume that the vehicle picks up these items on its way back from u (when
the vehicle is moving leftwards). This is achieved by increasing the route number by 1 and
transferring the topmost b2(t′) mod k items of repository-stack to vehicle-stack.

The come-back-path strategy guarantees that the solution produced by this procedure
satisfies the flow bound for the k-delivery TSP. This is stated in the following lemma.

I Lemma 1. For an edge e of the path segment, let the subtours found by procedure come-
back-path passing through e be r1, r2, · · · , rm. The vehicle crosses e from left to right in
each of the routes r3, · · · , rm, with exactly k items. Moreover, the vehicle carries the rest
(more than k) items in r1 and r2.

Proof. Omitted. J

The following theorem is implied by the above lemma.

I Theorem 2. For an edge e = (u, v) of the path segment, the tour determined by procedure
come-back-path crosses e exactly 2d |g(u)|

k e times which is the flow bound of e.

4 A 5
3-approximation algorithm for the k-delivery TSP on trees

Wang et al. [8] showed that the problem is NP-complete in the strong sense even on trees
of height 2. In this section we present a 5

3 -approximation algorithm called half-load for the
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k-delivery TSP on trees of arbitrary heights. The half-load algorithm is also based on the
come-back rule and it achieves a ( 3

2 −
1

2k )-approximation for the k-delivery TSP on trees
of height 2. Our initial focus is on height 2 tree networks. The methodology will then be
generalized to accommodate arbitrary height tree networks.

Let T = (V,E) denote the tree network containing n vertices. Let Vp and Vd be the set
of pickup and delivery vertices of T . We are assuming that the tree network is rooted and
the depot location is at the root. We call a subtree Tu positive (negative) if it contains
more (less) vertices from Vp than from Vd. An edge e = (p(u), u) or the vertex u is positive
(negative) if subtree Tu is positive (negative). Here p(u) is the parent node of the non-root
node u. For an edge e = (p(u), u), we say some vertices/items are picked up from (delivered
to) e or u, if we pick up (deliver) these vertices/items from (to) the subtree Tu; we say e has
a pickup (delivery) load of g(e) if exactly g(e) (which is equal to |g(u)|) net number of items
need to be picked (delivered) through e. We say the vehicle visits (crosses, traverses) e if the
vehicle moves from p(u) to u. Finally we write LBe = d g(e)

k e. Any optimal solution to the
k-delivery TSP will traverse edge e at least 2LBe times.

4.1 Exploring the symmetry of the k-delivery TSP
Our improvements for the k-delivery TSP on trees explore the symmetry inherent in the
problem. In the k-delivery TSP, the underlying graph has only two types of vertices, it’s not
difficult to see that if we flip the type of each vertex, to get a new graph, say G, then the
k-delivery TSP has the following property.

I Lemma 3. Any feasible solution of the k-delivery TSP on G can be converted to a feasible
solution of G with the same edge cost, by reversing its edge directions of the routes.

This property allows us to design approximation algorithms for the k-delivery TSP on
trees in the following way. We partition edge set E of the graph into two sets D(G) and
E −D(G) based on some definition D. Assume D(G) = E −D(G). We have

I Lemma 4. Let A be an algorithm that produces tours where each edge in D(G) and
E −D(G) is traversed at most α and β times LBe respectively. Then there exists a solution
generated by A with cost no more than

∑
e
α+β

2 LBe.

Proof. Let τ1 be a tour after applying algorithm A on G. Flip the type of each vertex and
obtain a second tour τ2 by running the same algorithm on G. Since D(G) = E −D(G), each
edge e would be crossed at most (α + β) · LBe times in the two tours. The tour with the
smaller cost is the desired solution. J

Assume algorithm A stated in Lemma 4 is particularly “good” to D(G), in the sense
that α < β. Then Lemma 4 shows that the approximation ratio of A can be further reduced
to α+β

2 . In the proposed half-load algorithm, D(G) is defined to be the set of positive edges
of G. For the k-delivery TSP on trees of height 2, this algorithm achieves α = 1 and β = 2.

4.2 Two phases of the half-load algorithm
The half-load algorithm being proposed here for the k-delivery TSP on trees uses a strategy
called come-back-tree. The algorithm contains two phases, the planning phase and the route
generating phase. In the planning phase, the original graph G is transformed to a multi-graph
G′ as follows. In G′ each positive tree edge e = (p(u), u) is split into several pseudo edges
with total load equal to g(e). Intuitively a pseudo edge e = (p(u), u) records the number
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of items that to be collected from Tu during one visit from p(u) to u. Examples of the
transformation are given in Figures 2 and 3.

A pseudo edge is treated as a scheduling unit in the second route generating phase. Each
time when the vehicle crosses a positive tree edge e = (p(u), u) to service nodes in T (u),
we make sure that the vehicle picks up the full load assigned to a distinct pseudo edge
between p(u) and u. Thus under the half-load algorithm the number of times e is crossed, is
determined by the number of pseudo edges incident to p(u) and u.

5 5 8 3

8

5 385

r

+ + + + − −

4

12 2

2

Figure 2 An example of the pseudo
edges on a tree of height 2. k=8.

5 5 8 3

8

5 385

+ + + + − −

4

12

2

2

u

p(u)

76

+

Figure 3 An example of building pseudo
edges for a vertex u. k=8.

In the example in Figure 2, the capacity k is set to 8. A pseudo edge of the transformed
tree is represented by a dashed line, and a subtree is represented by a triangle with a number
showing the net number of items inside this subtree. We assume in G′ all the pickup and
delivery demands are on the leaves. This can be done easily by adding a pseudo vertex u′ for
each non-leaf vertex u of G, and attaching an edge between u and u′ with zero cost. Since
the first positive tree edge in Figure 2 has a load of more than k, it is split into two edges
with loads 8 and 4 respectively. Other tree edges do not split, since they are either negative
or their loads are less than k.

Note that in the planning phase issues related to route generation, such as the route
feasibility constraints, are not considered. The final schedule is computed in the second phase
by nested recursive calls of several procedures. A brief description of the second phase is as
follows. First a procedure called come-back-tree that adopts the come-back rule is applied on
the first level of the tree to get the servicing sequence of the involved pseudo and negative
tree edges. During the process, two recursive procedures, pickup and deliver, are called to
service the pseudo and negative tree edges respectively. Besides some special processing for
picking up and delivering items, procedure come-back-tree is invoked in both procedures on
the second level of the tree. This process is continued until a leaf node is met. In all the
procedures the vehicle capacity constraint and the non-preemptive scheduling constraint are
always obeyed. This guarantees the feasibility of the generated routes.

4.3 Planning phase of the half-load algorithm
In this subsection we discuss in more detail the procedure to build pseudo edges. On a tree
of height 2 (Figure 2), a positive edge e = (p(u), u) is split into d g(u)

k e pseudo edges. Except
the last, all pseudo edges have a load of k items. The last pseudo edge contains the residual
g(u) mod k items.

For trees with arbitrary heights, the pseudo edges and their links are built recursively
in a bottom-up fashion. The pseudo edges are created from the leaves, and then spread to
higher levels of the tree. For a positive vertex u, let L+ and L− consist of the pseudo and
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negative tree edges from u to its children respectively. The pseudo edges incident to p(u)
and u are generated through the following steps.

First, we select a minimal size subset S of edges from L+ whose load is just enough to
service the edges in L−. The edges in S and L− are then merged together to form a new
pseudo edge e1. This merging is in the sense that linking the edges in S and L− together as
a group and setting g(e1) to be the total load of the involved edges. Let S′ consist of e1 and
the remaining pseudo edges in L+.

Second, a procedure called merge is applied on S′ to produce a new set S′′ of pseudo
edges. The merge procedure repeatedly merges two arbitrary pseudo edges with loads ≤ k

2 .
It is easy to see that each pseudo edge (except possibly one) in S′′ should have load more
than k

2 . We then create a new edge e′ between p(u) and u for each edge e ∈ S′′. The two
edges are linked together through a children link of e′ to remember where the load of e′ is
from. In the second phase, when the load of e′ is requested, the children and group links
can be used to locate all the edges ever participated in generating e (reachable from e by
following the links). An example of building pseudo edges is shown in Figure 3.

4.4 Come-back-tree strategy for the k-delivery TSP on trees
The come-back-tree strategy is applied in the scenario when we are given two lists L+ and
L− and a vertex u where the vehicle with load α is currently at. The negative edges of L−
will be serviced by the items from the positive pseudo edges of L+ and load α of the vehicle.
To ease the explanation, we assume that the tree is of height 2. This procedure also works
for trees with arbitrary heights. The explanations for the general tree networks will be given
later in this paper.

We maintain two pointers z+ and z− pointing to the heads of lists L+ and L− respectively.
Recall that under the come-back rule, the vehicle may not be allowed to cross an edge if
some condition occurs. The triggering condition is raised when the load of the next pseudo
edge pointed to by z+ fits the remaining capacity of the vehicle. In this case the vehicle will
come back from delivering any new load and instead pick up the entire load from the pseudo
edge pointed to by z+. When the triggering condition is not raised, the vehicle begins to
deliver all or part of its current load to the subtree pointed to by z−. When the load of a
pseudo edge is fully consumed, this edge is removed from L+. Similarly when the subtree
pointed to by z− is fully served, this edge is removed from L−. The above process continues
until L+ or L− becomes empty. The procedure then returns the route constructed and the
remaining edges in L+ or L−.

We explain the algorithm in [7] (which we call the full-load algorithm) as follows. For
a vertex u, let L+ = {c+

1 , c
+
2 , · · · , c

+
i } and L− = {c−i+1, · · · , c

−
l } be two lists consisting of

the positive and negative children of u respectively. We also assume that in L+ and L−
the vertices and the subtrees rooted at these vertices are sorted arbitrarily. In the full-load
algorithm, the vehicle would pick up k items at a time consecutively from the subtrees
Tc+

1
, · · · , Tc+

i
, and deliver the k items consecutively to the subtrees Tc−

i+1
, · · · , Tc−

l
. This also

means that the vehicle services the subtrees in the sorted order, and when the vehicle starts
to pick up (deliver), the vehicle would continue to load (consume) items if possible.

An example is given in Figure 4 to show the effectiveness of our come-back-tree strategy. In
this example, k = 8, the input to the algorithm is a list L+ which contains edges e1, e2, · · · , e5
with loads 6, 6, 6, 6, 2 respectively, and a list L− which contains edges e′1, e′2, e′3, e′4 with loads
5, 7, 7, 7 respectively. It is not difficult to verify that only e′3 will be traversed twice if the
come-back-tree strategy is followed. Therefore e1, · · · , e5, e

′
1, · · · , e′4 will be traversed 1, 1, 1,

1, 1, 1, 1, 2, 1 times respectively. If we flip the types of the vertices and apply the same rule,
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then only e1 needs to be visited twice. In this case e1, · · · , e5, e
′
1, · · · , e′4 will be traversed 2,

1, 1, 1, 1, 1, 1, 1, 1 times respectively. However, if we follow the full-load algorithm, then
e1, · · · , e5, e

′
1, · · · , e′4 will be traversed 1, 2, 2, 1, 1, 1, 2, 2, 2 times respectively. It is not

difficult to see that the come-back rule outperforms the full-load strategy in this example.

7 76 6

r

+ + +

7

6 6 6

+

7 7

− − −

7

−

52

66

+

2 5

6

Figure 4 An example of the come-back rule with k=8.

On average, e1, · · · , e5, e
′
1, · · · , e′4 will be visited 3

2 , 1, 1, 1, 1, 1, 1,
3
2 , 1 times respectively

in the two tours (one using G and one using G) after applying the come-back rule. For
trees of height 2, picking up (delivering) vertices through a pseudo edge (tree edge) can be
done optimally (Figure 2). The following lemma shows that the approximation ratio of the
half-load algorithm for the k-delivery TSP on trees of height 2 is 3

2 .

I Lemma 5. The half-load algorithm approximates the k-delivery TSP on trees of height 2
within 3

2 of its optimum.

Proof. According to the come-back rule, each positive pseudo edge is only visited once,
and the vehicle starts to deliver its load, if and only if its load plus the load of the next
positive pseudo edge is more than k. Let r1, r2, · · · , rt be all the routes that pass through
edge e = (p(u), u). We show that t ≤ 2LBe. It is trivially true if t = 1 or 2 since LBe ≥ 1,
so we assume t ≥ 3 in what follows. It is clear that, for q = 1, 2, · · · (2q + 1 ≤ t), the
half-load algorithm makes the vehicle carry a total of at least k + 1 units from Tu in any two
consecutive routes, r2q−1 and r2q, when crossing e from p(u) to u.

Case 1: t is odd. Excluding rt, the vehicle dumped at least (t−1)(k+1)/2 ≥ (t−1)k/2+1
items to Tu. Thus LBe = dg(e)/ke ≥ t−1

2 + 1 = t+1
2 , which implies that t ≤ 2LBe − 1.

Case 2: t is even. Excluding rt−1 and rt, the vehicle dumped at least (t− 2)(k + 1)/2 ≥
(t− 2)k/2 + 1/2 items to Tu. Therefore LBe = dg(e)/ke ≥ t−2

2 + 1 = t
2 , which implies that

t ≤ 2LBe.
Because of the symmetry, e is visited at most 3 ∗ LBe in the two solutions.

J

We can improve the result as descirbed below. The proof is omitted.

I Lemma 6. There is a ( 3
2 −

1
2k )-approximation algorithm for the k-delivery TSP on trees

of height 2.

4.5 Pickup procedure for the half-load algorithm on trees of arbitrary
heights

Assume L+ and L− contain the pseudo and tree edges respectively at the first level of the
transformed tree. Our solution can be computed by invoking come-back-tree(α,L+, L−) with
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α = 0, where the first argument indicates that the vehicle is initially empty. The half-load
algorithm would be complete if we have appropriate pickup and deliver procedures.

Both our pickup and deliver procedures run recursively. Given a positive pseudo edge
e = (p(u), u), the pickup procedure is applied when the vehicle with a load α tries to cross
e to pick up g(e) items from Tu. Let S be the set of pseudo edges involved in generating
e, and let the pseudo edges of S induce subtree TS (reachable from e). The vehicle should
service all the delivery vertices of TS and leave e (from u to p(u)) with α+ g(e) items. This
is achieved by calling the come-back-tree procedure on edges from u to its children. When
this call is completed and there are still some pseudo edges unserviced, the pickup procedure
will be invoked separately on these edges to collect their loads. Note that because of the
non-preemptive nature, the vehicle may enter e and leave e with no items in common. An
example of the pickup scheme is shown in Figure 5.

5 8 3

8

385

+ + − −

4

12

u

p(u)

6
+

2
8

Figure 5 An example of picking up ver-
tices from an edge e = (p(u), u). k = 8 and
the vehicle has an initial load of 2.
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55 5
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Figure 6 An example of delivering vertices to
an edge e = (p(u), u). k = 8 and r is the root of
the tree.

The example in Figure 5 is a subgraph of the example in Figure 3. We want to show
how to pick up 6 vertices from the first positive pseudo edge e1 = (p(u), u) in Figure 3.
Before visiting e1, the vehicle is assumed to already carry 2 vertices; since k = 8, the vehicle
should be able to leave p(u) with 8 vertices. We only consider the schedule among the edges
from u to its children involved in generating e1. Let e+

1 , e
+
2 , e

+
3 , e
−
1 and e−2 be the 5 edges

from u to its children as shown in Figure 5, respectively from left to right. In this example,
the vehicle visits these edges in the order of e−1 , e

+
1 , e

−
1 , e

+
2 , e

−
2 , e

+
3 . The 8 vertices leaving

p(u) with the vehicle are from e+
2 and e+

3 .
The route implied by the planning phase (a bottom-up approach) for TS assumes zero

initial vehicle load. We need to show that the tour is still feasible if the vehicle already has a
load. Recall that in the come-back-tree procedure, further picking up of items through a
positive pseudo edge e is allowed only if the load of e (i.e. g(e)) fits the remaining vehicle
capacity. Therefore, when the vehicle decides to pick up g(e) items, it is always guaranteed
that the vehicle can service all the items on TS and come back to p(u) without violating the
capacity constraint. This also shows the effectiveness of our planning phase.

4.6 Deliver procedure for the half-load algorithm on trees of arbitrary
heights

The deliver procedure is applied when the vehicle with α items tries to service a negative tree
edge e = (p(u), u). It needs an additional parameter L′+ which is a list of positive pseudo
edges not in Tu, from which g(e) items are delivered to the vertices of Tu. More specifically,
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L′+ contains the pseudo edges remaining when procedure deliver is invoked on e during a
previous execution of procedure come-back-tree.

If u is a leaf node, then we simply deliver one item in the vehicle to service u. If u is not
a leaf, we descend one level and calls procedure come-back-tree to service all the edges from
u to its children. Different from the case for trees of height 2, some special processing is
needed for trees with arbitrary heights.

First, before servicing the delivery vertices of Tu, the edges of L′+ are attached to the
end of list L+ which consists of the positive pseudo edges from u to its children. According
to the come-back-tree strategy, when the vehicle gathers the vertices from the last positive
pseudo edge of the original L+, the deliver procedure requires the information of the next
positive pseudo edge of L′+. This information will be used to decide whether the vehicle
should come back and pick up some more supplies from outside Tu, to guarantee that every
negative tree edge is traversed no more than twice the optimum.

Second, after the stitching of L′+ and L+, the merge procedure is applied on the new
list before invoking procedure come-back-tree. Thus during the execution of the half-load
algorithm, L+ always contains at most one pseudo edge with load of no more than dk2 e.
Since the algorithm runs recursively, the positive pseudo edges at higher levels of the tree
are merged first. The merging, and also the way of merging in the algorithm are important
for the performance guarantee. A formal proof for the correctness of the strategy is shown in
Lemma 7.

I Lemma 7. For two consecutive visits to a negative tree edge e = (p(u), u) in the direction
of p(u)→ u, the vehicle carries more than k vertices from outside Tu.

Proof. In the algorithm, after stitching together L′+ and L+, the new list L+ includes all the
available positive pseudo edges (from outside Tu) which can be used to service e. For trees
with arbitrary heights, the crossing of e from p(u) to u might be triggered by the come-back
rule when it tries to service a negative edge inside Tu. In this case the vehicle would come
back and cross e from u to p(u) to pick up more items from outside Tu. We claim that the
pickup vertices (not in Tu) passing through e from p(u) to u, are picked up consecutively
from the edges of list L′+ starting from its head, and all except possibly one of the edges in
L′+ contain more than dk2 e vertices.

The first part of the claim holds, because in the deliver procedure, the edges of L′+ is
attached to the end of L+. Therefore, after all the positive edges in the original L+ are
processed, the pickup items crossing e from p(u) to u, must be picked up consecutively from
the edges of list L′+. The latter part of the claim holds, because the deliver procedure gives
merging priority to higher level pseudo edges of the tree. So no matter L′+ is obtained during
the planning phase, or during an earlier call of the pickup or deliver procedure, the merging
step has always been deployed on L′+. This completes the proof.

J

While the proof follows naturally from the algorithm, in the following we further explain
why, during the delivery process, our way of merging is important for the performance
guarantee. Assume before servicing a negative edge e′ in Tu, the come-back rule is triggered
and the vehicle crosses e from u to p(u) to pick up more items, say from a pseudo edge e′′
outside Tu. The vehicle collects the items from e′′ and returns to Tu to service e′. Since
the tree is of arbitrary height, the path P between e′ and e′′ may contain multiple negative
edges. We need to guarantee that for all such visits (except possibly one) on an edge e, the
vehicle carries more than k

2 distinct items.
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Consider the tree in Figure 6. Let the four negative children of u be v1, v2, v3, and v4
respectively (from left to right). For edge e = (p(u), u), LBe = 2. Assume the pseudo edges
in Figure 6 are not merged. Before serving the negative edge in Tv1 , the vehicle has a load
of 8 and the first two pseudo edges in the list have loads 5 and 2 respectively. Before serving
each negative edge in Tv2 , Tv3 and Tv4 , the vehicle has a load of 7 and the first two positive
pseudo edges in the list have loads 5 and 2 respectively. It is easy to see that in this example,
edge e = (p(u), u) is traversed 2.5 times of LBe if the come-back rule is deployed but the
merging is not applied. If the priority of merging is not given to edges at higher levels of a
tree, e.g., if each positive pseudo edge with load 5 is merged with a positive edge with load 2,
then e will also be traversed 2.5 times LBe.

I Lemma 8. The half-load algorithm is a 2-approximation for the k-delivery TSP on trees.

Proof. First, it is not difficult to see that the tour is feasible, since in the tour all the vertices
are served and the capacity constraint is always obeyed. Given an edge e of the tree, we
prove that the number of traversals the half-load algorithm makes on e = (p(u), u) is no
more than 2LBe. We have the following two cases:

Case 1: Tu is positive. Let list L+ contain all the pseudo edges on e. Each pseudo edge
e′ in L+ is traversed only once in the algorithm, thus the number of traversals the algorithm
makes on e is just the number of pseudo edges in L+. According to our merging rule in the
planning phase, all pseudo edges, except possibly one, must have loads more than k

2 . Assume
the vehicle carries exactly bk2 c + 1 vertices each time during the first |L+| − 1 visits on e.
This is the worst case our algorithm could have on e. Let the last edge in L+ be e′. When k
is odd, the vehicle should carry at least bk2 c+ 1 vertices during the last visit on e. In the
following we show that |L+| ≤ 2LBe − 1 when k is even. The case when k is odd can be
argued similarly.

Subcase 1: |L+| is odd. For the first |L+| − 1 visits, the lower bound of the number of
traversals on e (part of LBe) is |L+|−1

2 , if excluding |L+| − 1 vertices from these visits. There
must be one additional visit for these excluded vertices and the vertices in e′. So in total
LBe ≥ |L+|−1

2 + 1 = |L+|+1
2 , which is equivalent to |L+| ≤ 2LBe − 1.

Subcase 2: |L+| is even. For the first |L+| − 2 visits, if excluding |L+| − 2 vertices,
the lower bound of the number of traversals on e (part of LBe) is |L+|−2

2 . The vehicle
must also carry more than k vertices during the last two visits, so there must also be two
additional visits in LBe. Thus in total LBe ≥ |L+|−2

2 + 2 = |L+|+2
2 , which is equivalent to

|L+| ≤ 2LBe − 2.
Case 2: Tu is negative. In this case we may have two visits on e, where the vehicle

dumps less than k
2 pickup vertices on e. However, according to Lemma 7, the total vehicle

load is more than k during every two consecutive traversals on e. The proof then follows
much in the same way as the proof of Lemma 5. J

4.7 A 5
3-approximation for the k-delivery TSP on trees of arbitrary

heights

In this section, we prove that the smallest cost tour from three tours, obtained by applying
the full-load algorithm in [7] on G (or G), and the half-load algorithm on G and G, is bounded
by 5

3 times of the optimum.
The full-load algorithm [7] has its advantages and disadvantages. The advantage is that

after the vehicle gathers exactly k items, it traverses several subsequent edges optimally. The
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disadvantage is that, before the vehicle is full, and after delivering these k vertices begins,
some edges of the tree might have to be traversed twice of their optimum. It is not difficult
to see that the half-load algorithm exchanges its advantages and disadvantages with the
full-load algorithm. This explains intuitively why we balance three tours as our final solution.
We formally prove the approximation ratio 5

3 of our final solution in Theorem 9.

I Theorem 9. The final solution is a 5
3 -approximation for the k-delivery TSP on trees of

general heights.

Proof. Given an edge e = (p(u), u), let Sol1 be the solution after applying the full-load
algorithm on G (or G), and Sol2 and Sol3 be the solutions after applying the half-load
algorithm on G and G respectively. As shown in [7], e is only traversed at most LBe + 1
times in Sol1. Note here that G is obtained from G by simply relabeling the pickup vertices
as delivery vertices and vice versa.

If e is positive, e is visited at most 2LBe − 1 times in Sol2 according to Lemma 8. Since
e is negative in G , e is crossed at most 2LBe times in Sol3 (established in the proof of
Lemma 5). Because of the symmetry, e is traversed at most 5LBe times in the three tours
for any e. J

5 Conclusions and future work

In this paper we propose a rule called the come-back rule for a variant of the capacitated
vehicle routing problem with pickups and deliveries on trees. We illustrate this rule by
an optimal algorithm for the k-delivery TSP on paths. We show this rule can be utilized
to improve the approximation ratio for the k-delivery TSP on trees. Observing that the
Dial-a-Ride problem [3] is also symmetric as in Lemma 3, in the future we will further
investigate the Dial-a-Ride problem on trees and the k-delivery TSP on general graphs.
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