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Abstract
Let G be an undirected weighted graph with n vertices and m edges, and k ≥ 1 be an integer. We
preprocess the graph in Õ(mn)1 time, constructing a data structure of size Õ(k · deg(v) + n1/k)
words per vertex v ∈ V , which is then used by our routing scheme to ensure successful routing
of packets even in the presence of a single edge fault. The scheme adds only O(k) words of
information to the message. Moreover, the stretch of the routing scheme, i.e., the maximum
ratio of the cost of the path along which the packet is routed to the cost of the actual shortest
path that avoids the fault, is only O(k2).

Our results match the best known results for routing schemes that do not consider failures,
with only the stretch being larger by a small constant factor of O(k). Moreover, a 1963 girth
conjecture of Erdős, known to hold for k = 1, 2, 3 and 5, implies that Ω(n1+1/k) space is required
by any routing scheme that has a stretch less than 2k + 1. Hence our data structures are
essentially space efficient. The algorithms are extremely simple, easy to implement, and with
minor modifications, can be used under a centralized setting to efficiently answer distance queries
in the presence of faults.

An important component of our routing scheme that may be of independent interest is an
algorithm to compute the shortest cycle passing through each edge. As an intermediate result,
we show that computing this in a distributed model that stores at each vertex the shortest path
tree rooted at that node requires Θ(mn) message passings in the worst case.
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1 Introduction

Computer networks are increasingly becoming distributed in nature and consequently recent
years have seen extensive work in the areas of distributed algorithms and computing. In the
distributed model of computation, which is a more restricted version of the heavily researched
parallel model, the processors or vertices, are usually bereft of access to a common shared
memory, have only limited knowledge about the network topology and need to communicate
with each other through message passing. Evidently this makes the problem of efficiently
routing messages of core importance to distributed computing.

The process of routing a packet involves successively passing it through a series of vertices
until it reaches its destination. A routing scheme is the underlying algorithm that runs as
a background process on all the vertices and manages the routing process. When a vertex
receives a message, the routing scheme processes the information stored in the packet header
and determines what needs to be done with the message using the routing information

1 The notation Õ(h(n)) is short for O(h(n) logO(1) n)
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available locally at the vertex. While it is often desirable to route the packet along the
shortest path to its destination, its a well known fact that such an algorithm must use at
least Ω(n) space per vertex.

This has lead to extensive research pertaining to compact or sub-quadratic space routing
schemes. The two most important factors to consider while designing such schemes are the
space requirements per node and the stretch of the routing scheme, that is, the maximum
ratio between the length of the path along which the packet is routed to the length of the
actual shortest path that the scheme can have for any graph.

After a series of results (refer [2, 9] for a summary of compact routing schemes), Thorup
and Zwick[9] came up with some truly remarkable results. They presented near-optimal
compact routing schemes that store only Õ(n1/k) words of information at each vertex and
have a stretch of 2k − 1 when using a handshaking procedure by which the source and
destination agree on an o(log2 n) bit header that is attached to all packets, or an increased
stretch of 4k − 5 when not using handshaking.

Peleg and Upfal[8] give the corresponding lower bounds by proving that any routing
scheme for general graphs with a stretch k ≥ 1 must store at least Ω(n1+1/(2k+4)) bits of
routing information in the network. Also a 1963 girth conjecture of Erdős[6], known to hold
for k = 1, 2, 3 and 5, implies that Ω(n1+1/k) space is required by any routing scheme that has
a stretch less than 2k + 1. Hence the results of Thorup and Zwick are essentially optimal.

In this paper we study the problem of fault tolerant routing which is but a natural
extension of the problem of routing and rather practical given that real world networks are
quite prone to a variety of faults. Given a positive edge weighted graph G = (V,E) with
|V | = n and |E| = m, let a message traveling from a source vertex s to its destination t be
currently at vertex u and let the next vertex along the shortest path to t be v. In the event
of failure of the edge (u, v), a standard routing scheme would be unable to continue routing
until the fault has been rectified. Our objective therefore is to design routing schemes that
can ensure that the message can still be routed to t along some other path not containing
the faulty component, provided such a path exists. To this effect we store some additional
information at each vertex during the preprocessing stage of the routing scheme. Upon
encountering a failure, this information is added to the message header to facilitate continued
routing.

The first significant work that studies the problem of computing the exact paths in the
presence of single edge or vertex failures in weighted directed graphs was done by Demetrescu
et al. [5]. They present a data structure of O(n2 logn) size which can be computed in
O(mn2) time and reports the shortest path avoiding a faulty edge or vertex between any pair
of vertices. Bernstein and Karger[1] improved the preprocessing time to O(mn logn). But
neither of these algorithms is distributed in nature, and are therefore unsuitable for routing.

Courcelle and Twigg[11, 4] study the problem of exact routing avoiding a set of known
forbidden vertices in weighted graphs with bounded tree width. Given a graph with tree
width k and set F of forbidden vertices, they assign labels of size Õ(k2) bits to each vertex
and use this information to aid in the routing process. This space requirement would be
construed as rather large as even planar graphs have tree-widths of Õ(n1/2) and hence would
require routing tables of size Õ(n). Gavoille and Twigg[7] further improved these results to
give tables of size Õ(k) for routing in planar graphs, thereby matching the corresponding
best known results for shortest path routing within logarithmic factors.

Given an undirected weighted graph with edge lengths in the range [1,W ], Chechik et
al.[3] give an O(kn1+1/k · logn · log(nW )) space data structure that can route a message
along a path that avoids a known set of faulty edges as long as there are no more than
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2 faults. This path along which the message is routed has a stretch of O(k). Chechik[2]
further improved these results to any arbitrary number of faulty edges F unknown to s,
with the corresponding stretch factors being Õ(

∣∣F ∣∣3k) using routing tables of size at most
O(kn1/k · deg(v) · logn · log(nW )) at each vertex v. We note that there has been little work,
exact or otherwise, to deal with routing in presence of vertex failures in general graphs.

1.1 New results and core techniques
We present simple space efficient data structures that are used by our routing scheme to
route packets even in the presence of a single edge fault.

Model of computation. While the routing process utilizes only the routing information
stored locally at each node and in the packet’s header and hence is distributed in nature,
the computation of this information itself is performed during the preprocessing stage in a
sequential manner and using quadratic space.

For the routing stage, we use a standard asynchronous distributed model of computation
that restricts the size of message headers to Õ(1) bits and has no access to a central shared
memory.

Basic ideas and techniques. Consider a circle on a plane with a diametral chord
intersecting it at points a and b and dividing it into two segments, say C1 and C2. The core
idea behind our routing scheme is that the shortest path along the circle between any pair of
vertices selected from the same segment will not pass through either a or b.

Let vertices u,w lie in C1 with u closer to a, and likewise let vertices v, x lie in C2 with v
closer to a. Also assume that the shortest path from u to v along the circle passes through a
and that (w, x) is an edge. Now if the first edge on the path from u to v were to fail and a
message at u needs to be routed to v, we need only route it along the path u− w − x− v.
This is easily achieved by storing at each vertex, say u, its routing table as well as the edge
(w, x) corresponding to each edge (u, v) incident on it.

Our results. Given a network that uses the compact routing scheme of Thorup and
Zwick[9] constructed with an integer k, we give data structures that store O(k · deg(v))
additional information per vertex v ∈ V and the corresponding routing algorithm that routes
messages along a path of stretch O(k2) in the presence of a single edge fault.

This routing scheme adds only O(k) words of data to the message header upon encoun-
tering a fault and performs only constant amount of computations per node that lies on
the path to its destination (except upon encountering the fault). In particular we prove the
following theorem.

I Theorem 1. Given a positive edge-weighted undirected graph G(V,E) with |V | = n,
|E| = m and a positive integer k, there is an Õ(mn) time constructible routing scheme that
stores Õ(k · deg(v) + n1/k) space per vertex v ∈ V and can route messages along a path no
longer than O(k2) times the shortest path in the presence of a single edge fault. The packet
passed during the routing process has a header of size O(k + logn) words.

1.2 Comparison with existing works
Merits of our results. Compared to the other algorithms that deal with compact edge

fault tolerant routing, namely of Chechik et al.[3, 2], our compact routing scheme has lower
space requirements and comparable stretch, and hence is more applicable in networks which
only suffer from occasional failures.
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Table 1 Edge fault tolerant routing schemes

Demetrescu
et al. [5]

Chechik
et al. [3]

Chechik [2] Our results

Graph type Digraph Undirected Undirected Undirected
Stretch 1 O(k) Õ(|F |3 · k) O(k2)

Distributed? No No Yes Yes
Space required Õ(n2) overall Õ(kn1+1/k ·

log W ) overall
Õ(kn1/k log W

deg(v)) per
vertex v

Õ(k · deg(v) +
n1/k)) per
vertex v

Faults handled 1 2 |F | 1
1 k is the arbitrary integer used by the underlying compact routing scheme
2 F is the set of faulty edges
3 W is the ratio of the weights of the heaviest edge to the lightest edge

Our routing schemes can easily be adapted to answer distance queries in presence of faults
in O(k) time by using the approximate distance oracles of Thorup and Zwick[10] instead of
their compact routing scheme to report distances within O(k2) times the actual distances.

Demerits of our results. Approximate algorithms are generally considered to be
inferior to exact ones but our algorithms do give significant improvements in terms of space
requirement over the other results that handle exact failures, particularly the ones in [11, 4, 7].

For the preprocessing stages, we use sequential algorithms, not distributed ones. But as
is shown in Corollary 13, even with complete access to the routing tables at each node, the
number of messages required to be communicated through the network would still be rather
large and undesirable.

Table 1 gives a comprehensive summary of our results and the previous works related to
edge fault tolerant routing schemes.

1.3 Organization of the Paper
We describe the preliminary concepts and notations used throughout the paper in Section 2.
In Section 3 we present an algorithm for computing the shortest cycle passing through each
edge. We also provide a tight bound on the number of messages required to be communicated
between the nodes, if the problem were to be solved in a distributed model. In Section 4
we present an O(k2)-approximate routing scheme for handling single edge failures in graphs
that perform routing using the compact routing scheme of Thorup and Zwick.

2 Notations and Preliminaries

Without loss of generality we make the following assumptions throughout this paper.
The vertices in the network know each others’ addresses.
They communicate with each other using packets containing small headers used to store
the routing information.
All shortest paths are unique. We can always break ties by either ranking paths or adding
small fractional weights to the edges.
No more than a single edge failure occurs at any time.
Message sizes and space bounds are measured in memory words where a single word is
sufficient to store the edge or vertex labels and edge weights.
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Also we often simply refer to storing information at an edge, when in essence this implies
doing so at both of its end-vertices.

Let G(V,E) be the given undirected graph with |V | = n, |E| = m and a static weight
function W : E → R+ defined over its edges. Let s, t ∈ V be the source and destination
vertices, respectively and let R be the underlying routing algorithm. We then define the
following generic notations.

Tu : the shortest path tree rooted at u.
Tu(v) : the subtree of Tu, rooted at v.
P(u, v) : the original shortest path between u, v.
δ(u, v) : the length of the path P(u, v).
F(u, v) : the first edge along P(u, v).
L(u, v) : the last edge along P(u, v).

We also apply the subscript n to P(u, v) and δ(u, v) to refer to the shortest path in
the presence of a faulty edge, say e which may be provided as a third argument, unless
it is obvious from context. The following are some terminologies and properties that are
fundamental to the paper.

I Definition 2. Consider a packet being routed along a path, say P and let a component,
say e be faulty. Then the stretch of P is defined as the ratio |P| to δn(u, v). We say the
path is exact if it has a stretch of 1. The stretch of the routing scheme, say k is defined as
the maximum stretch that any path in any graph can have under that scheme and such a
scheme is said to be a k-approximate routing scheme.

Stretch and space requirement are indeed the most important factors to consider when
designing approximate routing schemes.

I Property 3 (Optimal subpath property). Any subpath of a shortest path is also a shortest
path.

I Definition 4. The mid-point of a path, say P(u, v) is defined as that virtual point on
P(u, v) that is equidistant from both u and v. This point may lie on some edge or may itself
be a vertex.

I Definition 5. The mid-edge of a path, say P(u, v) is defined as
1. that edge on P(u, v) on which its mid-point lies or
2. either of the edges on P(u, v) incident on the vertex on which its mid-point lies.

Given an edge (u, v) and the shortest cycle through it, say C, we denote the mid-edge
of the path C \ (u, v) using the notationM(u, v). Based on the discussion in the previous
section, one may notice that, given access to an exact shortest path oracle, the M(u, v)
values provide a compact means of storing the shortest cycle passing through each edge. An
exact routing scheme can then easily useM(u, v) to route from u to v in the event of failure
of (u, v). But the same may not be the case when using an approximate routing scheme.
Hence we define separating edges, which are essentially generalizations of mid-edges.

I Definition 6. Given a faulty component, say (u, v) and the shortest cycle through it, say C
consider a subset of the edges along the path C\e, given in cyclic order as (v1, v2), (v3, v4), . . . ,
(v2l−1, v2l). We say that these edges are separating edge(s) if the path to be taken from
v2i to v2i+1 by the underlying routing scheme does not contain (u, v), for all i ∈ [0, l], where
v0 is u and v2l+1 is v.
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Obviously the set of all the edges along the path C \ e is a valid set of separating edges,
but storing them would be rather costly. Consequently our objective once the cycles are
computed is to find a small set of edges that are valid separating edges. The routing scheme
then simply routes from edge ei to ei+1 until the packet reaches v.

Information stored in the packet header. Upon encountering a faulty edge, say e
we add its separating edges to the packet header in the form of a queue, say Qsep sorted
by the order that they lie on the shortest cycle of e. We assume that the standard queue
operations, namely enqueue, dequeue and a subroutine, say makeCopy to copy one queue to
another are available.

In addition to this, the header would also contain information stored by the underlying
routing scheme, which would naturally contain the field destination to store the destination
of the message. We also add a field rejoinVertex to store the vertex v at which we rejoin
the original path.

3 Computing and Storing Shortest Cycles

In this section, we describe an algorithm for solving the Compute Shortest Cycles
problem, that is, the problem of computing the shortest cycle passing through each edge in
the given graph. We only require that given access to an all pairs shortest paths (APSP)
oracle, any shortest path be reported optimally in time proportional to its length. To this
end, we formalize the idea of using mid-edges for efficiently storing the shortest cycles through
each edge and give algorithms for computing them. We start by proving the following simple
lemma.

I Lemma 7. As G is undirected, an edge (u, v) together with Pn(u, v) forms the shortest
cycle passing through (u, v).

Proof. Suppose that this is not the shortest cycle passing through (u, v). Then the required
shortest cycle must be formed by (u, v) and some path, say Px(u, v). So δx(u, v)+W(u, v) <
δn(u, v)+W(u, v) implying that δx(u, v) < δn(u, v). But this is a contradiction as Pn(u, v)
is the shortest path between u and v that does not pass through (u, v). Hence, proved. J

Following along similar lines of Lemma 7, it can easily be seen that the shortest path
between any two vertices on a given shortest cycle through an edge is fully contained within
the cycle. The following lemma utilizes this property to formalize the idea of using mid-edges
for computing the shortest cycle.

I Lemma 8. Given access to an all pairs shortest path oracle, the shortest cycle passing
through each edge can be computed by storingM(u, v) for each (u, v) ∈ E.

Proof. Suppose that the edge (u, v) is faulty. Let (w, x) beM(u, v). Consider the shortest
path from u to w. As noted above, this path must either be Pn(u,w) or C \ Pn(u,w). Now
δn(u,w) ≤ 1

2δn(u, v) since (w, x) isM(u, v) and lies on Pn(u, v). Then |C| − |Pn(u,w)| ≥
|C|− 1

2δn(u, v) ≥ W(u, v)+ 1
2δn(u, v) > 1

2δn(u, v). Hence Pn(u,w) is the same as P(u,w).
Similarly we can prove that Pn(v, x) is the same as P(v, x), and we can report the shortest
cycle through (u, v) as P(u,w) ∪ (w, x) ∪ P(v, x). Hence, proved. J

Data structure. As characterized by Lemma 8, we store M(u, v) for all (u, v) ∈ E.
We also store the corresponding δn(u, v) values for obtaining the length of the shortest cycles.
Only O(1) words per edge are required for storing these values.
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Algorithm. Algorithm shortestCycles (See Appendix A.1 for pseudo-code) first
computes the APSP oracle using Dijkstra’s algorithm and then invokes computeCycles()
on each edge. For the current edge, say (u, v) it checks for each vertex w ∈ V if F(u,w) 6=
F(v, w) and L(u,w) 6= L(v, w). If either of these checks fail, the optimal subpath property
implies that (u, v) does not form a cycle with the paths P(u,w), P(v, w). Upon finding a
new cycle, say C1 the algorithm checks if this cycle is shorter than the currently recorded
shortest cycle. As the mid-edge must lie on the longer path amongst P(u,w) and P(v, w),
The algorithm further checks if the mid-point of the path C1 \ (u, v) lies on either of the
edges adjacent to w, and updates δn(u, v) andM(u, v) if required.

Simply looping over all the vertices in this manner only considers edges in Tu and Tv to
be mid-edges. As is shown in Lemma 11, the mid-edge of P(u, v) need not be present in
either of these shortest path trees, and therefore computeCycles() cannot guarantee that
the shortest cycle is correctly determined. Hence, whenever a new cycle is computed by
computeCycles(), it invokes the updateCycles() procedure which further checks if edge
(u, v) can be the mid-edge of the two edges along the cycle that are adjacent to w. Lemma 12
shows that this addition is sufficient to ensure that the correct shortest cycles are computed
for each edge when the algorithm terminates. The complete pseudo-code for these procedures
is given in Appendix A.1.

I Remark. It is worth noting that we can easily loop over the edges in a distributed manner.
But before running the updateCycles() routine, we will then have to send messages to
inform vertex w of the existence of edge (u, v). This would need to be done every time a
new cycle is computed, leading to a rather large message complexity of O(mn).

Correctness. We are required to prove that the correct values ofM(u, v) are computed
for each edge (u, v) ∈ E when the shortestCycles algorithm terminates. To this effect,
we need to ensure that the algorithm loops over every cycle that can be the shortest cycle of
some edge before it terminates. As the number of cycles that an edge is a part of can be
quite large, often going into the exponentials of n, we need to characterize those cycles which
can be a shortest cycle to make the search space tractable.

For simplicity, we say that a cycle is a candidate shortest cycle of the given edge if it can
be the shortest cycle passing through it, and that such a cycle is reported if the algorithm
checks to see whether it is shorter than the currently recorded shortest cycle. Naturally when
a candidate shortest cycle gets reported, any longer candidate shortest cycles that are not
yet reported, cease to be candidates. To reiterate, our objective is to report every candidate
shortest cycle. The following observation helps substantially reduce the search space.

I Observation 9. From the definition of mid-point, it follows that every path contains at
least one mid-edge (two, if the mid-point lies on a vertex). By Lemma 8, we can then express
the shortest cycle through each edge (u, v) ∈ E as an union of two shortest paths and their
connecting edges, as (v, u) ∪ P(u,w) ∪ (w, x) ∪ P(x, v), where (w, x) isM(u, v).

This observation reduces the set of candidate shortest cycles of (u, v) ∈ E to those cycles
C, with (w, x) ∈ E being the mid-edge of C \ (u, v), that are formed by the concatenation, at
both ends, of edge-disjoint shortest paths P(u,w) and P(v, x). Thus we need only iterate
over every pair of edges to determine the shortest cycles, which is still rather costly. Here we
make another crucial observation that given such a cycle C if the edge (w, x) were to belong
to the path P(u, x) (or to P(v, w)), then we can get sufficient information to determine C
by going over the vertex x (or w) instead of the edge (w, x). This intuitively leads us to
consider cycles formed by every edge-vertex pair and characterize those candidate shortest
cycles of (u, v) that cannot be determined by this approach.
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Figure 1 Cycle passing through an edge

For the remainder of this section, we will use the premise that we are given an edge
(u, v) ∈ E and a cycle, say C passing through it (C need not be the shortest cycle through it).
Without loss of generality, assume that the mid-point of the path C \ (u, v) lies on an edge
(w, x) ∈ E. By the definition of mid-edges, it then follows that P(u,w), (w, x), P(x, v) and
(v, u) together constitute C (refer fig. 1). Thus, by Observation 9, C is indeed a representative
of all possible candidate shortest cycles. Note that, in the computeCycles() procedure, only
cycles that are expressed in this manner are checked to see if they are shorter than the
currently recorded shortest cycle. Lemma 10 now characterizes the candidate shortest cycles
that will be reported by computeCycles().

I Lemma 10. If at least one of the paths P(u, x) and P(v, w) passes through (w, x), then
cycle C will get reported by computeCycles().

Proof. Assume without loss of generality that path P(u, x) passes through (w, x). Then by
the optimal subpath property, P(u, x) is the same as P(u,w) ∪ (w, x) and hence does not
intersect P(v, x), implying that cycle C will be reported by computeCycles(u,v) when it
loops over the vertex x. Hence, proved. J

So cycle C is not reported only if neither P(u, x) nor P(v, w) contain (w, x). Lemma 11
further characterizes these candidate shortest cycles of (u, v) that are not reported.

I Lemma 11. If cycle C is not reported by computeCycles(u,v), then the following state-
ments are equivalent.
1. C is a candidate shortest cycle of (u, v).
2. The paths P(u, x) and P(v, w) both pass through (u, v).
3. w and x belong to different subtrees in both Tu and Tv.

Proof. We prove the statements in a cyclic order.

1 ⇒ 2: We prove the contrapositive of this statement which is stated below.
If C is not reported by computeCycles() and at least one of the paths P(u, x) and

P(v, w) does not pass through (u, v), then C is not a candidate shortest cycle of (u, v).
Suppose (u, v) /∈ P(u, x). As C is not reported, (w, x) /∈ P(u, x). Then P(u, x) intersects

path P(v, x) at some vertex, say y that lies on the path from v to x, both inclusive (refer
fig. 1). So δ(u, y) + δ(v, y) ≤ δ(u, x) + δ(v, x) < δ(u,w) +W(w, x) + δ(v, x). This shows
that P(u, y), P(v, y) and (u, v) together form a cycle shorter than C, implying that C is not
a candidate shortest cycle. Similarly we can prove for the case that (u, v) /∈ P(v, w).
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2 ⇒ 3: As P(u,w), (w, x), P(x, v) and (v, u) together form C we have F(u,w) 6= (u, v).
Also from statement 2, F(u, x) = (u, v). So F(u,w) 6= F(u, x) implying that w and x

belong to different subtrees in Tu. We can similarly prove for Tv.

3 ⇒ 1: From statement 3 we get that edge (w, x) is not present in either Tu or Tv. This
means that computeCycles(u,v) never considers the edge (w, x) or consequently, the cycle
C. But C can be shorter than the shortest cycle of (u, v) recorded by it and hence needs to
be reported. This concludes the proof as any cycle that needs to be reported is a candidate
shortest cycle by definition.

Hence, proved. J

Lemmas 10 and 11 thus analyze all the candidate shortest cycles of (u, v) and it turns
out that a cycle would still need to be reported for (u, v) if and only if both the path P(u, x)
and P(v, w) pass through it. All that remains now is to prove that these cycles will get
reported by the updateCycles() procedure before the algorithm terminates.

I Lemma 12. Every cycle which is a candidate shortest cycle is reported, and δn(u, v) and
M(u, v) computed for each edge (u, v) ∈ E by the algorithm.

Proof. Suppose that a candidate shortest cycle of (u, v) is not reported. From statement
3 of Lemma 11, we know that w and x belong to different subtrees of Tu, implying that
F(w, u) 6= F(x, u) and L(w, u) 6= L(x, u). But this is the same condition check that is
performed when the algorithm loops over the vertex u while computing the shortest cycle
through (w, x). Hence the check will pass here, updateCycles() procedure will be called
with the arguments (u,w, x), and thus the cycle will get reported for (u, v).

The routines used for computing δn(u, v) andM(u, v) are standard, follow along the
same lines as a sequential algorithm for finding the minimum element in an array, and their
correctness is easy to see. Hence, proved. J

Lemma 11 has an important implication on the efficiency of algorithms that compute
shortest cycles in a distributed model that stores at each node the shortest path tree rooted
at that node. As each node, say u is unaware of O(m) edges that are not present in Tu
and since the shortest cycle passing through it could be formed together with any of these
edges, each of these edges need to inform u of their existence. In the worst case, this would
result in Ω(mn) messages being generated. It is for this reason that we do not perform the
preprocessing step using a distributed algorithm. Moreover our algorithm will require O(mn)
message passings as described earlier and hence we have the following corollary.

I Corollary 13 (of Lemmas 11, 12). The Compute Shortest Cycles problem requires
Θ(mn) messages passings to compute the shortest cycle through each edge in a distributed
model of computing that stores at each node the shortest path tree rooted at that node.

Time and Space complexities. Computing the APSP oracle requires O(mn+n2 logn)
time, while the other computations take only O(mn) overall time. Hence the algorithm has
an overall time complexity of O(mn + n2 logn). We require O(n2) space for storing the
APSP oracle and O(m) space for the output.

Theorem 14 follows directly from the results given in this section.

I Theorem 14. Given a graph G = (V,E) with |V | = n, |E| = m, there is an algorithm that
can compute δn(u, v) andM(u, v) for each (u, v) ∈ E in Õ(mn) steps using O(n2) space.
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4 An O(k2)-Approximate Edge Fault Tolerant Routing Scheme

In this section we first use the data structure computed in the previous section to develop
an algorithm to compute the separating edges corresponding to each edge. We then give a
simple but space efficient routing scheme that uses this data structure to successfully route
packets even in the presence of a single edge fault. While normal routing will be performed
using the compact routing schemes of Thorup and Zwick[9], henceforth referred to as the
Rtz scheme, we will continue to use the APSP oracles for preprocessing. In particular we
prove Theorem 1 given in the Introduction section.

Given an integer k, the Rtz routing scheme computes tree covers of the given graph,
which are a family of induced trees such that, between any pair of vertices in the graph, a
path no longer than 4k− 5 times the shortest path exists in one of these trees. It then stores
the tree cover in a distributed manner, using only Õ(n1/k) space per vertex and uses o(logn)
size headers for routing. We particularly emphasize a feature of this scheme, namely that
during the routing process, the message passes through an edge no more than once.

Recall that separating edges of an edge, say (u, v) are edges lying on Pn(u, v) and given
in cyclic order as e1, e2, . . . , el, such that the path that Rtz takes from ei to ei+1 will not
contain (u, v), for all i ∈ [0, l + 1], where e0 = el+1 = (v, u). We need to compute small sets
of separating edges for each edge. The following lemma helps us with this.

I Lemma 15. Let Ce be the shortest cycle through an edge e ∈ E with |Ce| = x units. Let
u, v ∈ Ce be vertices satisfying the conditions e /∈ P(u, v) and 4(k − 1) · δ(u, v) < x. Then
the path from u to v reported by the Rtz scheme does not contain e either.

Proof. Assume on the contrary that the path reported by the Rtz scheme from u to v
contains e. As P(u, v) does not contain e, we get by the optimal subpath property that this
path and the reported path together contain a cycle no longer than δ(u, v)+(4k−5)δ(u, v) =
4(k − 1) · δ(u, v) that passes through e. But this implies that a cycle shorter than Ce exists
as 4(k − 1) · δ(u, v) < x, giving us a contradiction. Hence, proved. J

This lemma essentially implies that we need to divide each shortest cycle into 4(k − 1)
subpaths separated by single edges that are stored as the separating edges.

Data Structure. We compute and store the separating edges, in cyclic order, as a
queue Q(u,v) for each (u, v) ∈ E. This requires O(k · deg(v)) space per vertex v, as shown
in Lemma 16. The information required by the Rtz scheme is also stored, leading to an
overall space requirement of Õ(k · deg(v) + n1/k) per vertex v.

Preprocessing algorithm. Given a graph G = (V,E), algorithm separatingEdges
(See Appendix A.2 for pseudo-code) first computes the APSP oracle using Dijkstra’s algorithm
as before and then runs computeCycles() on the graph to computeM(u, v) and δn(u, v)
for each edge (u, v) ∈ E. It then invokes the compute-kSep() procedure for each edge to
compute separating edges along the shortest cycle passing through it.

Given an edge (u, v) and the corresponding δn(u, v), compute-kSep() successively com-
putes the longest section shorter than δn(u, v)

4(k−1) units and adds the next edge to Q(u,v) as a
separating edge. The complete pseudo-code for these procedures is given in Appendix A.2.

Correctness. The correctness of the shortest cycle computing routines have already
been proved in the previous section. Procedure compute-kSep() trivially ensures that the
subpath between two separating edges of (u, v), with indices i and i+ 1 in Q, are shorter
than δn(u, v)

4(k−1) and thus satisfies the requirements implied by Lemma 15. Hence the edges
stored in Q are valid separating edges. Next we bound the size of the queue Q.
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I Lemma 16. Q contains only O(k) elements per edge e ∈ E.
Proof. Given an edge (u, v) ∈ E, each section computed by compute-kSep() together with
its corresponding separating edge is longer than δn(u, v)

4(k−1) . As the path is only δn(u, v) long,
there can be no more than 4(k − 1) separating edges. Hence, proved. J

Time and Space complexities. It takes Õ(mn) time for computing the APSP oracle
and the shortest cycles. For each edge (u, v), compute-kSep() traverses the path P(u, v)
performing O(1) computations per vertex along the path. As there can be no more than
n− 2 other vertices along the path, compute-kSep() performs O(mn) computations only.
Hence the algorithm has an overall time complexity of Õ(mn).

The algorithm requires O(n2) space for storing the APSP oracle, and δc andM require
O(1) space per edge. The queues require O(k · deg(v)) space per vertex v. Hence the overall
space complexity of separatingEdges is O(n2). We have the following theorem.
I Theorem 17. Given a graph G(V,E) with |V | = n, |E| = m, there is an algorithm that
can compute the queue of separating edges Q(u,v) for each edge (u, v) ∈ E in Õ(mn) steps
using O(n2) space. The output, Q requires O(k · deg(v)) space per vertex v, where k is the
integer used for constructing the underlying Rtz routing scheme.

4.1 The Routing Scheme
The routing is performed normally using the Rtz routing scheme until the faulty edge, say
(u, v) is encountered. Q(u,v) is then copied to Qsep in the packet header. The routing is
then performed by dequeueing an edge, say (w, x) from Qsep and routing normally to the
dequeued edge. This is repeated until the vertex v is encountered. From here normal routing
resumes. The complete routing scheme, described in a step-by-step format follows.

1. Route normally until reaching the destination or a faulty component, say e.
2. Copy Q(e) to Qsep and set v as rejoinVertex in the packet header.
3. Dequeue from Qsep and route to the dequeued edge.
4. Repeat Step 3 until Qsep is empty.
5. Route to rejoinVertex.
6. Continue normal routing to destination.

The correctness of the routing scheme follows directly from the definition of separating
edges. Lemma 18 bounds the stretch of this routing scheme.
I Lemma 18. The path taken by the routing scheme has a worst-case stretch of O(k2), where
k is the integer used to construct the Rtz routing scheme.
Proof. Consider a packet going from vertex s to t that encounters a faulty edge, say e while
traversing along a path no longer than (4k − 5) · δ(s, t). This path together with either the
original or the new shortest paths contains a cycle no longer than (4k−5) ·δ(s, t)+δn(s, t) ≤
4(k− 1) · δn(s, t). The subpaths between successive separating edges of e along this cycle are
further approximated by a factor no more than 4k − 5 as we again use the compact routing
scheme. Then the overall distance over which the packet is routed, say X is given as follows.

X < (4k − 5) · δ(s, t) + (No. of sections) ∗ [4(k − 1) · δ(s, t)]
≤ (4k − 5) · δ(s, t) + 4(k − 1) ∗ [4(k − 1) · δ(s, t)]
< 16k2δn(s, t)

implying that the stretch of the routing scheme is no more than O(k2). Hence, proved. J

Theorem 17 and Lemma 18 together conclude the proof of Theorem 1.
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5 Conclusions and Open Problems

The problem of routing in presence of failures has received considerable attention in recent
years. We employ an innovative and simple approach to the problem, and present new results
that are space-efficient, essentially optimal and match the best known results for compact
routing that do not handle failures within a small O(k) factor of stretch. There are several
research problems that merit further study.

1. The stretch factor of O(k2) for our compact routing scheme, may be construed as rather
large and undesirable in practice. By properly integrating the routing scheme of Thorup
and Zwick rather than using it as a mere black-box, it may very well be possible to
significantly reduce the stretch.

2. While the results of Chechik et al.[3, 2] as well as ours give compact space routing schemes
for the case of edge failures, such results are not known for the case of vertex faults.
Designing compact vertex fault tolerant routing schemes would be quite significant.

3. It would be interesting to see if our techniques can be extended to the case of multiple
faults. This work would be in the same vein as that of the multiple fault tolerant scheme
of Chechik[2].

4. Extending the algorithms to a streaming/dynamic settings would greatly increase their
practicality.
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