
Timed Lossy Channel Systems∗

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, and Jonathan
Cederberg1

1 Uppsala University, Sweden

Abstract
Lossy channel systems are a classical model with applications ranging from the modeling of
communication protocols to programs running on weak memory models. All existing work assume
that messages traveling inside the channels are picked from a finite alphabet. In this paper, we
extend the model by assuming that each message is equipped with a clock representing the age
of the message, thus obtaining the model of Timed Lossy Channel Systems (TLCS). The main
contribution of the paper is to show that the control state reachability problem is decidable for
TLCS.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Lossy channel systems, timed automata, model checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.374

1 Introduction

During the last two decades there has been a large amount of work devoted to the verification
of discrete program models that have infinite state spaces such as Petri nets, pushdown
systems, counter automata, and channel machines. In particular lossy channel systems
have been studied extensively as a model of communication protocols. Such protocols are
designed to work correctly even in the case where the underlying medium is unreliable in
the sense that it can lose messages [8]. Recently, lossy channel systems have been proposed
as a fundamental tool for describing programs running on weak memories [10, 6] since they
are able to capture the behaviors of classical models such as tso and pso. In parallel,
timed automata [9, 15, 14] are the most widely used model for the analysis of systems with
timed behaviors. Several works have augmented discrete infinite-state models with timed
behaviors. For instance, many different formalisms have been proposed for extending Petri
nets with clocks and timed constraints, leading to various definitions of Timed Petri Nets
(e.g., [12, 5]). Also, several works [4, 13, 11, 17, 18, 19, 22] consider timed pushdown
automata. In this paper, we consider (Dense-)Timed Lossy Channel Systems (or TLCS for
short). A TLCS combines the classical models of lossy channel systems and timed automata.
More precisely, a TLCS consists of finite number of processes. The processes operate on
finite set of real-valued clocks, together with a finite number of lossy channels each of which
behaves as an unbounded FIFO buffer. Each message traveling inside a channel is equipped
with a real-valued clock representing its “age”. Processes can send messages to the channels
in which case the message is appended to the end of the channel. A receive operation may
only take place if the message at the head of the channel is of the correct type and only if its
age lies in a pre-defined interval associated with the transition. In a similar manner to timed
automata, a transition may be conditioned by the values of the clocks. In a timed transition,

∗ Supported by the Swedish Research Council within the UPMARC Linnaeus centre of Excellence

© P. A. Abdulla, M. F. Atig, and J. Cederberg;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 374–386

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.374
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


P. A. Abdulla, M. F. Atig, and J. Cederberg 375

the clock values and the ages of all the messages inside the channels are increased uniformly
(by the same real number). Finally, any message inside a channel may non-deterministically
be lost (deleted from the channel). The TLCS model thus subsumes both the models of lossy
channel systems and timed automata. More precisely, we obtain the former if we prevent
the TLCS from using the timed information (all the timing constraints are trivially valid);
and obtain the latter if we prevent the TLCS from using the channels (no symbols are sent
or received from the channels). Notice that a TLCS induces a system that is infinite in two
dimensions, namely it has channels containing unbounded numbers of messages, and each
message is equipped with a real-valued clock.

In this paper, we show decidability of the control state reachability problem for TLCS.
We show the decidability result through a novel reduction formulated in two steps. First, we
introduce a new model called Dynamic Lossy Channel Systems (DLCS) which is a general-
ization of (untimed) LCS. More precisely, a DLCS contains, in addition to a (fixed) finite set
of lossy channels, a dynamic part that contains an a priori unbounded number of channels.
The dynamic part behaves as a second-order lossy channel, i.e., a “lossy channel of lossy
channels”. We show that each DLCS induces a transition system that is well quasi-ordered
in the sense of [7, 1], and thus the control state reachability problem is decidable for DLCS.
In the second step, we reduce the control state reachability problem for TLCS to the the
control state reachability problem for DLCS and thus prove the decidability of the former.

The complexity of the reachability problem for TLCS is not primitive recursive as it is
not primitive recursive already for untimed LCS [16].

2 Preliminaries

Notation

We use N and R≥0 to denote the sets of natural numbers resp. non-negative reals. For a
real number r ∈ R≥0, we define Int(r) as the greatest n ∈ N such that n ≤ r, and Frac(r) as
r − Int(r). We call Int(r) the integer part and Frac(r) the fractional part of r respectively.
An open interval is written as (i, j) where i ∈ N and j ∈ N ∪ {∞}. Intervals can also be
closed in one or both directions, e.g. [i, j] is closed in both directions and [i, j) is closed
to the left and open to the right. We denote the set of all intervals by I. For n ∈ N, we
define the set [n]0 := {0, 1, . . . , n}, and define [n]1 := {1, 2, . . . , n}. For sets A and B, we
use h : A → B to denote that h is a total function from A to B, and use h[a 7→ b] to
denote the function h′ where h′(a) = b and h′(a′) = h(a′) if a′ 6= a. We use (A→ B) to
denote the set of total functions from A to B. We say that a function f : N→ N is strictly
increasing if whenever i < j we also have f(i) < f(j). We use A∗ to denote the set of finite
words over A. For words w1, w2 ∈ A∗, we use w1 · w2 to denote the concatenation of w1
and w2. We use ε to denote the empty word. For a word w = a1 · · · an, we use w[i] to
denote the ith symbol ai in w, and we will write a ∈ w if a = w[i] for some i : 1 ≤ i ≤ n.
We will use a similar notation for tuples. We recall the classical subword ordering v on
the set A∗ of words, where a1 . . . am v a′1 · · · a′n if there is a strictly increasing injection
g : [m]1 → [n]1 such that ai = a′g(i). To simplify the notation, we write ω ∈ (A∗)∗ as
〈w1〉 · · · 〈wn〉 where w1, · · · , wn are words in A∗. We extend the ordering v to (A∗)∗ in such
a way that ω = 〈w1〉 · · · 〈wn〉 v 〈w′1〉 · · · 〈w′n〉 = ω′ if there is a strictly increasing injection
h : [m]1 → [n]1 where wi v w′h(i).

FSTTCS 2012



376 Timed Lossy Channel Systems

Transition Systems

A transition system is a pair S = 〈Γ,−→〉 where Γ is the set of configurations, and −→⊆ Γ×Γ
is a binary relation on the set of configurations. As usual, we write γ1 −→ γ2 instead of
〈γ1, γ2〉 ∈−→. We use ∗−→ to denote the reflexive transitive closure of −→. For a set Γ′ ⊆ Γ
of configurations, we define the set Pre (Γ′) := {γ| ∃γ′ ∈ Γ′. γ −→ γ′}. Sometimes, we equip
the set Γ with an ordering E and write the transition system as a triple 〈Γ,−→,E〉. We
say that S is monotone (wrt. E) if whenever γ1 −→ γ2 and γ1 E γ3 then γ2

∗−→ γ4 for
some γ4 with γ3 E γ4. We say that E is a well quasi-ordering (wqo for short), if, for all
sequences γ0, γ1, γ2, . . ., there are i < j with γi E γj . A set U ⊆ Γ is upward closed if
whenever γ1 ∈ U and γ1 E γ2 then γ2 ∈ U . The upward closure of a set Γ′ ⊆ Γ is defined
by Γ′ ↑:= {γ ∈ Γ| ∃d ∈ Γ′. dE γ}. For sets Γ′1 ⊆ Γ′2 ⊆ Γ, we say that Γ′1 is a minor of
Γ′2 if (i) for each γ2 ∈ Γ′2 there is a γ1 ∈ Γ′1 such that γ1 E γ2, and (ii) γ1 E γ2 implies
γ1 = γ2 for all γ1, γ2 ∈ Γ′1. If E is a wqo, then each minor is finite. However, in general,
a set may have several different minors. In the applications of this paper, each set Γ′ has
a unique minor, denoted min(Γ′). An instance of the coverability problem consists of two
configurations γ1 and γ2. The task is to check whether γ1

∗−→ γ2↑. A transition system
〈Γ,−→,E〉 is said to be well quasi-ordered if the following conditions are satisfied: (i) E is
computable, i.e., for given configurations γ, γ′, we can check whether γ1Eγ′, (ii) E is a wqo,
(iii) −→ is monotone wrt. E, (iv) for a configuration γ, we can compute the (finite) set
min (Pre ({γ}↑)). Notice that, since the transition relation is monotone with respect to E,
it follows that the set Pre ({γ}↑) is upward closed. The classical framework of well quasi-
ordered transition systems [7, 1] provides the following sufficient conditions for decidability
of the coverability problem.

I Theorem 1. The coverability problem is decidable for well quasi-ordered transition sys-
tems.

3 Timed Lossy Channel Systems

In this section, we introduce TLCS, define their operational semantics, and present the
reachability problem. Furthermore, we show that it is sufficient to consider a class of “nor-
malized” TLCS where initial ages of messages and values assigned to clocks are always 0.

A TLCS has three parts, a control part, a finite set of clocks, and a finite set of channels.
The control part is a finite-state labeled transition system, where the labels are either clock
operations or channel operations. The control part can be used to model the total behavior
of a number of processes that communicate through the channels. The clocks assume real
values, while the channels are unbounded lossy FIFO buffers.

Model

A Timed Lossy Channel System (TLCS for short) is a tuple T = 〈S, sinit , C,M,X,∆〉, where
S is a finite set of (control) states, sinit ∈ S is the initial control state, C is a finite set of
channels, M is a finite set of messages, X is a finite set of clocks, and ∆ is a finite set of
transitions. A transition t ∈ ∆ is a triple 〈s1, op, s2〉 where s1, s2 ∈ S are states and op is
an operation of one of the following forms:

1. nop is an empty operation that does not check or update the clock values or the channel
contents.



P. A. Abdulla, M. F. Atig, and J. Cederberg 377

2. c!(m ∈ I) appends a new message m ∈ M to the end of the channel c ∈ C. The initial
age of the new message is selected non-deterministically from I ∈ I.

3. c?(m ∈ I) removes (receives) the message at the head of the channel c ∈ C provided that
this message is m ∈M and that its age lies in I ∈ I.

4. x ∈ I checks whether the value of x ∈ X belongs to the interval I ∈ I.
5. x← I assigns non-deterministically a value to x ∈ X from I ∈ I.

Configurations

A configuration γ of T is a triple 〈s, X, ν〉, where s ∈ S is a control state, X ∈
(
X → R≥0)

defines the clock values (assigns a real number to each clock), and ν ∈
(
C → (M × R≥0)∗

)
defines the content of each channel (the content of a channel is represented by a word, where
each message is represented by a pair containing its name and its age).

Transition Relation

We define a transition relation on configurations −→T := D−→T ∪
T−→T ∪

L−→T as the union
of a discrete transition relation D−→T , a timed transition relation T−→T , and a lossy transition
relation L−→T .

We define the discrete transition relation as the union D−→T :=
⋃
t∈∆

t−→T of the
transition relations induced by all transitions in ∆. For configurations γ1 = 〈s1, X1, ν1〉,
γ2 = 〈s2, X2, ν2〉, and a transition t = 〈s1, op, s2〉 ∈ ∆, we have γ1

t−→ γ2 if one of the
following conditions holds:

1. op = nop, X2 = X1, and ν2 = ν1. The empty operation does not affect the clock values
or the channel contents.

2. op = c!(m ∈ I), X2 = X1, ν2 = ν1[c 7→ (m, δ) · ν1(c)], and δ ∈ I. The transition appends
a new message to the end of the channel c with name m, and with an age that belongs
to the interval I.

3. op = c?(m ∈ I), X2 = X1, ν1 = ν2[c 7→ ν2(c) · (m, δ)], and δ ∈ I. The transition removes
the message at the head of the channel c provided that its name is m, and that its age
is in the interval I.

4. op = x ∈ I, X1(x) ∈ I, X2 = X1, and ν2 = ν1. The transition is enabled only if the value
of x belongs to I. The clock values and the channel contents are not affected.

5. op = x ← I, X2 = X1[x 7→ δ], δ ∈ I, and ν2 = ν1. The transition assigns a new value
(belonging to I) to the clock x.

Notice that in all five cases the control state changes from s1 to s2.
The timed transition relation models the passage of time, in the sense that the values of all

clocks and the ages of all messages inside the channels are uniformly increased by (the same)
real number. For configurations γ1 = 〈s, X1, ν1〉, γ2 = 〈s, X2, ν2〉, and a real number δ ∈ R≥0,
the relation γ1

δ−→T γ2 holds if the following two conditions hold: (i) X2(x) = X1(x) + δ for
all x ∈ X, and (ii) for every c ∈ C, if ν1(c) is of the form (m1, δ1) · · · (mn, δn) then ν2 is of
the form (m1, δ1 + δ) · · · (mn, δn + δ). We write γ1

T−→T γ2 to denote that γ1
δ−→T γ2 for

some δ ∈ R≥0.
Finally the lossy transition relation allows messages to be lost from the channels at

any time. Formally, if γ1 = 〈s, X, ν1〉 and γ2 = 〈s, X, ν2〉, the relation γ1
L−→T γ2 holds if

ν2(c) v ν1(c) for all c ∈ C.

FSTTCS 2012



378 Timed Lossy Channel Systems

Reachability

The initial configuration of a TLCS T is defined by γinit := 〈sinit , Xinit , νinit〉 where Xinit(x) =
0 for all x ∈ X, and νinit(c) = ε for all c ∈ C. In other words, T is initiated from a
configuration where it is in its initial control state, where all the clocks have a value equal
to 0, and where all the channels are empty. A control state s ∈ S is said to be reachable if
γinit

∗−→T 〈s, X, ν〉 for some X and ν. An instance of the reachability problem consists of an
TLCS T = 〈S, sinit , C,M,X,∆〉 and a control state s ∈ S. The task is to check whether s
is reachable.

Normalization

A TLCS T = 〈S, sinit , C,M,X,∆〉 such that I = [0, 0] for all 〈s1, c!(m ∈ I), s2〉 ∈ ∆ is said
to be message-normalized. We say that T is clock-normalized if whenever 〈s1, x← I, s2〉 ∈ ∆
then I = [0, 0]. Finally, T is normalized if it is both clock- and message-normalized. The
following two lemmas show that the reachability problem for general TLCS can be reduced
to that for normalized TLCS. Therefore, in the rest of the paper, we assume that all TLCS
are normalized.

I Lemma 2. The reachability problem for TLCS can be reduced to the reachability problem
for message-normalized TLCS.

I Lemma 3. The reachability problem for TLCS can be reduced to the reachability problem
for clock-normalized TLCS.

4 Dynamic Lossy Channel Systems

In this section, we introduce the model of Dynamic Lossy Channel Systems (DLCS for short).
The model is a generalization of lossy channel systems [8] in the sense that it contains a
second-order channel (a “channel of channels”). A DLCS consists of three parts: a control
part, a static part, and a dynamic part. The control part is a finite-state labeled transition
system. The static part consists of a finite set of (static) channels, each of which contains
a sequence of messages from a finite alphabet. The dynamic part contains a (possibly
unbounded) sequence of (dynamic) channels over the same alphabet. Each transition of
the control part may be labeled by an operation on the static or dynamic channels. In the
former case, the operation may remove a message from the head of a static channel or insert
a message at its end (as in the case of lossy channels). In the latter case, the operation
may copy the content of a static channel and append it (as a new channel) to the end of
the sequence of dynamic channels (thus creating a new channel at the leftmost position of
the dynamic part), or copy the content of the rightmost dynamic channel (the one at the
head of the sequence of channels) to a static channel and then delete this dynamic channel.
Furthermore, messages inside any channel can be lost (deleted) non-deterministically, and
also any (whole) dynamic channel may be lost non-deterministically. The static channels
are static (they can cannot be created, deleted, or lost). Notice that all the channels in the
system are unbounded and that there is no bound on the number of dynamic channels that
may be created during a run of the system.

Model

A DLCS is a tuple D = 〈S, sinit , C,Σ,∆〉 where S is a finite set of (control) states, sinit ∈ S
is the initial control state, C is a finite set of channels names, Σ is the channel alphabet,



P. A. Abdulla, M. F. Atig, and J. Cederberg 379

and ∆ is a finite set of transitions. A transition t ∈ ∆ is a triple 〈s1, op, s2〉 where s1, s2 ∈ S
are states and op is an operation of one of the following forms:

1. nop is an empty operation that does not check or update the channels,
2. c!m appends the message m ∈ Σ to the end of the static channel c ∈ C,
3. c?m removes the message m ∈ Σ from the head of the static channel c ∈ C,
4. send_channel(c) makes a copy of the content of the static channel c to a new dynamic

channel, and appends the new channel to the end of the sequence of dynamic channels.
5. receive_channel(c) copies the content of the rightmost dynamic channel to the static

channel c ∈ C and then removes this dynamic channel from the sequence of channels.

Configurations

A configuration d of D is a triple 〈s, ν, ω〉, where s ∈ S is a control state, ν ∈ (C → Σ∗) is
a function that represents the content of the set of static channels C, and ω ∈ (Σ∗)∗ is the
content of the sequence of dynamic channels, also called the dynamic part of D.

For configurations d1 = 〈s1, ν1, ω1〉, d2 = 〈s2, ν2, ω2〉, we say that d1 v d2 if s1 = s2,
ν1(c) v ν2(c) for all c ∈ C, and ω1 v ω2 (recall the definition of v from Section 2).
Intuitively, we derive d1 from d2 by deleting messages from the channels (both static and
dynamic) and by removing dynamic channels.

Transition Relation

We define the transition relation as the set −→D:=
(⋃

t∈∆
t−→D

)
∪ L−→D where

⋃
t∈∆

t−→D

is the union of transition relations induced by all transitions in ∆, and d1
L−→D d2 when-

ever d2 v d1. The relation L−→D models the loss of messages and dynamic channels. For
configurations d1 = 〈s1, ν1, ω1〉, d2 = 〈s2, ν2, ω2〉, and a transition t = 〈s1, op, s2〉 ∈ ∆, we
have d1

t−→D d2 if one of the following conditions holds:

1. op = nop, ν1 = ν2, and ω1 = ω2.
2. c!m, ν2 = ν1[c 7→ m · ν1(c)], and ω2 = ω1. The message m is appended to the end of the

channel c.
3. c?m, ν1 = ν2[c 7→ ν2(c) ·m], and ω2 = ω1. The message m is received (deleted) from the

head of the channel c.
4. send_channel(c), ν1 = ν2, and ω2 = 〈ν1(c)〉 · ω1. A copy of the content of the static

channel c is appended (as a new channel) to the end of the dynamic part of D.
5. receive_channel(c), ν2 = ν1[c 7→ w], and ω1 = ω2 · 〈w〉. The content of the right-most

dynamic channel is copied to the static channel c ∈ C. The right-most dynamic channel
is then removed.

Reachability

The initial configuration of an DLCS D is defined by dinit := 〈sinit , νinit, ωinit〉 where
νinit(c) = ε for all c ∈ C, and ωinit = ε. In other words, D is initiated from a config-
uration where it is in its initial control state, all the static channels are empty, and the
sequence of dynamic channels is empty (no channel has yet been appended). We define the
control state reachability problem (or simply the reachability problem in the sequel) in a
similar manner to the case of TLCS (cf. Section 3). Notice that the checking of reachability
of a control state s can translated to the coverability problem dinit

∗−→D 〈s, νinit, ωinit〉↑.

FSTTCS 2012



380 Timed Lossy Channel Systems

I Lemma 4. Any transition system 〈Γ,−→,v〉 induced by a DLCS is well quasi-ordered.

Proof. We prove the lemma by showing that each of the four conditions in the definition of
well quasi-ordered transition systems given in Section 2 holds.
1. The ordering defined is clearly computable.
2. Since any finite set is well quasi-ordered and also tuples and words over well quasi-

ordered sets are well quasi-ordered [21], the ordering v as defined on configurations is a
well quasi-ordering.

3. Assume d1 −→ d2 and d1 v d3. From the definition of −→, we get that d3
L−→ d1, and

by transitivity we immediately get d3
∗−→ d2. Thus, −→ is monotone wrt. v.

4. Assume a configuration d = 〈s, ν, ω〉. We define min (Pre ({d}↑)) :=
min

(⋃
t∈∆ min (Pre (t) ({d}↑)) ∪ {d}

)
, where Pre (t) ({d}↑) = {d1 | ∃d2 ∈ {d}↑ . d1

t−→D
d2} is the predecessor relation wrt. the transition t ∈ ∆. Consider a transition t =
〈s1, op, s2〉 ∈ ∆. We define min (Pre (t) ({d}↑)) as a set A with the following properties.
If s 6= s2 then A := ∅. Otherwise, we have:

If op = nop then A = {〈s1, ν, ω〉}.
If op = c!m and ν(c) is of the form m · w then A := {〈s1, ν[c 7→ w], ω〉}.
If op = c!m, ν(c) is of the form m′ · w, and m′ 6= m, then A := {〈s1, ν, ω〉}.
If op = c?m then A := {〈s1, ν[c 7→ w ·m], ω〉}.
If op = send_channel(c) and ω is of the form 〈w〉 · ω′ then
A := min ({〈s1, ν[c 7→ w′], ω〉| (ν(c) v w′) ∧ (w v w′)} ∪ {〈s1, ν, ω〉})
If op = send_channel(c) and ω = ε then A := {〈s1, ν, ω〉}.
If op = receive_channel(c) then A := {〈s1, ν[c 7→ ε], ω · 〈ν(c)〉〉}.

J

From this and Theorem 1 we get the following theorem.

I Theorem 5. The reachability problem is decidable for DLCS.

5 From TLCS to DLCS

In this section, we show how we can encode a TLCS by a DLCS such that we preserve
control state reachability. This enables us to extend decidability of the reachability problem
from DLCS to TLCS.

I Theorem 6. The reachability problem is decidable for TLCS.

Given an instance of the reachability problem, defined by a TLCS T = 〈S, sinit , C,M,X,∆〉
and a control state s ∈ S, we construct an equivalent instance of the reachability problem,
defined by a DLCS D =

〈
SD, sDinit , C

D,ΣD,∆D
〉
(that we derive from T ) and the (same)

control state s (as we shall see, all control states in S belong also to SD). The idea of
the proof is inspired in parts by the region construction for timed automata [9]. A major
difficulty in our case is the fact that we have unboundedly many ages to keep track of, and
the fact that we also have to keep track of the ordering of an unbounded number of messages
inside the channels. We will describe the ingredients of the encoding (the derivation of D
from T ) step by step. First, we will introduce the set CD of channels and the alphabet ΣD for
such channels, then we will define the encoding into a configuration of D of a configuration
of T . We will then define a set of meta-transitions, to aid us in the final task of this section,
namely presenting how to simulate a run of T using our encoding D.

Below, let kmax be the largest integer that occurs in the definition of any interval in ∆.



P. A. Abdulla, M. F. Atig, and J. Cederberg 381

ΣD and CD

As in the case of timed automata, we conclude that it is not meaningful to keep track of
exact values of clocks and exact ages of messages beyond kmax. Each message in m with
age r traveling inside a channel c in T will be encoded by a pair 〈〈c,m〉 , j〉 in D where
j = Int(r) if r ≤ kmax and j = ∞ if r > kmax. The message m thus belongs to the set
Σm := (C ×M) ×

(
[kmax]0 ∪ {∞}

)
. We will use three types of channels in D to store

messages. First, we use a static channel c0 to store messages whose ages are ≤ kmax and
whose fractional parts are zero. Second, we use the dynamic part to store messages whose
values are ≤ kmax and whose fractional parts are strictly positive. Messages stored in the
same dynamic channels encode messages in T that have identical fractional parts. The
fractional parts of messages inside different dynamic channels have increasing fractional
parts as we move from left to right. Finally, we use a static channel c∞ to store messages
whose ages are > kmax.

We will also encode the clocks of T as messages in the channels of D. To that end we
define Σx := X ×

(
[kmax]0 ∪ {∞}

)
. A clock x will then be represented by a pair 〈x, j〉 that

will be interpreted in a similar manner as above. Throughout the simulation, we will satisfy
the invariant that at most one copy of each clock x will be present inside the channels of D.
For messages from the set Σm ∪ Σx, we refer to the second component of the tuple as the
age of the message.

Finally, for technical reasons, we will use a special sentinel message # and a temporary
channel ctmp. In summary we define ΣD := Σm∪Σx∪{#}, and define CD := {c0, c∞, ctmp}.

Encoding of Configurations

We show how to abstract (encode) configurations of T by configurations of D. For each
configuration in T we will define a set α(γ) of configurations in D. In our simulation, all
these configurations will have equivalent behaviors and any one of them may be chosen to
represent γ. The abstraction relies crucially on a property satisfied by all configurations
that arise in a run of T . More precisely, since T is normalized (cf. Section 3), the ages
of messages inside any channel are sorted (if 〈m1, r1〉 is in on the left of 〈m2, r2〉 then
r1 ≤ r2). Furthermore, the ordering in which the messages occur inside the channel reflects
the ordering in which they were sent to the channel (in particular, this holds even if r1 = r2).

We present the encoding in several steps. First, we define some operations on words
w ∈

(
((C ×M) ∪X)× R≥0)∗. Let r ∈ [0, 1) and u = 〈σ′1, a′1〉 · · · 〈σ′n, a′n〉 be the longest

subword of w such that Frac(a′i) = r for all i. We define the fractional projection of w
with respect to r, written w|r, as the word 〈σ′1, Int(a′1)〉 · · · 〈σ′n, Int(a′n)〉. In other words,
w|r is obtained by (i) constructing the subword of w that consists of only pairs where the
fractional part of the age is equal to r, and (ii) removing r from the age of each message in
the sequence.

Consider a configuration γ = 〈s, ν, ω〉. We will partition the messages and the clocks
depending on whether their ages exceed kmax or not. For a channel c ∈ C such that
ν(c) = (m1, a1)(m2, a2) · · · (mn, an), let k be the greatest i such that ai ≤ kmax. For ease
of notation, we define the two words c≤kmax := 〈〈c,m1〉 , a1〉 · · · 〈〈c,mk〉 , ak〉 and c>kmax :=
〈〈c,mk+1〉 ,∞〉 · · · 〈〈c,mn〉 ,∞〉. Similarly we let x≤kmax = 〈x1, X(x1)〉 · · · 〈xk, X(xk)〉 where
x1 · · ·xk is an arbitrary enumeration of all x ∈ X such that X(x) ≤ kmax. In the same
manner, we define x>kmax as a word 〈xk+1,∞〉 · · · 〈xn,∞〉 where xk+1 · · ·xn is an arbitrary
enumeration of all x ∈ X such that X(x) > kmax. Let c1, c2, . . . , cl be an enumeration of
C. We define u := (c≤kmax

1 · c≤kmax

2 · · · c≤kmax

l · x≤kmax), i.e., u is the concatenation of the

FSTTCS 2012



382 Timed Lossy Channel Systems

parts of all the channels that has not exceeded kmax, and clocks that has not exceeded kmax.
Finally, let r1 < r2 . . . < rj be all strictly positive fractional parts occurring in some c≤kmax

i

or in x≤kmax .
Now we can define the abstraction of γ, written α(γ), as the set of all d = 〈q, ν, ω〉 where
q = s

ν is the function such that ν(c0) = (u)|0, ν(c∞) = c>kmax
1 ·c>kmax

2 · · · c>kmax

l ·x>kmax and
ν(ctmp) = ε.
ω = 〈(u)|r1〉 · · ·

〈
(u)|rj

〉
.

In other words: (i) the abstraction preserves the control state, (ii) all messages and clocks
that are ≤ kmax and have zero fractional parts, are put in c0, where the relative order of
elements in the same channel is preserved, (iii) all messages and clocks that are > kmax
are put in c∞, again with relative order preserved, and (iv) the dynamic channel vector is
constructed by building a word for each positive fractional part, and order them by these
fractional parts.

Intuitively, the abstraction preserves the following invariants:
Any message or clock with an age not greater than kmax is translated into a message
consisting of the same message or clock, and and its original age with the fractional part
stripped.
Any two messages, a message and a clock, or two clocks, with age less than or equal to
kmax will end up in the same channel in the abstracted system if and only if they have
the same fractional part of their age in T . For pairs of messages from the same channel
in T , their relative order in the channel in D will be the same as in T .
For any two messages, a message and a clock, or two clocks, with age less than or equal
to kmax, the one with the greater fractional part will end up to the right of one with the
smaller fractional part.
Any two messages with an age greater than kmax will end up in the c∞, with their
relative order preserved.

Meta-Transitions

We start by defining some meta-transitions for the DLCS, allowing us to more compactly
describe the simulation. Due to space restrictions, we only provide an overview of the
construction here, for more details see [2]. Each meta-transition consists of a finite set
of ordinary DLCS transitions, possibly containing loops and passing through a number of
temporary states. Note that even though the meta transitions might cause an execution of
our system to block because of picking the wrong branch in some nondeterministic choice,
this is not a problem since we are only interested in the study of safety properties. The
meta-transitions are defined as follows:

empty(c): empties the channel c, by receiving all possible messages.
copy(c1, c2): copies the content of channel c1 into channel c2, overwriting any previous
content, while c1 remains unchanged.
filter(c,Σ): filters the channel c, such that only elements from Σ remain.
map(c, f), acts on the channel c by replacing each message σ with f(σ).
HasElementsFrom(c,Σ): enforces that there is at least one element in the channel c from
the set Σ. If this is not the case, the simulation blocks. HasElementsFrom(ω,Σ) performs
the same operation on the set of dynamic channels rather than on a static channel c.



P. A. Abdulla, M. F. Atig, and J. Cederberg 383

HasNoElementsFrom(c,Σ), enforces that there no element in the channel c from the set
Σ. If this is not the case, the simulation blocks. HasNoElementsFrom(ω,Σ) is defined
analogously.
ReceiveFromSet(c,m,Σ) receives (deletes) the message m from c but only if the following
condition holds. Search for the first (rightmost) occurrence of a message m′ ∈ Σ in c. If
m′ = m then it is deleted. If m′ 6= m or c does not contain any messages from Σ, the
simulation blocks. ReceiveFromSet(ω,m,Σ) is defined analogously for the dynamic part,
namely the search is carried out through all the channels from right to left. For a given
channel, we search from right to left.

Simulation of Discrete Transitions

Each transition t = 〈s1, op, s2〉 ∈ ∆ is simulated using a set of transitions in ∆D as follows:
If t = nop, we let 〈s1, nop, s2〉 ∈ ∆D.
If t = c!m, we let 〈s1, c0!〈〈c,m〉 , 0〉, s2〉 ∈ ∆D. In other words, we send the message m,
tagged with the identity of the channel, to c0. This reflects the fact that initial ages of
messages are set to 0 (since T is normalized).
If t = c?m ∈ I. This is the most complicated case. We need to search the dynamic
channels and also the static channels c0 and c∞ in D in order to find the message
corresponding to the rightmost message in c. If this message is m then we delete it,
otherwise we block the simulation. This is carried out in two steps, namely (i) guessing:
we non-deterministically “guess” the age of the message, and (ii) checking: for the given
guess, we check that there are no other messages in channel c that are older than the
current one. Concretely, in the guessing step we assume that the message has an age
which is either (i) k ∈ [kmax]0 for some integer k ∈ I, or (ii) in the interval (k, k + 1)
for some k ∈ [kmax − 1]0 where (k, k + 1) ⊆ I, or (iii) in the interval (kmax,∞) if
(kmax,∞) ⊆ I. Let Σ1 = (({c} ×M)× {∞}), Σ2 = (({c} ×M)× {` | k ≤ ` ≤ kmax}),
Σ3 = (({c} ×M)× {` | k < ` ≤ kmax}) and Σ4 = (({c} ×M)× {k}). The checking step
is carried out depending on the guessed age of the message as follows.

Guess k ∈ [kmax]0. We use the operations (i) HasNoElementsFrom(c∞,Σ1), (ii)
HasNoElementsFrom(ω,Σ2), and (iii) HasNoElementsFrom(c0,Σ3), to ensure that c
does not contain any message older than m. Then, use ReceiveFromSet(c0,m,Σ4)
to try to receive m.
Guess (k, k + 1) for some k ∈ [kmax − 1]0. We use (i) HasNoElementsFrom(c∞,Σ1),
(ii) HasNoElementsFrom(ω,Σ3), and (iii) HasNoElementsFrom(c0,Σ3) to ensure that c
does not contain any message older than m. Then, use ReceiveFromSet(ω,m,Σ4) to
try to receive m.
Guess (kmax,∞). Use ReceiveFromSet(c∞,m,Σ1) to try to receive m.

If t = x ∈ I then we guess the value of x according to one of the three forms described in
the previous case. Since we satisfy the invariant that there is at most one message repre-
senting x in the channels of D, the simulation is simpler in this case. More precisely, if we
guess the age of x to be k for some k ∈ [kmax]0 then we use HasElementsFrom(c0, {〈x, k〉}).
If we guess (k, k+1) for some k ∈ [kmax − 1]0 then we use HasElementsFrom(ω, {〈x, k〉}).
Finally, if we guess (kmax,∞) then we use HasElementsFrom(c∞, {〈x,∞〉}).
If t = x ← 0, we simply remove the message representing x from the channels of
D, and then send it again with age 0 to c0. Concretely, we non-deterministically use
ReceiveFromSet(c0, 〈x, i〉 , ({x} × [kmax]0)), ReceiveFromSet(ω, (x, i), ({x} × [kmax]0)), or
ReceiveFromSet(c∞, 〈x,∞〉 , {〈x,∞〉}) where i ∈ [kmax]0. After that, we know that we

FSTTCS 2012



384 Timed Lossy Channel Systems

have no message representing x in the channels of D anymore, so we add an operation
c0!〈x, 0〉 to send 〈x, 0〉 to c0. The clock has now been reset.

Simulating Timed Transitions

We show how to simulate timed transitions of the form 〈s, X, ν〉 δ−→T 〈s, X′, ν′〉 for some
δ > 0. We distinguish between two cases, namely (i) there is at least one message or clock
with value (≤ kmax) and a zero fractional part (i.e., c0 6= ε), and (ii) that no such message
or clock exists (i.e., c0 = ε):

In the first case, we can let time pass by a sufficiently small real number, such that
no clock with a positive fractional part before the transition reaches the next integer
value after the transition. The contents of c0 will be divided between messages that will
be transferred to c∞ (representing message ages and clocks values equal to kmax); and
messages that will be placed in a new channel at the leftmost position in the dynamic
part (representing message ages and clock values < kmax). Concretely, we perform
the following steps: (i) we use copy(c0, ctmp) to copy the contents of c0 to the temporary
channel ctmp. (ii) we use filter(ctmp,Σ1) where Σ1 = (X × {kmax})∪((C ×M)× {kmax})
to only keep messages with ages equal to kmax in ctmp. (iii) We send the messages of ctmp
one after one to c∞, changing the second component from kmax to ∞ for each message.
(iv) We use filter(c0,Σ2) where Σ2 =

(
X × [kmax − 1]0

)
∪
(

(C ×M)× [kmax − 1]0
)
to

only keep messages with ages < kmax in c0. (v) We send the content of c0 to the dynamic
part using send_channel(c0). (vi) We use empty(c0) to empty c0.
In the second case, we let time pass by exactly the amount needed to make the clock
values and the message ages in the rightmost dynamic channel equal to the next integer.
Let f ∈ ((Σm ∪ Σx)→ (Σm ∪ Σx)) be a function such that f(〈〈c,m〉 , i〉) = 〈〈c,m〉 , i+ 1〉
and f(〈x, i〉) = 〈x, i+ 1〉 for any c ∈ C, m ∈ M , x ∈ X, and i ∈ [kmax − 1]0. We use
receive_channel(c0) to move the contents of the rightmost dynamic channel to c0. Then,
we use map(c0, f) to increase the integer parts of ages of clocks and messages by one.

Simulating Lossy Transitions

Since we have lossiness in D, the simulation is immediate.

6 Conclusions, Discussion, and Future Work

We have shown the decidability of the reachability problem for TLCS, a model that extends
both lossy channel systems and timed automata. To this end, we have introduced a new
model, namely DLCS that operates on second-order lossy channels. We believe that DLCS
are interesting in their own right. In fact, we can define higher-order LCS that contain
“nested channels of channels” of arbitrary depth, in a similar manner to higher-order push-
down automata [20]. It is straightforward to extend the method we present in this paper
to show that transition systems induced by higher-order LCS are also well quasi-ordered
and hence their reachability problem is decidable. To simplify the presentation (and since
it suffices for our purposes) we have chosen to present the proof only for the case where the
hierarchy is restricted to two levels (i.e., DLCS).

The proof techniques we provide in this paper are entirely different from the ones earlier
presented for other timed models. For instance, decidability of the reachability (coverability)
problem for timed Petri nets [5] is achieved by directly proving that the induced transition
system is well quasi-ordered. In particular, in contrast to our method, the proof does not



P. A. Abdulla, M. F. Atig, and J. Cederberg 385

rely on a translation to an untimed model. On the other hand, the proof for timed pushdown
systems [3] reduces the problem to the underlying untimed model, i.e., (untimed) pushdown
automata. Although, we here provide a reduction to an untimed model, the target model
is more powerful than the original one (DLCS vs. plain LCS). Indeed, we believe that a
translation from TLCS to plain LCS that preserves reachability properties is not possible.

As future work, we will consider probabilistic and game extensions of the current model.

References
1 P. A. Abdulla. Well (and better) quasi-ordered transition systems. The Bulletin of Symbolic

Logic, 16(4):457–515, 2010.
2 P. A. Abdulla, M. F. Atig, and J. Cederberg. Timed lossy channel systems. Technical Re-

port 2012-031, Department of Information Technology, Uppsala University, October 2012.
3 P. A. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In LICS.

IEEE Computer Society, 2012.
4 P. A. Abdulla, M. F. Atig, and J. Stenman. The minimal cost reachability problem in

priced timed pushdown systems. In LATA, volume 7183 of LNCS, 2012.
5 P. A. Abdulla and A. Nylén. Timed Petri nets and BQOs. In ICATPN, 2001.
6 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and Ahmed

Rezine. Counter-example guided fence insertion under tso. In TACAS, 2012.
7 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decid-

ability theorems for infinite-state systems. In LICS, pages 313–321, 1996.
8 Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable channels. In

LICS, pages 160–170. IEEE Computer Society, 1993.
9 R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 126(2):183–235,

1994.
10 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem

for weak memory models. In POPL, pages 7–18. ACM, 2010.
11 M. Benerecetti, S. Minopoli, and A. Peron. Analysis of timed büchi state machines. In

TIME, pages 61–68. IEEE Computer Society, 2010.
12 B. Bérard, F. Cassez, S. Haddad, O. Roux, and D. Lime. Comparison of different semantics

for time Petri nets. In ATVA 2005, 2005.
13 A. Bouajjani, R. Echahed, and R. Robbana. On the automatic verification of systems with

continuous variables and unbounded discrete data structures. In Hybrid Systems, LNCS
999, pages 64–85. Springer, 1994.

14 P. Bouyer, F. Cassez, E. Fleury, and K. G. Larsen. Optimal strategies in priced timed
game automata. In FSTTCS, LNCS 3328, pages 148–160. Springer, 2004.

15 P. Bouyer and F. Laroussinie. Model checking timed automata. In Stephan Merz and
Nicolas Navet, editors, Modeling and Verification of Real-Time Systems, pages 111–140.
ISTE Ltd. – John Wiley & Sons, Ltd., January 2008.

16 Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity of lossy
channel systems. In LICS, pages 205–216. IEEE Computer Society Press, 2008.

17 Z. Dang. Pushdown timed automata: a binary reachability characterization and safety
verification. Theor. Comput. Sci., 302(1-3):93–121, 2003.

18 Z. Dang, T. Bultan, O. H. Ibarra, and R. A. Kemmerer. Past pushdown timed automata
and safety verification. Theor. Comput. Sci., 313(1):57–71, 2004.

19 M. Emmi and R. Majumdar. Decision problems for the verification of real-time software.
In HSCC, LNCS 3927, pages 200–211. Springer, 2006.

20 M. Hague and L. Ong. Symbolic backwards-reachability analysis for higher-order pushdown
systems. Logical Methods in Computer Science, 4(4), 2008.

FSTTCS 2012



386 Timed Lossy Channel Systems

21 G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),
2(7):326–336, 1952.

22 A. Trivedi and D. Wojtczak. Recursive timed automata. In ATVA, pages 306–324, 2010.


	Introduction
	Preliminaries
	Timed Lossy Channel Systems
	Dynamic Lossy Channel Systems
	From TLCS to DLCS
	Conclusions, Discussion, and Future Work

