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Abstract
Deciding in an efficient way weak probabilistic bisimulation in the context of probabilistic au-
tomata is an open problem for about a decade. In this work we close this problem by proposing a
procedure that checks in polynomial time the existence of a weak combined transition satisfying
the step condition of the bisimulation. This enables us to arrive at a polynomial time algorithm
for deciding weak probabilistic bisimulation. We also present several extensions to interesting
related problems setting the ground for the development of more effective and compositional
analysis algorithms for probabilistic systems.

1998 ACM Subject Classification G.3: Probability and Statistics; F.2: Analysis Of Algorithms
and Problem Complexity.

Keywords and phrases Probabilistic Automata, Weak probabilsitic bisimulation, Linear Pro-
gramming problem, Polynomial decision algorithm.

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.435

1 Introduction

Probabilistic automata (PA) constitute a mathematical framework for the specification of
probabilistic concurrent systems [4,22]. Probabilistic automata extend classical concurrency
models in a simple yet conservative fashion. In probabilistic automata, there is no global
notion of time, and probabilistic experiments can be performed inside a transition. This
embodies a clear separation between probability and nondeterminism, and is represented
by transitions of the form s a−→ µ, where s is a state, a is an action label, and µ is a
probability distribution on states. Labeled transition systems are instances of this model
family, obtained by restricting to Dirac distributions (assigning full probability to single
states). Thus, foundational concepts and results of standard concurrency theory are retained
in full and extend smoothly to the model of probabilistic automata. The PA model is akin
to Markov decision processes (MDP) [7], and its foundational beauty can be paired with
powerful model checking techniques, as implemented for instance in the PRISM tool [16].
Variations of this model are Labeled Concurrent Markov Chains (LCMC) and alternating
Models [11, 21, 27]. We refer the interested reader to [23] for a survey on PA and other
models.

If facing a concrete probabilistic system, we can conceive several different PA models to
reflect its behavior. For instance, we can use different state names, encode diverse informa-
tion in the states, represent internal computations with different action labels, and so on.
Bisimulation relations constitute a powerful tool allowing us to check whether two models
describe essentially the same system. They are then called bisimilar. The bisimilarity of
two systems can be viewed in terms of a game played between a challenger and a defender.
In each step of the infinite bisimulation game, the challenger chooses one automaton, makes
a step, and the defender matches it with a step of the other automaton. Depending on how
we want to treat internal computations, this leads to strong and weak bisimulations: the
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former requires that each single step of the challenger automaton is matched by an equally
labeled single step of the defender automaton, the latter allows the matching up to inter-
nal computation steps. On the other hand, depending on how nondeterminism is resolved,
probabilistic bisimulation can be varied by allowing the defender to match the challenger’s
step by a convex combination of enabled probabilistic transitions. This results in a spectrum
of four bisimulations: strong [11, 22, 27], strong probabilistic [22], weak [21, 22], and weak
probabilistic [22] bisimulation.

Besides comparing automata, bisimulation relations allow us to reduce the size of an au-
tomaton without changing its properties (i.e., with respect to logic formulae satisfied by it).
This is particularly useful to alleviate the state explosion problem notoriously encountered
in model checking.

Polynomial decision algorithms for strong (probabilistic) bisimulation [3] and weak bisim-
ulation [21] are known. However, PA weak bisimulation lacks in transitivity and this severely
limits its usefulness. On the other hand weak probabilistic bisimulation is indeed transitive,
while the only known algorithm for such bisimulation is exponential [3] in the size of the
probabilistic automaton.

In this context, it is worth to note that LCMC weak bisimulation [21] and PA weak
probabilistic bisimulation [22] coincide [24] when LCMC is seen as a PA with restrictions
on the structure of the automaton and that restricted versions of PA weak probabilistic
bisimulations, such as normed [1] and delay [25] bisimulation, can be decided in polynomial
time. Following [24], an LCMC is just a PA where each state with outgoing transitions
enables either labeled transitions each one leading to a single state, or a single transition
leading to a probability distribution over states and this constraint on the structure of the
automaton is enough to reduce the complexity of the decision procedure at the expense of
the loss of using combined transitions and nondeterminism to simplify the automaton.

Lately, the model of PA has been enhanced with memoryless continuous time, integrated
into the model of Markov automata [6, 8, 9]. This extension is also rooted in interactive
Markov chains (IMC) [13], another model with a well-understood compositional theory.
IMCs are applied in a large spectrum of practical applications, ranging from networked
hardware on chips [5] to water treatment facilities [12] and ultra-modern satellite designs [10].
The standard analysis trajectory for IMC revolves around compositional applications of
weak bisimulation minimization, a strategy that has been proven very effective [2, 5, 14],
and is based on a polynomial time weak bisimulation decision algorithm [13, 28]. Owed
to the unavailability of effective algorithms for PA weak probabilistic bisimulations, this
compositional minimization strategy has thus far not been applied in the PA (or MDP)
setting. We aim at making this possible, and furthermore, we intend to repeat and extend
the successful applications of IMC in the extended Markov automata setting. For this,
a polynomial time decision procedures for weak probabilistic bisimulation on PA is the
essential building block.

In this paper we show that PA weak probabilistic bisimulation can be decided in poly-
nomial time, thus just as all other bisimulations on PA. To arrive there, we provide a
decision procedure that follows the standard partition refinement approach [3, 17, 19] and
that is based on a Linear Programming (LP) problem. The crucial step is that we manage
to generate and decide an LP problem that proves or disproves the existence of a weak step
in time polynomial in the size of an automaton which in turn encodes a weak transition
linear in its size. This enables us to decide in polynomial time whether the defender has a
matching weak transition step - opposed to the exponential time required thus far [3] for this.
Apart from this result, which closes successfully the open problem of [3], we show how our LP
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approach can be extended to hyper-transitions (weak transitions leaving a probability distri-
bution instead of a single state) and to the novel concepts of allowed weak/hyper-transitions
(weak/hyper-transitions involving only a restricted set of transitions) and of equivalence
matching (given two states, check whether each one enables a weak transition matchable by
the other). Hyper-transitions naturally occur in weak probabilistic bisimulation on Markov
automata, and in the bisimulation formulation of probabilistic forward simulation [8, 22].
Organization of the paper. After the preliminaries in Section 2, we present in Section 3
the polynomial LP problem that models weak transitions together with several extensions
that can be computed in polynomial time as well. Then, in Section 4, we recast the algo-
rithm proposed in [3] that decides whether two probabilistic automata are weak probabilistic
bisimilar and we show that the decision procedure is polynomial. We conclude the paper
in Section 5 with some remarks. Due to space limitations, we refer the reader interested in
detailed proofs to [15].

2 Mathematical Preliminaries

For a generic set X, denote by Disc(X) the set of discrete probability distributions over
X, and by SubDisc(X) the set of discrete sub-probability distributions over X. Given
ρ ∈ SubDisc(X), we denote by Supp(ρ) the set {x ∈ X | ρ(x) > 0 }, by ρ(⊥) the value
1−ρ(X) where ⊥ /∈ X, and by δx the Dirac distribution such that ρ(x) = 1 for x ∈ X∪{⊥}.
For a sub-probability distribution ρ, we also write ρ = { pxx | x ∈ X, px = ρ(x) }. The
lifting L(R) [18] of a relation R ⊆ X × Y is defined as follows: for ρX ∈ Disc(X) and
ρY ∈ Disc(Y ), ρX L(R) ρY holds if there exists a weighting function w : X×Y → [0, 1] such
that (1) w(x, y) > 0 implies x R y, (2)

∑
y∈Y w(x, y) = ρX(x), and (3)

∑
x∈X w(x, y) = ρY (y).

When R is an equivalence relation on a set X, ρ1 L(R) ρ2 holds if for each C ∈ X/R,
ρ1(C) = ρ2(C).

A Probabilistic Automaton (PA) A is a tuple (S, s̄,Σ,D), where S is a set of states, s̄ ∈ S
is the start state, Σ is the set of actions, and D ⊆ S×Σ×Disc(S) is a probabilistic transition
relation. The set Σ is parted in two sets H and E of internal (hidden) and external actions,
respectively; we let s,t,u,v, and their variants with indices range over S, a, b range over
actions, and τ range over hidden actions. In this work we consider only finite PAs, i.e.,
automata such that S and D are finite.

A transition tr = (s, a, µ) ∈ D, also denoted by s a−→ µ, is said to leave from state s, to
be labeled by a, and to lead to µ, also denoted by µtr . We denote by src(tr) the source state
s, by act(tr) the action a, and by trg(tr) the target distribution µ. We also say that s enables
action a, that action a is enabled from s, and that (s, a, µ) is enabled from s. Finally, we
denote by D(s) the set of transitions enabled from s, i.e., D(s) = { tr ∈ D | src(tr) = s }, and
similarly by D(a) the set of transitions with action a, i.e., D(a) = { tr ∈ D | act(tr) = a }.

An execution fragment of a PA A is a finite or infinite sequence of alternating states
and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted by first(α), and,
if the sequence is finite, ending with a state, also denoted by last(α), such that for each
i > 0 there exists a transition (si−1, ai, µi) ∈ D such that µi(si) > 0. The length of
α, denoted by |α|, is the number of occurrences of actions in α. If α is infinite, then
|α| = ∞. Denote by frags(A) the set of execution fragments of A and by frags∗(A) the
set of finite execution fragments of A. An execution fragment α is a prefix of an execution
fragment α′, denoted by α 6 α′, if the sequence α is a prefix of the sequence α′. The
trace of α, denoted by trace(α), is the sub-sequence of external actions of α. For instance,
for a ∈ E, trace(s0as1) = trace(s0τs1τ . . . τsn−1asn) = a, also denoted by trace(a), and
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trace(s0) = trace(s0τs1τ . . . τsn) = ε, the empty sequence, also denoted by trace(τ).
A scheduler for a PA A is a function σ : frags∗(A) → SubDisc(D) such that for each

finite execution fragment α, σ(α) ∈ SubDisc(D(last(α))). A scheduler is determinate [3] if
for each pair of execution fragments α, α′, if trace(α) = trace(α′) and last(α) = last(α′),
then σ(α) = σ(α′). Given a scheduler σ and a finite execution fragment α, the distribution
σ(α) describes how transitions are chosen to move on from last(α). A scheduler σ and a
state s induce a probability distribution µσ,s over execution fragments as follows. The basic
measurable events are the cones of finite execution fragments, where the cone of a finite
execution fragment α, denoted by Cα, is the set {α′ ∈ frags∗(A) | α 6 α′ }. The probability
µσ,s of a cone Cα is defined recursively as follows:

µσ,s(Cα) =


0 if α = t for a state t 6= s,
1 if α = s,
µσ,s(Cα′) ·

∑
tr∈D(a) σ(α′)(tr) · µtr(t) if α = α′at.

Standard measure theoretical arguments ensure that µσ,s extends uniquely to the σ-field
generated by cones. We call the measure µσ,s a probabilistic execution fragment of A and we
say that it is generated by σ from s. Given a finite execution fragment α, we define µσ,s(α)
as µσ,s(α) = µσ,s(Cα) · σ(α)(⊥), where σ(α)(⊥) is the probability of chosing no transitions,
i.e., of terminating the computation after α has occurred.

We say that there is a weak combined transition from s ∈ S to µ ∈ Disc(S) labeled by
a ∈ Σ that is induced by σ, denoted by s a=⇒c µ, if there exists a scheduler σ such that the
following holds for the induced probabilistic execution fragment µσ,s: (1) µσ,s(frags∗(A)) = 1;
(2) for each α ∈ frags∗(A), if µσ,s(α) > 0 then trace(α) = trace(a); (3) for each state t,
µσ,s({α ∈ frags∗(A) | last(α) = t }) = µ(t). See [23] for more details on weak combined
transitions.

s̄

t

u

v

τ 1/4
1/4

1

τ

1/2

1a

1a

1a

Figure 1 The PA E

I Example 1. Consider the automaton E depicted
in Figure 1 and denote by tr the only transition en-
abled by s̄; E enables the weak combined transition
s̄

a=⇒c µ where µ = { 1
16 , 5

16 , 10
16 } via the sched-

uler σ defined as follows: σ(s̄) = σ(s̄τ tτ s̄) = δtr ,
σ(s̄τ t) = δ

t
τ−→δs̄

, σ(s̄τu) = σ(s̄τ tτ s̄τu) = δ
u

a−→δ
,

σ(s̄τv) = σ(s̄τ tτ s̄τv) = δ
v
a−→δ

, σ(s̄τ tτ s̄τ t) = δ
t
a−→δ

, and σ(α) = δ⊥ for each other
α ∈ frags∗(E). For instance, state is reached with probability µσ,s̄({α ∈ frags∗(E) |
last(α) = }) = µσ,s̄({s̄τua , s̄τ tτ s̄τua }) = 1·1· 14 ·1·1·1+1·1· 14 ·1·1·1·

1
4 ·1·1·1 = 5

16 = µ( ),
as required. As we will see in Sect. 3.4, the same weak combined transition is induced also
by a determinate scheduler.

We say that there is a hyper-transition from ρ ∈ Disc(S) to µ ∈ Disc(S) labeled
by a ∈ Σ, denoted by ρ

a=⇒c µ, if there exists a family of weak combined transitions
{s a=⇒c µs}s∈Supp(ρ) such that µ =

∑
s∈Supp(ρ) ρ(s) · µs, i.e., for each t ∈ S, µ(t) =∑

s∈Supp(ρ) ρ(s) · µs(t).

I Definition 1. Let A1, A2 be two probabilistic automata. An equivalence relation R
on the disjoint union S1 ] S2 is a weak probabilistic bisimulation if, for each pair of states
s, t ∈ S1 ] S2 such that s R t, if s a−→ µs for some probability distribution µs, then there
exists a probability distribution µt such that t a=⇒c µt and µs L(R) µt.

Two probabilistic automata A1 and A2 are weakly probabilistic bisimilar if there exists
a weak probabilistic bisimulation R on S1 ] S2 such that s̄1 R s̄2. We denote the coarsest
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weak probabilistic bisimulation by ≈, and call it weak probabilistic bisimilarity.

This is the central definition around which the paper revolves. Weak probabilistic bisim-
ilarity is an equivalence relation preserved by standard process algebraic composition oper-
ators on PA [20]. The complexity of deciding A1 ≈ A2 strictly depends on finding t a=⇒c µt
for which determinate schedulers suffice (cf. [3, Prop. 1]): in Section 3 we will show how to
find them in polynomial time. The definition of bisimulation can be reformulated as follows,
by simple manipulation of quantifiers:

I Definition 2. Given two PAs A1, A2, an equivalence relation R on S1 ] S2 is a weak
probabilistic bisimulation if, for each transition (s, a, µs) ∈ D1 ] D2 and each state t such
that s R t, there exists µt such that t a=⇒c µt and µs L(R) µt.

3 Weak Transition Construction as a Linear Programming Problem

We now discuss key elements of a decision algorithm for weak probabilistic bisimilarity. As
we will see in Section 4, the core ingredient - and the source of the exponential complexity
of the decision algorithm of [3] - is the recurring need to verify the step condition, that is,
given a challenging transition s a−→ µ and (s, t) ∈ R, to check whether there exists t a=⇒c µt
such that µ L(R) µt.

With some inspiration from network flow problems, we will be able to see a transition
t

a=⇒c µt of the PA A as a flow where the initial probability mass δt flows and splits along
internal transitions (and exactly one transition with label a for each stream when a 6= τ)
accordingly to the transition target distributions and the resolution of the nondeterminism
performed by the scheduler.

This will allow us to arrive at a polynomial time algorithm to verify or refute the existence
of a weak combined transition t a=⇒c µt such that µ L(R) µt.

3.1 Allowed Transitions
For the construction we are going to develop, we consider a more general case where we
parametrize the scheduler so as to choose only specific, allowed, transitions when resolving
the nondeterministic choices in a weak combined transition. This generalization will later
be exploited by enabling us to generate tailored and thereby smaller LP-problems. For
the intuition of this generalization, consider, for example, an automaton C that models a
communication channel: it receives the information to transmit from the sender through
an external action, then it performs an internal transition to represent the sending of the
message on the communication channel, and finally it sends the transmitted information to
the receiver. The communication channel is chosen nondeterministically between a reliable
channel and an acknowledged lossy channel. If we want to check whether C always ensures
the correct transmission of the received information, we can restrict the scheduler to choose
only the lossy channel, i.e., we allow only the transitions relative to the lossy channel; if we
impose this restriction and C is able to send eventually the transmitted information to the
receiver with probability 1, then we can say that C always ensures the correct transmission
of the received information.

I Definition 3 (Allowed weak combined transition). Given a PA A and a set of allowed
transitions A ⊆ D, we say that there is an allowed weak combined transition from s to µ
with label a respecting A, denoted by s a=⇒A

c µ, if there exists a scheduler σ that induces
s

a=⇒c µ such that for each α ∈ frags∗(A), Supp(σ(α)) ⊆ A.
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It is immediate to see that, when we consider every transition as allowed, i.e., A = D, the
allowed weak combined transition s a=⇒D

c µ is just the usual transition s a=⇒c µ.

I Proposition 4. Given a PA A, a state s, and action a, and a probability distribution
µ ∈ Disc(S), there exists a scheduler σD for A that induces s a=⇒D

c µ if and only if there
exists a scheduler σ for A that induces s a=⇒c µ.

Similarly, we say that there is an allowed hyper-transition from a distribution over states ρ
to a distribution over states µ labeled by a respecting A, denoted by ρ a=⇒A

c µ, if there exists
a family of allowed weak combined transitions {s a=⇒A

c µs}s∈Supp(ρ) such that µ =
∑
ρ(s)·µs.

An equivalent definition of allowed hyper-transition ρ
a=⇒A

c µ is the following: given a
PA A, we say that there is an allowed hyper-transition from a distribution over states ρ
to a distribution over states µ labeled by a respecting A if there exists an allowed weak
combined transition h a=⇒Ahc µ for the PA Ah = (S ∪ {h}, s̄,Σ,D ∪ {h τ−→ ρ}) where h /∈ S
and Ah = A ∪ {h τ−→ ρ}.

I Proposition 5. Given a PA A, h /∈ S, a ∈ Σ, A ⊆ D, and ρ, µ ∈ Disc(S), let Ah be the
PA Ah = (S ∪ {h}, s̄,Σ,D ∪ {h τ−→ ρ}) and Ah be A ∪ {h τ−→ ρ}.

ρ
a=⇒A

c µ exists in A if and only if h a=⇒Ahc µ exists in Ah.

I Example 1 (cont.). If we consider again the automaton E in Figure 1 and the set
of allowed transitions A = D \ {t τ−→ δs̄}, it is immediate to see that s̄ a=⇒c µ with µ =
{ 1

16 , 5
16 , 10

16 } is not an allowed weak combined transition respecting A and that the
only allowed weak combined transition with label a enabled by s̄ is s̄ a=⇒A

c ρ having ρ =
{ 1

4 , 1
4 , 1

2 } as target distribution.

3.2 A Linear Programming Problem
We now assume we are given the PA A, the set of allowed transitions A ⊆ D, the state t,
the action a, the probability distribution µ, and the equivalence relation R on S. We intend
to verify or refute the existence of a weak combined transition t

a=⇒A
c µt of A satisfying

µ L(R) µt via the construction of a flow through the network graph G(t, a, µ,A,R) = (V,E)
defined as follows: for a 6= τ , the set of vertices is V = {M,H} ∪ S ∪ Str ∪ Sa ∪ Str

a ∪ (S/R)
where Str = { vtr | tr = v b−→ ρ ∈ A, b ∈ {a, τ} }, Sa = { va | v ∈ S } and Str

a = { vtr
a |

vtr ∈ Str } and the set of arcs is E = {(M, t)} ∪ { (va, C), (C,H) | C ∈ S/R, v ∈ C } ∪
{ (v, vtr), (vtr , v′), (va, vtr

a ), (vtr
a , v

′
a) | tr = v τ−→ ρ ∈ A, v′ ∈ Supp(ρ) } ∪ { (v, vtr

a ), (vtr
a , v

′
a) |

tr = v a−→ ρ ∈ A, v′ ∈ Supp(ρ) }. For a = τ the definition is similar: V = {M,H} ∪ S ∪
Str ∪ (S/R) and E = {(M, t)} ∪ { (v, C), (C,H) | C ∈ S/R, v ∈ C } ∪ { (v, vtr), (vtr , v′) | tr =
v τ−→ ρ ∈ A, v′ ∈ Supp(ρ) }.

M and H are two vertices that represent the source and the sink of the network, respec-
tively. The graph encodes possible sequences of internal transitions, keeping track of which
transition has happened by means of the vertices superscripted with tr, for this the set
Str contains vertices that model the transitions of the automaton. The subsets of vertices
subscripted by a are used to record that action a has happened already. Notably, not every
vertex is used for defining arcs: the vertices vtr where tr = v b−→ ρ ∈ A and b = a 6= τ are
used only to define the corresponding vertices vtr

a that are actually involved in the definition
of the set E of arcs. We could have removed these vertices from Str but this reduces the
readability of the definition of Str

a without giving us a valuable effect on the computational
complexity of the proposed solution.

I Example 1 (cont.). Consider the automaton E in Figure 1 and suppose that we want to
check whether there exists an allowed weak combined transition s̄ a=⇒D

c ρ such that ρ L(R) µ
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where µ = { 1
16 , 5

16 , 10
16 } and the classes induced by R are {{s̄, t, u, v}, { }, { }, { }}.

Let tr0 = s̄ τ−→ { 1
4 t,

1
4u,

1
2v}, tr1 = t a−→ δ , tr2 = u a−→ δ , tr3 = v a−→ δ , and tr4 =

t τ−→ δs̄. The network G(s̄, a, µ,D,R) is as follows, where we omit vertices , , and
since they are not involved in any arc. Numbers attached to arcs indicate probabilities, and
are not part of the graph.

M s̄ s̄tr0

t

u

v

ttr4 ttr1
a

utr2
a

vtr3
a

a

a

a

[ ]R

[ ]R

[ ]R

H [s̄]R s̄as̄tr0
a

ta

ua

va

ttr4
a

1/4
1/4

1/2

1

1

1

1

1/4
1/4

1/2

1

Our intention is to use the network G(t, a, µ,A,R), in a maximum flow problem, since
solving the latter has polynomial complexity. Unfortunately, the resulting problem does not
model an allowed weak combined transition because probabilities are as such not necessarily
respected: in ordinary flow problems we can not enforce a proportional balancing between
the flows out of a given vertex. Instead, the entire incoming flow might be sent over a single
outgoing arc, provided that the arc capacity is respected, while zero flow is sent over other
arcs. In particular, we have no way to force the flow to split proportionally to the target
probability distribution of a transition when the flow is less than 1. Apart from that, there
is no obvious way to assign arc capacities since imposing capacity 1 to arcs is not always
correct even if this is the maximum value for a probability. This problem is specifically
caused by cycles of internal transitions. For self loops like s τ−→ ρ with ρ(s) > 0, one might
after some reflection come up with a capacity 1/(1 − p) where p = ρ(s), but this does not
extend to arbitrary τ -connected components.

For these reasons, we have to proceed differently: since any maximum flow problem can
be expressed as a Linear Programming (LP) problem, we follow this path, but then refine the
LP problem further, in order to eventually define a maximization problem whose solution is
indeed equivalent to an allowed weak combined transition, as we will show in Section 3.4.
For this, we use the above transformation of the automaton into a network graph as the
starting point for generating an LP problem, which is afterwards enriched with additional
constraints: we adopt the same notation of the max flow problem so we use fu,v to denote
the “flow” through the arc from u to v. The balancing factor is a new concept we introduce
to model a probabilistic choice and to ensure a balancing between flows that leave a vertex
representing a probabilistic choice, i.e., leaving a vertex v ∈ Str ∪ Str

a .

I Definition 6 (The t a=⇒A
c �· L(R) µ LP problem). For a 6= τ we define the LP problem

t
a=⇒A

c �· L(R) µ associated to the network graph (V,E) = G(t, a, µ,A,R) as follows.
max

∑
(x,y)∈E −fx,y

subject to
fu,v ≥ 0 for each (u, v) ∈ E
fM,t = 1
fC,H = µ(C) for each C ∈ S/R∑

u∈{ x|(x,v)∈E } fu,v −
∑

u∈{ y|(v,y)∈E } fv,u = 0 for each v ∈ V \ {M,H}
fvtr ,v′ − ρ(v′) · fv,vtr = 0 for each tr = v

τ−→ ρ ∈ A and v′ ∈ Supp(ρ)
fvtr

a ,v
′
a
− ρ(v′) · fva,v

tr
a

= 0 for each tr = v
τ−→ ρ ∈ A and v′ ∈ Supp(ρ)

fvtr
a ,v
′
a
− ρ(v′) · fv,vtr

a
= 0 for each tr = v

a−→ ρ ∈ A and v′ ∈ Supp(ρ)

When a is τ , the LP problem t
τ=⇒A

c �· L(R) µ associated to G(t, τ, µ,A,R) is defined
as above without the last two groups of constraints. Note that t a=⇒A

c �· L(R) µ constraints
define a system of linear equations extended with the non-negativity of variables fu,v and
this rules out solutions where some variable fx,y has an infinite value. Moreover this may be
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used to improve the actual implementation of the solver. It is worthwhile to point out that
the objective function max

∑
(x,y)∈E −fx,y is actually equivalent to min

∑
(x,y)∈E fx,y, i.e., a

weak transition can also be seen as a minimum cost flow problem plus balancing constraints.
We can define the objective function in several ways but this does not affect the equiva-

lence of t a=⇒A
c �· L(R) µ and allowed weak combined transitions: in fact, the equivalence is

based on variables fva,[v]R and fC,H (where v ∈ S and C ∈ S/R) that represent the probabil-
ity to reach each state v (and then stopping) and each equivalence class C, respectively; by
definition of t a=⇒A

c �· L(R) µ we have that
∑
v∈C fva,C = fC,H and fC,H = µ(C), thus their

value does not strictly depend on the objective function. When a = τ , we have the same
result, just replacing va with v.

The objective function we use allows us to rule out trivial self-loops: suppose that there
exists a transition tr = x τ−→ δx ∈ A that we model by arcs (x, xtr) and (xtr , x). The
balancing constraint for such arcs is fxtr ,x − 1 · fx,xtr = 0 that is satisfied for each value of
fxtr ,x = fx,xtr ; however, the maximum for the objective function can be reached only when
fx,xtr = 0, that is, the self-loop is not used. Similarly, we obtain that the value of the flow
involving vertices that can not be reached from the vertex t is null as well as when such
vertices may be reached from t but the solution of the problem requires that the flow from
the vertex t to them is null.

I Example 1 (cont.). Consider again the automaton E in Figure 1 and suppose that we
want to check whether there exists an allowed weak combined transition s̄ a=⇒D

c ρ such that
ρ L(R) µ where µ = { 1

16 , 5
16 , 10

16 } and the only non-singleton class ofR is {s̄, t, u, v}. Let
tr0 = s̄ τ−→ { 1

4 t,
1
4u,

1
2v}, tr1 = t a−→ δ , tr2 = u a−→ δ , tr3 = v a−→ δ , and tr4 = t τ−→ δs̄.

Besides other constraints, the LP problem s̄
a=⇒D

c �· L(R) µ has the following constraints:

fM,s̄ = 1 f[ ]R,H = 1/16 f[ ]R,H = 5/16
f[ ]R,H = 10/16 fs̄,s̄tr0 − fs̄tr0 ,t − fs̄tr0 ,u − fs̄tr0 ,v = 0 fM,s̄ + fttr4 ,s̄ − fs̄,s̄tr0 = 0
fs̄tr0 ,t − ft,ttr1

a
− ft,ttr4 = 0 fs̄tr0 ,u − fu,utr2

a
= 0 fs̄tr0 ,v − fv,vtr3

a
= 0

f
t,t

tr1
a
− f

t
tr1
a , a

= 0 f
u,u

tr2
a
− f

u
tr2
a , a

= 0 f
v,v

tr3
a
− f

v
tr3
a , a

= 0
ft,ttr4 − fttr4 ,s̄ = 0 f

t
tr1
a , a

− f
a,[ ]R = 0 f

u
tr2
a , a

− f
a,[ ]R = 0

f
v

tr3
a , a

− f
a,[ ]R = 0 f

a,[ ]R − f[ ]R,H = 0 f
a,[ ]R − f[ ]R,H = 0

f
a,[ ]R − f[ ]R,H = 0 fs̄tr0 ,t − 1/4fs̄,s̄tr0 = 0 fs̄tr0 ,u − 1/4fs̄,s̄tr0 = 0

fs̄tr0 ,v − 1/2fs̄,s̄tr0 = 0 f
t

tr1
a , a

− 1f
t,t

tr1
a

= 0 f
u

tr2
a , a

− 1f
u,u

tr2
a

= 0
f
v

tr3
a , a

− 1f
v,v

tr3
a

= 0 fttr4 ,s̄ − 1ft,ttr4 = 0

A solution that maximizes the objective function sets all variables to value 0 except for

fM,s̄ = 16/16 f[ ]R,H = 1/16 f[ ]R,H = 5/16 f[ ]R,H = 10/16
fs̄,s̄tr0 = 20/16 fs̄tr0 ,t = 5/16 fs̄tr0 ,u = 5/16 fs̄tr0 ,v = 10/16
f
t,t

tr1
a

= 1/16 ft,ttr4 = 4/16 f
u,u

tr2
a

= 5/16 f
v,v

tr3
a

= 10/16
f
t

tr1
a , a

= 1/16 fttr4 ,s̄ = 4/16 f
u

tr2
a , a

= 5/16 f
v

tr3
a , a

= 10/16
f

a,[ ]R = 1/16 f
a,[ ]R = 5/16 f

a,[ ]R = 10/16

The variable fs̄,s̄tr0 = 20/16 is part of a cycle and its value is greater than 1, confirming that
1, the maximum probability, in general is not a proper value for arc capacities.

3.3 Complexity of the LP Problem
We analyze the complexity of t a=⇒A

c �· L(R) µ for a 6= τ since t τ=⇒A
c �· L(R) µ is just a

special case of t a=⇒A
c �· L(R) µ.
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Given the automaton A and the set A ⊆ D of allowed transitions, let NS = |S|,
NA = |A|, and N = max{NS , NA}. Suppose that a 6= τ and consider the network graph
G(t, a, µ,A,R) = (V,E). The cardinality of V is: |V | ≤ 2+NS+NA+NS+NA+NS ∈ O(N)
and the cardinality of E is: |E| ≤ 1+2NS+2(NS+1)NA+(NS+1)NA ∈ O(N2). Note that
this is also the cost of generating the G(t, a, µ,A,R) network graph from the automaton A.

Now, consider the t a=⇒A
c �· L(R) µ LP problem: the number of variables is |{ fu,v |

(u, v) ∈ E }| = |E| ∈ O(N2) and the number of constraints is |E| + 1 + NS + NSNA +
NSNA+NSNA+ |V |−2 ∈ O(N2), so generating t a=⇒A

c �· L(R) µ is polynomial in N . Since
there exist polynomial algorithms for solving LP problems [26], solving the t a=⇒A

c �· L(R) µ
problem is polynomial in N . The implementation of t a=⇒A

c �· L(R) µ can be optimized in
several ways (cf. [15, Sec. 3.4]) without changing the resulting complexity class.

I Theorem 7. Given a PA A, an equivalence relation R on S, an action a, a probability
distribution µ ∈ Disc(S), a set of allowed transitions A ⊆ D, and a state t ∈ S, consider the
problem t

a=⇒A
c �· L(R) µ as defined above. Let N = max{|S|, |A|}.

Generating and checking the existence of a valid solution of the t a=⇒A
c �· L(R) µ LP

problem is polynomial in N .

3.4 Equivalence of LP Problems and Weak Transitions
In this section we present the main theorem that equates t a=⇒A

c �· L(R) µ with an allowed
weak combined transition, that is, t a=⇒A

c �· L(R) µ has a solution if and only if there exists
a scheduler σ for A that induces t a=⇒A

c µt such that µ L(R) µt. This result easily extends
to ordinary weak combined transitions and hyper-transitions.

I Theorem 8. Given a PA A, an equivalence relation R on S, an action a, a probability
distribution µ ∈ Disc(S), a set of allowed transitions A ⊆ D, and a state t ∈ S, consider the
problem t

a=⇒A
c �· L(R) µ as defined above.

t
a=⇒A

c �· L(R) µ has a solution f∗ such that f∗C,H = µ(C) for each C ∈ S/R if and only
if there exists a scheduler σ for A that induces t a=⇒A

c µt such that µ L(R) µt.

Proof outline. The scheduler σ we define in the proof for the “only if” direction assigns to
each execution fragment α with last(α) = v the sub-probability distribution over transitions
defined, for each transition tr ∈ A such that src(tr) = v, as the ratio f∗

vt,vtr
t̄
/~f∗vt

, given that
~f∗vt

> 0, where ~f∗v is the total flow incoming v, t = trace(α), and t̄ is the concatenation
of trace(α) and of trace(act(tr)). The remaining probability of stopping in the state v is
exactly f∗vt,[v]R/

~f∗vt
. The way we generate the network G(t, a, µ,A,R) ensures that f∗

vt,vtr
t

= 0
when t /∈ {ε, trace(a)} and that f∗vt,[v]R/

~f∗vt
= 0 when t 6= trace(a). The proof for the “if”

direction is the dual, that is, we define a feasible solution f∗ as the sum of the probabilities of
the cones of execution fragments, i.e., ~f∗vb

=
∑
α∈{φ∈frags∗(A)|trace(φ)=b∧last(φ)=v } µσ,t(Cα);

then the existence of such feasible solution is enough to prove that there exists a (possibly
different) solution fo that maximizes the objective function while preserving the property
that for each C ∈ S/R, foC,H = µ(C). J

It is worth to observe that the resulting scheduler is a determinate scheduler and an
immediate corollary of this theorem confirming and improving Proposition 3 of [3] is that
each scheduler inducing t

a=⇒A
c µt can be replaced by a determinate scheduler inducing

t
a=⇒A

c µt as well.

I Example 1 (cont.). We already know from the first part of this example that there
exists a non-determinate scheduler σ inducing s̄ a=⇒D

c µ where µ = { 1
16 , 5

16 , 10
16 }. So,
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let again tr0 = s̄ τ−→ { 1
4 t,

1
4u,

1
2v}, tr1 = t a−→ δ , tr2 = u a−→ δ , tr3 = v a−→ δ , and

tr4 = t τ−→ δs̄. Theorem 8 ensures that there exists a scheduler σ′, possibly different from
σ, that induces s̄ a=⇒D

c µ; in particular, σ′ is the determinate scheduler defined as follows.

σ′(α) =



δtr0 if trace(α) = ε and last(α) = s̄;
{ 1

5 tr1,
4
5 tr4} if trace(α) = ε and last(α) = t;

δtr2 if trace(α) = ε and last(α) = u;
δtr3 if trace(α) = ε and last(α) = v;
δ⊥ otherwise.

It is straightforward to check that σ′ actually induces s̄ a=⇒D
c µ. For instance, state is

reached with probability µσ′,s̄({α ∈ frags∗(E) | last(α) = }) = µσ′,s̄({ s̄τ t(τ s̄τ t)na | n ∈
N }) = 1 · 1

4 ·
∑
n∈N( 4

5 · 1 · 1 ·
1
4 )n · 1

5 · 1 · 1 = 1
4 ·

1
5 · (1−

1
5 )−1 = 1

4 ·
1
5 ·

5
4 = µ( ), as required.

I Corollary 9. Given a PA A, t ∈ S and h /∈ S, a ∈ Σ, ρ, µ, µt ∈ Disc(S), A ⊆ D, an
equivalence relation R on S, a transition h τ−→ ρ, Ah = A∪{h τ−→ ρ}, Dh = D∪{h τ−→ ρ},
and the PA Ah = (S ∪ {h}, s̄,Σ,Dh), the following holds:

1. t a=⇒D
c �· L(R) µ has a solution f∗ such that f∗C,H = µ(C) for each C ∈ S/R if and only

if there exists a scheduler σ for A inducing t a=⇒c µt such that µ L(R) µt;
2. h a=⇒Ahc �· L(R) µ (h a=⇒Dhc �· L(R) µ) relative to Ah has a solution f∗ such that f∗C,H =

µ(C) for each C ∈ S/R if and only if there exists a scheduler σ for A inducing ρ a=⇒A
c µt

(ρ a=⇒c µt, respectively) such that µt L(R) µ.
When R is the identity relation I, µ L(I) µt implies µt = µ.

Proof outline. The corollary follows directly from a combination of Theorem 8 for the equiv-
alence between the LP problem and allowed weak combined transition, Proposition 4 for
weak combined transitions, and Proposition 5 for hyper-transitions. J

It is worth to note also that, when we consider an MDP as a PA, the t a=⇒A
c �· L(R) µ

construction allows us to solve the multi-objective reachability problem on MDPs, that is,
given an MDP and a collection of disjoint target sets E1, . . . , Ek and goal probabilities p1,
. . . , pk, check whether there exists a scheduler that reaches Ei with probability exactly pi.

3.5 Equivalence Matching
Theorem 8 and its corollary allow us to check in polynomial time whether it is possible to
reach a given probability distribution µ from a state t or a probability distribution ρ. We now
consider a more general case where, given a PA A, two distributions ρ1, ρ2 ∈ Disc(S), two
actions a1, a2 ∈ Σ, two sets A1, A2 ⊆ D of allowed transitions, and an equivalence relation
R on S, we want to check in polynomial time whether there exist µ1, µ2 ∈ Disc(S) such
that ρ1

a1=⇒A1
c µ1, ρ2

a2=⇒A2
c µ2, and µ1 L(R) µ2. In order to find µ1 and µ2, we can consider

a family {pC}C∈S/R of non-negative values such that
∑
C∈S/R pC = 1 and a probability

distribution µ̄ satisfying µ̄(C) = pC for each C ∈ S/R and then solve ρ1
a1=⇒A1

c �· L(R) µ̄
and ρ2

a2=⇒A2
c �· L(R) µ̄ where ρ a=⇒A

c �· L(R) µ is the problem h
a=⇒Ahc �· L(R) µ relative to

Ah = (S∪{h}, s̄,Σ,D∪{h τ−→ ρ}) with h /∈ S and Ah = A∪{h τ−→ ρ}. The main problem of
this approach is to find a good family of values pC ; since we do not care about actual values,
we consider pC as variables satisfying pC ≥ 0 and

∑
C∈S/R pC = 1 and we define the LP

problem P1,2 derived from P1 = ρ1
a1=⇒A1

c �· L(R) µ̄ and P2 = ρ2
a2=⇒A2

c �· L(R) µ̄ as follows
(after renaming of P2 variables to avoid collisions): the objective function of P1,2 is the sum
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of the objective functions of P1 and P2; the set of constraints of P1,2 is
∑
C∈S/R pC = 1

together with pC ≥ 0 for C ∈ S/R and the union of the sets of constraints of P1 and P2
where each occurrence of µ̄(C) is replaced by pC .

It is quite easy to verify that P1,2 has a solution if and only if both P1 and P2 have
a solution (with respect to the same µ̄) and thus, by Corollary 9(2), if and only if ρ1 and
ρ2 enable an allowed hyper-transition to µ1 and µ2, respectively, such that µ1 L(R) µ2, as
required. It is immediate to see that P1,2 can still be solved in polynomial time, since it is
just the union of P1 and P2 extended with at most |S| variables and 2|S| constraints.

I Proposition 10. Given a PA A, ρ1, ρ2 ∈ Disc(S), a1, a2 ∈ Σ, two sets A1, A2 ⊆ D of
allowed transitions, and an equivalence relation R on S, the existence of µ1, µ2 ∈ Disc(S)
such that ρ1

a1=⇒A1
c µ1, ρ2

a2=⇒A2
c µ2, and µ1 L(R) µ2 can be checked in polynomial time.

The above proposition easily extends, by Corollary 9, to each combination of weak com-
bined transitions, allowed hyper-transitions, and allowed weak combined transitions as well
as to exact matching as induced by the identity relation I.

4 Decision Procedure

Quotient(A1,A2)
W = {S1 ] S2};
(C, a, µ) = FindSplit(W);
while C 6= ∅ do
W = Refine(W, (C, a, µ));
(C, a, µ) = FindSplit(W);

return W

In this section, we recast the decision procedure of [3]
that decides whether two probabilistic automata A1 and
A2 are bisimilar according to ≈, that is, whether A1 ≈
A2, following the standard partition refinement approach [3,
17,19,21]. More precisely, procedure Quotient iteratively
constructs the set S/≈, the set of equivalence classes of
states S = S1 ] S2 under ≈, starting with the partitioning
W = {S} and refining it until W satisfies the definition of weak probabilistic bisimulation
and thus the resulting partitioning is the coarsest one, i.e., we compute the weak probabilistic
bisimilarity. FindSplit(W)

1: for all (s, a, µ) ∈ D = D1 ]D2 do
2: for all t ∈ [s]W do
3: if t a=⇒D

c �· L(W) µ has no solution
4: return ([s]W , a, µ)
5: return (∅, τ, δs̄)

Deciding whether two automata are bisimilar
then reduces to check whether their start states
belong to the same class. In the following, we
treat W both as a set of partitions and as an
equivalence relation without further mentioning.

The partitioning is refined by procedure Refine into a finer partitioning as long as
there is a partition containing two states that violate the bisimulation condition, which is
checked for in procedure FindSplit. Procedure Refine, that we do not provide explicitly as
in [3], splits partition C into two new partitions according to the discriminating information
(C, a, µ) identified by FindSplit before. So far, the procedure is as the DecideBisim(A1,A2)
procedure proposed in [3].

The difference arises inside the procedure FindSplit, where we check directly the step
condition by solving for each transition s a−→ µ the LP problem t

a=⇒D
c �· L(W) µ that has a

solution, according to Corollary 9(1), if and only if there exists t a=⇒c µt such that µ L(W)
µt.

4.1 Complexity Analysis of the Procedure
Given two PAs A1 and A2, let S = S1 ] S2, D = D1 ]D2, and N = max{|S|, |D|}.

In the worst case (that occurs when the current W satisfies the step condition), the
for at line 1 of procedure FindSplit is performed at most N times as well as the inner
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for, so t a=⇒D
c �· L(W) µ is generated and solved at most N2 times. Since by Theorem 7

generating and checking the existence of a valid solution for t a=⇒D
c �· L(W) µ is polynomial

in N , this implies that also FindSplit is polynomial in N ; more precisely, denoted by p(N)
the complexity of t a=⇒D

c �· L(W) µ, FindSplit ∈ O(N2p(N)). Note that we can improve
the running time required to solve the t a=⇒D

c �· L(W) µ LP problem by replacing D with
D′ at line 3 of FindSplit where D′ contains only transitions with label τ or a enabled by
states reachable from t.

The while loop in the procedure Quotient can be performed at most N times; this
happens when in each loop the procedure FindSplit returns (C, a, µ) where C 6= ∅, that is,
not every pair of states in C satisfies the step condition. Since in each loop the procedure
Refine splits such class C in two classes C1 and C2, after at most N loops every class contains
a single state and the procedure FindSplit returns (∅, τ, δs̄) since each transition s a−→ µs
is obviously matched by s itself. Since Refine and FindSplit are polynomial in N , also
Quotient is polynomial in N , thus checking A1 ≈ A2 is polynomial in N .

I Theorem 11. Given two PAs A1 and A2, let N = max{|S1 ] S2|, |D1 ]D2|}.
Checking A1 ≈ A2 is polynomial in N .

It is as yet open whether checking A1 ≈ A2 can be done in strong-polynomial time, while
this is known for strong bisimulation.

5 Concluding Remarks

This paper has established a polynomial time decision algorithm for PA weak probabilistic
bisimulation, closing the quest for an effective decision algorithm coined in [3]. The core in-
novation is a novel characterization of weak combined transitions as an LP problem, enabling
us to check the existence of a weak combined transition in polynomial time. The algorithm
can be exploited in an effective compositional minimization strategy for PA (or MDP) and
potentially also for Markov automata. Furthermore, the LP approach we developed is read-
ily extensible to related problems requiring to find a specific weak transition. Another area
of immediate applicability concerns cost-related problems where transition costs may relate
to power or resource consumption in PA or MDP.
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