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Abstract
Information-theoretic measures based upon mutual information can be employed to quantify the
information that an execution of a program reveals about its secret inputs. The information
leakage bounding problem asks whether the information leaked by a program does not exceed
a given threshold. We consider this problem for two scenarios: a) the outputs of the program
are revealed, and b) the timing (measured in the number of execution steps) of the program
is revealed. For both scenarios, we establish complexity results in the context of deterministic
boolean programs, both for programs with and without recursion. In particular, we prove that
for recursive programs the information leakage bounding problem is no harder than checking
reachability.
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1 Introduction

Ensuring that a program preserves confidentiality of its secret inputs is a fundamental
problem in security. Typically, one desires that the execution of the program reveals
absolutely no information about its secret inputs. This desired property is often modeled as
non-interference [18, 29]— the low-security observations of the execution of a program should
be independent of the high-security inputs. These observations could be explicit outputs of
the program (e.g., the results of an election or whether a password is correct or not), or they
could be implicitly extracted from its execution (such as timing information, cache size or
power consumption).

In practice, however, non-interference is hard to achieve as it often clashes with function-
ality. An unanimous election, for example, reveals the votes of each voter. Consequently,
alternative approaches that aim to quantify the amount of information leakage have been
proposed in the literature [15, 19, 25, 31]. In these information-theoretic approaches, pro-
grams are viewed as transformers of random variables— they transform a random variable
taking values from the set of inputs into a random variable taking values from the set of
observations. Intuitively, the amount of information leaked by the program is the difference
between the initial uncertainty and the uncertainty remaining in the high-security inputs
given the observations from running the program; the formal definition relies on the notion
of mutual information, which is based on the seminal work of Shannon [30].

© Rohit Chadha and Michael Ummels;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 534–545

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.534
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


R. Chadha and M. Ummels 535

Given the importance of this problem, several automated approaches have been proposed
to compute the information leaked by the program. The techniques employed by these
approaches range from model-checking [3, 24, 10, 11] and static analysis [12, 13, 14, 3] to
statistical analysis [24, 9]. From a more theoretical viewpoint, the complexity of computing
the amount of leakage was only considered recently [34, 33, 35, 7]. More precisely, [33, 35, 7]
consider the complexity of the information leakage bounding problem: given a program P ,
a distribution µ on the set of inputs, and a rational number q, check if the information leaked
by the program (denoted by SEµ(P )) does not exceed q.

In [33, 35], the program P is described in a simple non-recursive deterministic imperative
language with boolean variables, assignments, conditionals and loops, and the inputs are
assumed to be uniformly distributed. They show that the information leakage bounding
problem is PP-hard for the loop-free fragment.1 For the whole language with loops, the
problem is shown to be PSPACE-hard. However, no upper bounds are given in [33, 35].
An EXPSPACE upper bound can be derived from the work of Černý et al. [7], where the
information leakage bounding problem is shown to be PSPACE-complete under the assumption
that the program is represented explicitly as a nondeterministic transition system and the
input distribution is given explicitly. In our setting, an exponential blow-up occurs because
the translation from a boolean program to a nondeterministic transition system is exponential.

Contributions. Our first contribution is an upper bound for loop-free boolean programs
when the number of output variables is logarithmic in the size of the program.2 We show
that in this case the information leakage bounding problem for uniformly distributed inputs
lies in the fourth level of the counting hierarchy (more precisely in PCH3). The whole counting
hierarchy is contained in PSPACE. The main challenge in establishing the upper bound is
that we have to solve inequations that involve logarithms (because of the definition of mutual
information). In order to overcome this challenge, we resort to recent breakthroughs in
arithmetic circuit complexity [2]. We then employ similar techniques to establish PSPACE-
completeness for boolean programs with loops (but no recursion) under the same assumption
that the number of output variables is logarithmic in the size of program. Hence, our upper
bound is a substantial improvement over the previous EXPSPACE upper bound.

We subsequently turn our attention to boolean programs with recursion. We show that
both the problem of checking non-interference as well as the information leakage bounding
problem is EXPTIME-complete. For the upper bound, we observe that a recursive boolean
program can be represented as an exponential-size deterministic pushdown system [26, 28]
(the pushdown system is of size linear in the length of the program but exponential in the
number of variables). We can then use the fact that control state reachability in pushdown
systems is polynomial-time decidable [5] and thus compute the outputs of the program on
any given input. A careful analysis of the expression computing information leakage then
gives us the desired upper bound. We make no assumptions on the number of variables
in this case, and hence this also gives an EXPTIME upper bound for general non-recursive
programs, which is better than the EXPSPACE upper bound that can be derived from [7].

In the second part of this paper, we consider the case when the attacker can observe
the timing behavior of an execution of a program. We abstract the timing behavior of
the program by the “length” of the computation of the pushdown system corresponding
to the program. One could alternatively use the number of procedure calls or the number

1 Recall that PP is the class of decision problems decidable by a probabilistic polynomial-time Turing
machine with acceptance probability ≥ 1/2.

2 If one also allows low-level security input variables, their number must also be bounded.
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536 Complexity of Quantitative Information Flow

of loop executions as an abstraction of timing, but our results would not change in that
case. For non-recursive terminating programs, the execution time can easily be measured
“inside the program” by a binary counter, so bounding the information leaked by timing is
no harder than the problem of bounding the information leaked by observing the outputs.
The same idea does not work for recursive programs because the running time of a recursive
program could be doubly exponential. Nevertheless, we show that the problem of bounding
the information leaked by the timing behavior of a recursive boolean program on uniformly
distributed inputs is also EXPTIME-complete by showing that the execution time for recursive
terminating programs can still be computed in exponential time.

Related work. The complexity of quantitative information flow security for boolean programs
was first tackled by Yasuoka and Terauchi [34], where the complexity of the information
leakage comparison problem is studied: this problem asks which of two programs leaks more
information. They also show that the problem of checking non-interference for loop-free
programs is coNP-complete. The complexity of bounding information leakage was first
studied by the same authors in [33], where the problem was shown to be PP-hard for loop-free
non-recursive programs. In [35], the same authors prove that deciding non-interference
for non-recursive programs with loops is PSPACE-complete. However, none of these papers
contains an upper bound for the problem of bounding Shannon-entropy based information
leakage, not even for restricted programs. Thus, our results obtained by restricting the
number of output variables are novel. Only for the related notions of min-entropy and guessing
entropy, a PSPACE upper and lower bound for non-recursive programs was established in [35].

A more general setting has been considered by van der Meyden and Zhang [32] as well as
Černý et al. [7], where programs are represented abstractly as nondeterministic transition
systems. In this setting, van der Meyden and Zhang established PSPACE-completeness for
noninterference, and Černý et al. extended this result to the information-leakage bounding
problem (wrt. Shannon entropy). However, as they assume an explicit-state description and
the translation of a boolean program into an equivalent explicit-state description causes an
exponential blowup, their results only give an EXPSPACE-upper bound for boolean programs
(without recursion). None of these works consider recursive programs or the problem of
bounding the information leakage caused by timing information. We establish EXPTIME-
completeness for both problems, and also obtain better bounds for non-recursive programs.

Several timing attacks are known in literature. For example, [6] shows a practical timing
attack against OpenSSL, which allows extraction of a private RSA key. The attack exploits
the fact that the multiplication in OpenSSL is carried out by the Karatsuba routine [21],
which is a recursive algorithm. Several approaches have been proposed in the literature to
counteract timing leaks. Type systems, for example, are used to detect information leakage
from timing [20], while [1, 23, 27, 4] provide countermeasures to combat information leakage
from timing. None of these works have considered complexity questions, though.

Note. Due to space constraints, most proofs are only sketched or omitted entirely. For details,
see the full version of this paper [8].

2 Preliminaries

All logarithms are to the base 2. As is standard, we define 0 log 0 = 0. We assume that the
reader is familiar with probability distributions and (discrete) random variables. Given a
function f : A→ B and b ∈ B, the set {a ∈ A | f(a) = b} is denoted by f−1(b). Finally, we
denote by 2A the set of all (total) functions from A to the set {>,⊥}.
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Straight-line programs and the counting hierarchy. A (division-free) straight-line program
is a finite list of instructions of the form x← c or x← y � z, where c ∈ {0, 1}, � ∈ {+,−, ·}
and x, y, z are taken from a countable set of variables. Such a program is closed if all variables
that appear on the right-hand side of an instruction also appear on the left-hand side of a
preceding instruction. Hence, a closed straight-line program represents an integer, namely
the value of the last variable that is assigned to. The problem PosSLP is to decide, given a
closed straight-line program, whether the corresponding integer is > 0.

The counting hierarchy consists of the classes CHi where CH0 = P and CHi+1 = PPCHi

for all i ∈ N. Allender et al. [2] recently showed that the Problem PosSLP belongs to the
complexity class PCH3 and thus to the fourth-level of the counting hierarchy. Since the
counting hierarchy is contained in PSPACE, we know in particular that PosSLP is decidable
in polynomial space.

Pushdown Systems. The operational semantics of recursive programs are given by pushdown
systems. Formally a pushdown system (PDS) P is a tuple (Q,Γ, δ) where Q is a finite set of
control states, Γ is a finite stack alphabet, and δ = δint ∪ δcll ∪ δrtn is a finite set of transitions
s.t. δint ⊆ Q×Q, δcll ⊆ Q×Q× Γ, and δrtn ⊆ Q× Γ×Q.

A labeled transition system (Labels,ConfP ,→P) defines the semantics of a PDS P . The
set Labels of labels is {int, cll, rtn}. The set ConfP of configurations is Q× Γ∗. The word
w ∈ Γ∗ in a configuration (q, w) models the contents of the stack; the empty word ε denotes
the empty stack. The transition relation →P is defined as follows: (q, w) int−−→P (q′, w) if
(q, q′) ∈ δint; (q, w) cll−→P (q′, wa) if (q, q′, a) ∈ δcll and (q, wa) rtn−−→P (q′, w) if (q, a, q′) ∈ δrtn.

We omit the subscript P if it is clear from the context. Since we consider only deterministic
programs, we are mainly interested in deterministic PDS: P is deterministic if for each s in
ConfP there is at most one λ ∈ Labels and at most one s′ ∈ ConfP with s λ−→P s′.

Given a configuration c = (q, w) of a PDS P, we say that state(c) = q, stack(c) = w

and height(c) = |w|, the length of w. A computation of P is a sequence c0
λ1−→ · · · λm−−→ cm.

A transition ci
cll−→ ci+1 is a procedure call. Similarly, we define procedure returns and internal

actions. We say that a procedure return cj
rtn−−→ cj+1 matches a procedure call ci

cll−→ ci+1
iff i < j, height(ci+1) = height(cj) and height(ci+1) ≤ height(ck) for all i < k < j. Finally,
we say that c m=⇒P c′ if there exists a computation c0

λ1−→ · · · λm−−→ cm of P with c0 = c and
cm = c′, and we write c⇒P c′ if c

m=⇒P c′ for some m ∈ N. The following is proved in [5].

I Theorem 1. There are polynomial-time algorithms that, given a PDS P, output the set
{(q, q′) | (q, ε)⇒P (q′, ε)} and the set {(q, q′) | ∃w ∈ Γ∗ (q, ε)⇒P (q′, w)}, respectively.

Programs. Due to space constraints, we cannot present the syntax of recursive boolean
programs in detail. Here we just highlight the main features. The inputs of our programs
are partitioned into two sets, one containing high-security variables and one containing
low-security variables. Additionally, our programs may have some local variables as well as
outputs. The outputs are assumed to be of low security. Note that high-security outputs,
i.e., outputs that are not visible to an observer, can easily be modeled using local variables.

We only give an informal description of the semantics of programs, which is call-by-value.
A recursive boolean program can be represented as a deterministic pushdown system [26, 28]
of exponential size (linear in the length of the program, but exponential in the number of
variables). The states of the pushdown system keep track of the current statement and the
values of all variables in the “current scope”; the pushdown stack keeps track of the procedure
calls. Whenever a procedure is called, the pushdown system pushes the position of the call
and the values of the variables onto the stack, transitions into the called procedure, and sets
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538 Complexity of Quantitative Information Flow

all variables that are local to this procedure to ⊥. Upon returning from the procedure call,
the contents from the stack is popped and the variables are reset properly, i.e., the outputs
of the returning procedure are set, and the variables that were local to the procedure are
reset to their original values using the information from the stack. Since P is deterministic,
the corresponding pushdown system is also deterministic.

The computation of the program P on high inputs h̄0 and low inputs l̄0 can now be
defined as the computation of the pushdown system corresponding to P starting from the
configuration with the empty stack and with the control state corresponding to the first
statement of P , the input variables set to h̄0, l̄0, and the local and output variables set to ⊥.
The program P terminates on inputs h̄0, l̄0 if this computation reaches the configuration with
the control state corresponding to the last statement of the program (in that case, the stack
will be empty). If P terminates, we define the output of P to be the values of the output
variables upon termination. Hence, P can be seen as a partial function FP : 2h̄ × 2l̄ → 2ō.

Henceforth, the program P is always assumed to be terminating. One could possibly
model non-termination as an explicit observation; and our complexity results will not change
in that case. This is because nontermination on an input can be decided for while programs
in PSPACE and for recursive boolean programs in EXPTIME.

Quantifying information leakage. Let X be a discrete random variable with values taken
from a finite set X. If µ is the probability distribution of X , the Shannon entropy of µ,
written Hµ(X ), is defined as

Hµ(X ) = −
∑
x∈X

µ(X = x) · logµ(X = x).

If X and Y are discrete random variables taking values from finite sets X and Y with
joint probability distribution µ, the conditional entropy of X given Y, written Hµ(X | Y), is
defined as

Hµ(X | Y) =
∑
y∈Y

µ(Y = y) ·Hµ(X | Y = y),

where

Hµ(X | Y = y) = −
∑
x∈X

µ(X = x | Y = y) · logµ(X = x | Y = y).

If X ,Y and Z are discrete random variables taking values from finite sets X, Y and Z
with joint probability distribution µ, then the joint conditional entropy of X ,Y given Z,
written Hµ(X ,Y | Z) is the entropy of the random variable (X ,Y) given Z. Similarly, the
conditional entropy of X given Y and Z is the entropy of X given (Y,Z).

If X , Y and Z are discrete random variables taking values from finite sets X, Y and Z
respectively with joint probability distribution µ, then the conditional mutual information of
X and Y given Z, written Iµ(X ;Y | Z), is defined as

Iµ(X ;Y | Z) = Hµ(X | Z)−Hµ(X | Y,Z).

We are interested in measuring the information leaked by a program. Following [15, 19, 25],
we use conditional mutual information to quantify this information. As described above,
we can view programs as functions that take two kinds of inputs: a high-security (high)
input from a finite set H and a low-security (low) input from a finite set L. Let H and L
be random variables taking values from H and L, respectively, with joint distribution µ.
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Moreover, let O be a finite set and F : H × L → O be a function. We extend µ to a joint
probability distribution on H, L and O such that

µ(O = o | H = h,L = l) =
{

1 if F (h, l) = o

0 otherwise

The information leaked by the function F is then

SEµ(F ) := Iµ(H;O | L).

We are mainly interested in the case where µ is the uniform distribution on H × L, and we
define SEU(F ) := SEµ(F ) in this case.

A function F : H × L → O is non-interferent if F (h, l) = F (h′, l) for all h, h′ ∈ H and
l ∈ L, and interferent otherwise. Note that a function F : H × L→ O is non-interferent iff
SEU(F ) = 0 for all distributions µ.

Sometimes, we have only high inputs, i.e., F is a function from H to O. In that case,
the information leaked by the function F is just SEµ(F ) = Iµ(H;O). The following lemma
allows us to trade low inputs for high inputs and outputs.

I Lemma 2. Let H,L,O be finite sets, F : H × L → O, and let H and L be random
variables taking values in H and L with joint probability distribution µ. Consider the function
G : (H × L)→ (O × L) defined by G(h, l) = (F (h, l), l). Then SEµ(G) = SEµ(F ) + Hµ(L).

The following theorem is proved in [3, 22].

I Theorem 3. Let H and O be finite sets, and let F : H → O be a function. Then

SEU(F ) = log |H| − 1
|H|

∑
o∈O
|F−1(o)| log |F−1(o)|.

The information leakage bounding problem. As discussed above, a program P with high
input variables h̄, low input variables l̄ and output variables ō can be seen as a function
FP : 2h̄ × 2l̄ → 2ō. Now, the information leakage bounding problem asks, given a program P

and a rational number q ≥ 0, whether the information leaked by FP does not exceed q, i.e.
whether SEU(FP ) ≤ q. In the rest of the paper, we will identify P with the function FP .

3 Complexity of information leakage

Loop-free programs. We start by discussing our results for loop-free programs. Given
numbers a1, . . . , ak ∈ N, we define σ(a1, . . . , ak) =

∑k
i=1 ai log ai. Note that if F : H → O

is a function, and a1, . . . , ak is a permutation of {|F−1(o)| | o ∈ O}, then SEU(F ) =
log|H| − σ(a1, . . . , ak)/|H|, according to Theorem 3.

I Lemma 4. Given a1, . . . , ak ∈ N and q ∈ Q, deciding whether σ(a1, . . . , ak) < q reduces
to PosSLP in polynomial time.

Proof. In order to prove the lemma, we show that, given a1, . . . , ak, q, one can construct
a (division-free) straight-line program S in polynomial time such that σ(a1, . . . , ak) < q iff
S ∈ PosSLP. Since σ(a1, . . . , ak) is always nonnegative, we can assume that q > 0. Let
q = r/s, where both r, s ∈ N \ {0}. Hence, σ(a1 . . . , ak) < q iff s · σ(a1 . . . , ak) < r. Using
the fact that log a+ log b = log ab and a log b = log ba, we have

s · σ(a1, . . . , ak) = log
k∏
i=1

aais
i .
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540 Complexity of Quantitative Information Flow

Applying an exponentiation on both sides, we get that

σ(a1 . . . , ak) < q ⇐⇒
k∏
i=1

aais
i < 2r ⇐⇒ 0 < 2r −

k∏
i=1

aais
i .

Now, using repeated squaring, we can write a straight-line program of size O(log r + log s+∑k
i=1 log ai) representing the number on the right-hand side, establishing our reduction. J

We can now show that the information leakage bounding problem for loop-free programs
lies inside the counting hierarchy, provided the number of possible low inputs and outputs is
only logarithmic in the number of high inputs.

I Theorem 5. Given a loop-free program P with |ō|+|l̄| = O(log |h̄|) and a rational number q,
deciding whether SEU(P ) ≤ q can be done in PCH3 .

Proof. First, observe that if P has k low input variables and L is the distribution induced
by U on low inputs, then HU(L) = k. Using this observation and Lemma 2, it suffices
to consider the case when P has only high inputs. Moreover, since PCH3 is closed under
complementation, it suffices to show that we can decide whether SEU(P ) > q in PCH3 .

Let |h̄| = m and denote by H and O the set of possible inputs and outputs, respectively.
Note that |H| = 2m and |O| = O(md) for some d ∈ N (since |ō| = O(logm)). Let
O = {ō1, . . . , ōk} and for each i = 1, . . . , k set ai = |P−1(ōi)|. Now, by Theorem 3, we have

SEU(P ) = m− 2−m · σ(a1, . . . , ak)

and therefore

SEU(P ) > q ⇐⇒ σ(a1, . . . , ak) < 2m(m− q)

Note that all the numbers ai as well as 2m(m− q) are of size polynomial in the size of P and
the size of q. Hence, given a1, . . . , ak, we can apply Lemma 4 and compute (in polynomial
time) a straight-line program S such that S ∈ PosSLP iff SEU(P ) > q.

Since PosSLP is in PCH3 [2], we are done if we can show that the numbers a1, . . . , ak can
be computed by a polynomial-time algorithm with an oracle for CH3. In fact, we show that
these numbers can be computed in #P; since #P ⊆ PPP, this will conclude the proof. Given
an output ōi ∈ O, the weakest precondition semantics gives us a Boolean formula ϕi(h̄),
which can be computed in polynomial time [17], such that an assignment α ∈ 2h̄ satisfies ϕi
iff P (α) = ōi. Hence, ai = |{α | α |= ϕi}|. Since the problem of computing the number of
satisfying assignments for a given Boolean formula is in #P, we are done. J

While programs. Non-interference for while programs is shown to be PSPACE-complete
in [35]. Indeed, it can be shown to be PSPACE-hard even for programs that have only one
high input variable, no low input variables, and one output variable. We show that the
upper bound extends to the information leakage bounding problem, provided the number of
possible low inputs and outputs is only logarithmic in the number of high inputs.

I Theorem 6. Given a while program P with |ō|+ |l̄| = O(log |h̄|) and a rational number q,
deciding whether SEU(P ) ≤ q is PSPACE-complete.

Proof. We prove PSPACE hardness for the special case of one high input, no low inputs, and
one output in [8]. The proof for containment in PSPACE is almost identical to the proof
of Theorem 5. The only difference is that we cannot transform a while program into an
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equivalent Boolean formula in polynomial time (or reachability for Boolean programs would
be in NP). Instead, we just “run” the given program P on every possible input in order to
compute the numbers ai = |P−1(ōi)|, which can be done in polynomial space. Since the
counting hierarchy is contained in PSPACE, this gives a polynomial-space algorithm. J

Recursive Programs. Deciding non-interference becomes EXPTIME-hard if we allow proce-
dure calls, i.e., at least as hard as deciding reachability for recursive programs.

I Theorem 7. Deciding non-interference for recursive programs with one high input, no low
inputs, and one output is EXPTIME-hard.

As a corollary, we get that the information leakage bounding problem for recursive
programs is also EXPTIME-hard, even when the number of inputs and outputs is restricted.
We now show that the information leakage bounding problem is indeed no harder than the
reachability problem, i.e. is in EXPTIME. As opposed to our PSPACE upper bound for while
programs, we will have no restriction on the number of inputs or on the number of outputs.
In particular, the EXPTIME upper bound also applies to arbitrary while programs.

I Theorem 8. The information leakage bounding problem is EXPTIME-complete for recursive
programs.

Proof. EXPTIME-hardness follows from Theorem 7. For the upper bound, as in the proof of
Theorem 5, we can assume that P has m high inputs, no low inputs and n outputs, and that
0 ≤ q < m. Let H be the set of possible inputs to P and O = {ō1, . . . , ōk} the set of possible
outputs. Hence, |H| = 2m and k = |O| ≤ 2n. As shown in the proof of Theorem 5, we have
SEU(P ) ≤ q iff σ(a1, . . . , ak) ≥ 2m(m − q), where ai := |P−1(ōi)|. Let 2m(m − q) = r/s,
where r, s ∈ N (such numbers can be computed easily from P and q). Now, as in the proof
of Lemma 4, we have

SEU(P ) ≤ q ⇐⇒ log
k∏
i=1

aais
i ≥ r.

Note that we have no restriction on the number of outputs. Hence, unlike in the proof of
Theorem 5, we cannot appeal to Lemma 4. However, observe that

∑k
i=1 ai = 2m. Hence, by

replacing the powers by products, we can write p :=
∏k
i=1 a

ais
i as a product of 2m · s natural

numbers each of (binary) size at most m. The product of 2m · s natural numbers each of
size at most m can be computed in 2O(m log s) time and is of size 2O(m log s). Now note that
log p ≥ r iff the integral part of the left-hand side is ≥ r (since the right-hand side is an
integer), but the integral part of log p is just the length of the binary representation of p,
which we have just computed.

To establish the EXPTIME upper bound, it remains to be shown that the numbers
ai = |P−1(ōi)| can be computed in exponential time. This can be done by first computing
the pushdown system corresponding to P , which is of size exponential in the size of P , and
then invoking Theorem 1 to compute the set {(h̄0, F (h̄0)) | h̄0 is a high input}. J

I Remark. The algorithm in the proof of Theorem 8 runs in time polynomial in the length
of the program and exponential in the number of variables.

4 Information leakage from timing behavior

Let us now consider the question of estimating the information leaked by a program by its
“timing behavior”. We shall use the “number of steps” taken by a program as an abstraction of
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its timing behavior. Given a program P , with high input variables h̄ and low input variables
l̄, let StepsP : 2h̄ × 2l̄ → N be the function such that StepsP (h̄0, l̄0) is the number of steps
in the computation of P (h̄0, l̄0). More precisely, this number is the number of steps in the
corresponding computation of the pushdown system realizing the program P .

I Definition 9. A program P is timing non-interferent if the function StepsP is non-
interferent. Furthermore, if µ is the distribution on inputs to P , then SEµ(StepsP ) is the
information leaked by the timing behavior of P .

While programs. A terminating while program takes at most ` · 2n steps, where ` is the
number of statements in the program and n is the total number of variables of the program
(input, output and local). Hence, the running time of the program can be represented as a
natural number whose (binary) size is polynomial in the size of program. Thus, we can easily
modify the upper bound proof for deciding non-interference in while programs to the case
of deciding timing non-interference in while programs. The lower bound proof for deciding
non-interference in while programs can also be easily modified to give a lower bound on
timing non-interference of while programs.

I Lemma 10. Deciding timing non-interference for while programs with one high input,
no low inputs and no outputs is PSPACE-hard. Deciding whether a while program is timing
non-interferent can be done in PSPACE.

Recursive programs. As in the case of while programs, the lower bound for deciding timing
non-interference for recursive programs is a modification of the proof for Theorem 7.

I Lemma 11. Deciding timing non-interference for recursive programs with one high input,
no low inputs and no outputs is EXPTIME-hard.

The upper bound proofs for bounding information leakage are more involved. The
presence of recursion (i.e., the stack) implies that the length of the computation is no longer
bounded by ` · 2n as in the case of while programs. Indeed, the length of a computation
can be as high as doubly exponential, and the upper bound proof will depend on the ability
to compute the length of a computation in exponential time. (Note that the length of a
computation can be represented as an exponential-size number). In order to demonstrate
this fact, we will establish some facts about deterministic pushdown systems.

Given a deterministic PDS P, we say that a computation c0
λ1−→ c1 · · ·

λm−−→ cm of P is
terminating if there is no transition out of cm. A state q ∈ Q is a good state if there exists a
terminating computation c0

λ1−→ c1 · · ·
λm−−→ cm with c0 = (q, ε). We first establish that that

the length of a computation from a good state is of at most exponential length.

I Lemma 12. Let P = (Q,Γ, δ) be a deterministic PDS and q ∈ Q a good state. If there
exists a configuration c with (q, ε) m=⇒P c, then m ≤ |Q| · |Γ||Q|+1.

We now show that, even though the length of a computation of a deterministic pushdown
system can be exponential, the length of the computation from a configuration (q, ε) to
(q′, ε) can be computed in polynomial time. This is proved by modifying the “summaries
construction” algorithm used to decide reachability in pushdown systems [5]. We recall
salient points of this algorithm before we prove the desired theorem.

The “summaries construction” algorithm proceeds iteratively, building an edge-labeled
graph on the states of a pushdown system P . At each step of the algorithm, edges are added
and the algorithm terminates when a fixed point is reached. The set of labels on the edges is
Γ ∪ {ε}. Intuitively, the edge q a

 q′ means that there is a valid computation (q, ε) =⇒ (q′, a)
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of P . The initial graph is constructed from the internal actions and the stack push transitions.
New edges are constructed by taking the “transitive closure” of these edges with the stack
pop transitions. For example, if q a

 q′ is an edge in the graph and (q′, a, q′′) ∈ δrtn then
a new edge q ε

 q′′ is added to the graph. We modify this algorithm by maintaining the
execution time on the labels as well.

I Theorem 13. There is a polynomial-time algorithm that, given a PDS P = (Q,Γ, δ) and
a set Q0 ⊆ Q of good states, outputs the set {(q, q′,m) | q ∈ Q0 and (q, ε) m=⇒P (q′, ε)}.

Proof. The algorithm constructs an edge-labeled directed graph G iteratively. The set of
nodes of G is Reach(Q0) = {q | ∃q0 ∈ Q0 ∃w ∈ Γ∗ (q0, ε)⇒ (q, w)}. Note that this set can be
constructed in polynomial time thanks to Theorem 1. The set of labels on the edges of G is
N× (Γ∪{ε}). The graph G is constructed by computing a sequence of graphs G0,G1, . . . such
that the set of edges of Gi is a subset of the set of edges of Gi+1. The iteration terminates
when Gi = Gi+1, in which case G = Gi. Initially, the set of edges in G0 is

{(q (1,ε)−−−→ q1) | (q, q1) ∈ δint} ∪ {(q
(1,a)−−−→ q1 | (q, q1, a) ∈ δcll}.

Assume now that Gi has been constructed. Then Gi+1 is constructed as follows:
for each pair of edges q (m1,ε)−−−−→q1 and q1

(m2,a)−−−−→q2 in Gi, we add the edge q (m1+m2,a)−−−−−−−→q2;
for each pair of edges q (m1,a)−−−−→q1 and q1

(m2,ε)−−−−→q2 and in Gi, we add the edge q (m1+m2,a)−−−−−−−→q2;
for each a ∈ Γ, each edge q (m,a)−−−→q1 in Gi, and each transition (q1, a, q2) ∈ δrtn, we add
the edge q (m+1,ε)−−−−−→q2.

Once G has been constructed, the algorithm outputs the set

{(q, q, 0) | q ∈ Q0} ∪ {(q, q′,m) | q ∈ Q0 and q (m,ε)−−−→ q′ is an edge of G}.

We claim that:
1. The algorithm terminates in polynomial time.
2. The output equals {(q, q′,m) | q ∈ Q0 and (q, ε) m=⇒ (q′, ε)}. J

I Theorem 14. The problem of deciding whether the information leaked by the timing
behavior of a recursive program P does not exceed q is in EXPTIME.

Proof. As in the case of the proof of Theorem 8, we can assume that P has no low inputs.
We can construct the pushdown system corresponding to P and, using Theorem 13, compute
the set R = {(h̄0,StepsP (h̄0)) | h̄0 is a high input}. Now we can partition the set of inputs
according to the equivalence relation ≡ defined by h̄1 ≡ h̄2 iff StepsP (h̄1) = StepsP (h̄2). Let
a1, . . . , ak be the partition sizes of ≡. Note that these partition sizes can be computed in
time polynomial in the size of the set R, i.e. exponential in the size of P . If m is the number
of input variables, then

∑k
1 ai = 2m and SEU(StepsP ) ≤ q iff σ(a1, . . . , ak) ≥ 2m(m − q).

(Recall that σ(a1, . . . , ak) =
∑k
i=1 ai log ai.) The latter can now be decided in exponential

time as in the proof of Theorem 8. J

5 Conclusions and future work

We have considered the problems of checking non-interference and of bounding information
leakage in (deterministic) recursive boolean programs with uniformly distributed inputs,
proving both problems to be EXPTIME-complete. This implies an EXPTIME upper bound for
non-recursive programs, which improves the previously known upper bounds. For the special
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case when the number of outputs and low inputs is logarithmic in the size of the program,
we have established a tight PSPACE upper bound for non-recursive programs.

We have also considered the problem of checking non-interference and of bounding
information leakage in recursive boolean programs when the attacker observes the number of
execution steps of the program (and not the explicit outputs). Once again, our problems turn
out to be EXPTIME-complete in this setting. The proof of the upper bound is interesting from
a practical standpoint as we have shown that existing algorithms used for analyzing safety
properties in recursive programs can be used for computing information leakage. In fact,
we are currently working on a BDD-based symbolic algorithm for computing information
leakage in recursive programs.

We have used measures based on Shannon’s entropy and mutual information. Nevertheless,
our techniques are useful for computing information leakage with respect to other measures.
For example, if we use min-entropy to define mutual information [31, 16], the problem of
bounding information leakage (from explicit outputs or from timing behavior) for programs
with uniformly distributed high inputs is again EXPTIME-complete for recursive programs.
We believe that the techniques used in this paper will also be useful for other scenarios, such
as the case when we are interested in only the amount of information leaked about certain
selected bits of the input.

In addition to extending the results to other scenarios as described above, one particular
open problem is to close the gap between the lower bound (PSPACE) and the upper bound
(EXPTIME) for non-recursive programs with no restrictions on the number of inputs and
outputs. Another interesting direction for future research is to extend our results to programs
with probabilistic choices.
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