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Abstract
For diagnosis, treatment and study of various cardiac diseases directly affecting the functionality
and morphology of the heart, physicians rely more and more on MR imaging techniques. MRI
has good tissue contrast and can achieve high spatial and temporal resolutions. However it
requires a relatively long time to obtain enough data to reconstruct useful images. Additionally,
when imaging the heart, the occurring motions - breathing and heart beat - have to be taken
into account. While the cardiac motion still has to be correctly seen to asses functionality, the
respiratory motion has to be removed to avoid serious motion artefacts.

We present initial results for a reconstruction pipeline that takes multiple stacks of 2D slices,
calculates the occurring deformations for both cardiac and respiratory motions and reconstructs
a coherent 4D volume of the beating heart. The 2D slices are acquired during free-breathing over
the whole respiratory cycle, using a fast real-time technique. For motion estimation two different
transformation models were used. A cyclic 4D B-spline free-form deformation model for the
cardiac motion and a 1D B-spline affine model for the respiratory motion. Both transformations
and the common reference frame needed for the registration are optimized in an interleaved,
iterative scheme.
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1 Introduction

Physicians are relying more and more on non-invasive imaging techniques to assess the
functionality and morphology of the heart. In present practice echocardiography is still
the standard, due to higher availability, lower costs and shorter acquisition and analysis
times. But with increasing technical advances, both in acquisition hardware and image
reconstruction and processing algorithms, MR imaging is becoming the favoured modality.
MRI takes advantage of the magnetic properties of tissue, explicitly the signal response
of hydrogen, which can be found in abundance in the whole human body, as it is mainly
made out of water. During examination, the patient is placed inside a strong magnetic
field, which aligns the otherwise unoriented nuclear spins of the nuclei. Gradient coils then
spatially encode the signal produced by a radiofrequency exitation pulse, allowing the system
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to gradually fill the so called K-space [6], which is a representation of the image in the
Fourier domain. This raw signal can be Fourier transformed into an image, showing for
example one slice of the human body or even a whole volume, depending on the setting.
But the system has to wait for the tissue to reach a steady state again before continuing
with the acquisition of the next spatial position. This can make MR imaging rather slow
and prone to inconsistencies in the data, due to motion between acquisition steps, either in
between different parts of K-space (results in blurring artifacts) or between slices (results in
an inconsistent image volume). Especially imaging the beating heart, also moving due to
respiration, poses a challenging problem, both from the acquisitional and reconstructional
point of view.

Common methods as described in the literature to deal with this problem can be divided
into two categories. The straight forward method requires the subject to hold its breath
for about 20s. This produces very good results, but is not always feasible, as patients with
heart problems are often not able to hold their breath long enough. Other ways to deal with
respiratory motion rely on so called gating techniques [2]. They use some kind of surrogate
signal (e.g. chest bellows or 1D pencil beam monitoring the diaphragm motion) to divide the
respiratory cycle into small segments and only use data acquired at specific times (usually
end-expiration). The problem with this approach is that it assumes that the breathing
pattern is always the same, which of course is not the case (chest vs. abdominal breathing),
resulting in minor motion artifacts. And the data from all other time points is either thrown
away or not acquired at all, resulting in a much prolonged scanning time. In both cases the
cardiac motion is usually dealt with by using the ECG signal to divide the cardiac cycle into
small, near motion-free intervals and gradually filling the K-space of those time frames over
a couple of heart beats [1].

We propose to use fast real-time imaging techniques to acquire individually motion-free
slices [7], covering the heart volume in dense spatial and temporal positions. Those slices will
be corrected for respiratory motion, with respect to a chosen reference breathing position
and combined afterwards to form a complete 4D cardiac volume. To be able to register all
images, we also have to estimate the cardiac motion towards a reference time point in the
cardiac cycle. We model the cardiac motion by cyclic 4D B-Splines and choose an affine
model for the respiratory motion.

2 Methods

The acquisition train is as follows: The scanner acquires 2D slices of the heart at a fixed
spatial position using real-time techniques. To avoid gaps in the volume, due to translational
motion, the respective slice is scanned over multiple heart beats (approximately one breathing
cycle). After scanning one spatial position, we move to the next adjacent one. This scheme
is necessary, as real-time techniques take some time to build up (to reach steady state).
Thus the first couple of images are of inferior image quality and essentially useless for
reconstruction. For further accelerate the individual slice acquisitions, we apply multiple
receiver coils (SENSE) [8] and half-Fourier reconstruction.

We want to find a 3-dimensional reference volume I0,0 and a time-dependent transform-
ation Tki,l that warps the 2-dimensional observed real-time images Iki,l to locally fit this
reference image. In the setting of free-breathing, cardiac cine MRI, we differentiate between
two occurring motions, which we assume to be independent.

The first is the approximately periodic, non-rigid deformation of the heart TΦc due to its
self-induced contraction and following relaxation. We use a multi-level 4D cubic B-Spline
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model [5] defined on a mesh of control points, where Φc is the vector of deformations in
(x, y, z)-direction for all control points:

FFD(x, y, z, t) =
3∑

o=0

3∑
l=0

3∑
m=0

3∑
n=0

Bo(τ)Bl(u)Bm(v)Bn(w)Φc
i+l,j+m,k+n,h+o (1)

Note that actually Φc also contains a fourth component for the time, which is also modeled by
B-splines. But since we assume the time points of the slices, denoted by the index ki ∈ [0, 1]
with the corresponding cardiac cycle given by i ∈ {0, ..., Nk} to be known (as taken from
the ECG), an optimization for these parameters is not necessary. Since we continuously
acquire one slice for every time point during one cardiac cycle and then jump to the next
slice position, we have to assume that the cardiac movement of the heart is identical over
all heart beats, aside from differences in their duration. To enforce periodicity we simply
change the neighborhood definition for the B-Splines, effectively forcing the last to be equal
to the first temporal control point.

The second transformation is the temporally smooth and approximately affine motion
T l

Φr induced by breathing. Φr is the vector of the 12 degrees of freedom, namely translation,
rotation, scale and screw for all coordinates (x, y, z) respectively, and the index l denotes
the real time points in the acquisition starting with l = 0 for the first slice. With the
use of a navigator l can also be mapped into a smaller 1D or 2D space according to the
momentary breathing state. Although the respiratory motion includes some small, local,
free-form deformation, an affine model defined in a bounding box around the heart is a close
enough approximation to start with [4]. We will try to incorporate a non-rigid motion model
for the breathing motion at a later stage, using the periodicity of the cardiac motion to
separate both simultaneously occurring motions.

To solve for the different degrees of freedom given by I0,0 , TΦc and TΦr
l
we use an iterative

scheme that minimizes the following cost function:

(I0,0, {Φc}, {Φr}) = argmin
I0,0,{Φc},{Φr}

C({Iki,l}, I0,0, {Φc}, {Φr}) (2)

where

C(Iki,l, I0,0, {Φc}, {Φr}) =
Cdata({Iki,l}, I0,0, {Φc}, {Φr}) + λ0Cimg(I0,0) + λ1Ccard({Φc}) + λ2Cresp({Φr})

(3)

The first term is a similarity criterion between the transformed reference volume and the
observed, 2D slices. We chose the sum of squared differences (SSD) measure, since we are
dealing with monomodal data and we can assume that the image intensities stay constant
during motion:

Cdata({Iki,l}, I0,0, {Φc}, {Φr}) = 1
|L||Ω|

∑
{l}

∑
x∈Ωl

(Iki,l(TΦc(TΦr (x, l), ki))− I0,0(x))2
(4)

where Ωl is the 2D domain of the current slice in the 3-dimensional volume Ω and |L| and
|Ω| are the amounts of temporal and spatial voxel coordinates respectively.

The second term in (3) is an optional regularization term for the reference image, that can
be used in a super-resolution framework. For example an image gradient magnitude operator
in an l2-norm would be appropriate if the number of acquired slices is small, thus resulting
in an underdetermined super-resolution volume reconstruction problem. It penalizes the
high-frequency components in the estimated image.
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The last two cost terms regularize the two occurring motions. The periodic B-spline
description of the cardiac motion directly enforces spatial and temporal smoothness. Whether
it is necessary to apply some regularization, for example enforcing diffeomorphic transforma-
tions or an incompressability constraint of the myocardium has yet too be determined.
For the respiratory motion we introduce a temporal smoothness penalty that ensures a slow
and smooth evolution of the motion parameters, starting from an identity transformation for
l = 0:

Cresp({Φr}) =
∑
{i}

dΦr
li,li+1

||Φc
l − Φr

l+1||22 (5)

where dΦr
li,li+1

= 1
li+1−li

is a temporal normalization and i the set of indices of all ls. This is
necessary as the temporal offsets between the acquisition of two slices are not always uniform,
because in real-time imaging changing the slice position costs some time for the excitation to
reach steady-state again. So if the temporal distance is big, the confidence in the solution is
small and dΦr

li,li+1
reduces the weight of the corresponding term.

In the above cost terms λ0, λ1 and λ2 are regularization parameters, weighting the relative
contributions of the corresponding terms. The parameters are chosen experimentally.

The iterative scheme to solve the least square problem (2) starts with an initial estimate
of I0,0 and Φr and alternates between optimizing the 3 different sets of parameters:

Step 1: ({Φ̂c
(n+1)}, {Φ̂r

(n+1)}) = argmin
{Φc},{Φr}

C({Iki,r}, I(n)
0,0 , {Φc}, {Φr})

Step 2: Calculate new I
(n+1)
0,0 using Scattered Data Interpolation

Step 3: Check for stop criterion and if not full-filled increment n and go to Step 1

where the stop criterion is ||C(n+1) − C(n)|| < ε with an empirically chosen ε (usually
ε = 0.0001).

To be able to capture larger deformations, the data is first divided into spatially and with
regard to the cardiac phase temporally continuous blocks/volumes. In subsequent iterations,
these blocks are partitioned into ever smaller blocks. This makes the algorithm much more
robust and we are also able to blur the images in the through-plane direction, which is
necessary to calculate large deformations in that direction. Additionally the image resolution
starts with a larger one and is gradually decreased to its original setting, while the images
are at the same time blurred with a Gaussian in all possible directions.

3 Results

So far we evaluated the performance of the algorithm without respiratory motion. Two data
sets were used. Both are cardiac and respiratory gated. The first one is a 3D cine of the
heart with resolution 1.25x1.25x2mm (fig. 1) and the second was acquired with real-time
techniques depicting the volume by 14 adjacent slices with a resolution of 1.25x1.25x8mm
(fig. 2). Fig. 2 shows the heart in end-systole from different orthogonal views. Due to the
large slice thickness in Fig. 1 we have chosen here only one view (short-axis) at different
positions in the volume also in end-systole. The end-systole time point was chosen because
it has the largest deformations with regard to the reference time point. Although both
volumes have a lot of tissue moving in and out of the field of view, the proposed registration
method manages to capture the deformations of important structures like the myocardium
which will be important for estimating the respiratory motion. This can be seen when
comparing the yellow isolines (taken from the ground truth image) with the edges of e.g. the
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Figure 1 Registration result as tested on a 3D cine of the heart with resolution 1.25x1.25x2mm.
From left to right: short-axis and 2 orthogonal long-axis views, all at end-systole. The yellow lines
show the isolines of the ground truth.

Figure 2 Registration result as tested on a stack of real-time images of the heart with resolution
1.25x1.25x8mm. Images were taken at different spatial positions of the volume, all at end-systole.
The yellow lines show the isolines of the ground truth.

blood pool (lighter regions). When acquiring slices in the proposed way the sampling in the
through-plane direction will be much denser, which will make it easier to accurately capture
also the through-plane deformations.

4 Conclusion

The results show that the proposed method is able to accurately estimate the cardiac motion
induced deformations. And it is robust towards through-plane motion and tissue moving in
and out of the field of view, which is important for 2D to 3D registration. Jiang et al. [3]
showed, for a similar problem the successful registration of 2D slices towards a successively
updated reference frame using a linear transformation model. Based on those results, we are
confident that we will be able to use the proposed iterative motion estimation scheme to
estimate and correct for the respiratory motion.

Future work includes the successful computation of the affine transformation, tested with
an example respiratory motion model applied on a common cardiac cine sequence and with
real free-breathing data. And we want to incorporate super-resolution techniques into the
framework to improve spatial and temporal resolution.

ICCSW’12
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