
Device specialization in heterogeneous multi-GPU
environments
Gabriele Cocco1 and Antonio Cisternino1

1 Computer Science Dept., University of Pisa
Largo Bruno Pontecorvo, Pisa, Italy
cocco@di.unipi.it, cisterni@di.unipi.it

Abstract
In the last few years there have been many activities towards coupling CPUs and GPUs in
order to get the most from CPU-GPU heterogeneous systems. One of the main problems that
prevent these systems to be exploited in a device-aware manner is the CPU-GPU communication
bottleneck, which often doesn’t allow to produce code more efficient than the GPU-only and
the CPU-only counterparts. As a consequence, most of the heterogeneous scheduling systems
treat CPUs and GPUs as homogeneous nodes, electing map-like data partitioning to employ
both these processing resources. We propose to study how the radical change in the connection
between GPU, CPU and memory characterizing the APUs (Accelerated Processing Units) affect
the architecture of a compiler and if it is possible to use all these computing resources in a
device-aware manner. We investigate on a methodology to analyze the devices that populate
heterogeneous multi-GPU systems and to classify general purpose algorithms in order to perform
near-optimal control flow and data partitioning.

1998 ACM Subject Classification C.1.3 Other Architecture Styles, D.1.3 Concurrent Program-
ming, D.2.8 Metrics

Keywords and phrases HPC, APU, GPU, GPGPU, Heterogeneous computing, Parallel comput-
ing, Task scheduling

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.35

1 Introduction

In the last few years various researches demonstrated that GPU computing power isn’t suitable
to accelerate many algorithms[4], mostly due to the execution model and to the limited
performances of the interconnection between the GPUs and the rest of the system. From the
execution model point of view, SIMD doesn’t fit very well with some computations, such as
algorithms containing many branches and fine-grained data-parallel computations. Among
the algorithms falling into these categories we can find Huffman Coding[6, 7] and KD trees
construction[8]. To get the highest performances, the characteristics of the CPUs, such as wide
caches and Multiple Thread Multiple Data (MTMD) execution model, should be employed
to accelerate portions of such kind of algorithms. Unfortunately, partitioning algorithms to
run heterogeneously on CPU-GPU systems is hold by the CPU-GPU interconnection and
communication performance[2]. Whereas an algorithm may benefit to be carefully staged
across the two computing resources, the time spent in transferring data often outweighs the
time saved in executing code on the most specific resource. Given this, recent researches
have mostly focused on exploiting the CPU and the GPU in an homogeneous way, ignoring
the specific characteristics of each computing resource and partitioning data in a task-farm
manner instead of scheduling differents parts of the control flow. S. Venkatasubramanian

© Gabriele Cocco and Antonio Cisternino;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 35–41

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.35
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


36 Device specialization in heterogeneous multi-GPU environments

and R. W. Vuduc [9] propose a solution to employ heterogeneous CPU-GPU platforms to
accelerate Jacobi’s iterative method for 2D Poisson equations. Since the target of this work
is quite specific, hand-crafted implementations for CPU and GPU are proposed instead of a
methodology to partition more general stencil algorithms and to automatically produce target
code. C. Luk and S.H.H. Kim [11] present an entire programming system for CPU-GPU
platforms where mapping between tasks and processing resources can be either performed
by the programmer or automatically by the scheduler. While manual mapping may allow
to partition control flow in addition to data, it substatially charges the programmer of
determining a good partitioning strategy and hand-coding the implementations for both
CPU and GPU. In [10], a machine learning approach is employed to statically decide a
near-optimal scheduling strategy. Like in the other works, partitioning is based only on data
and predictors are used to determine the amount of data to schedule to each processing
element instead of which part of the algorithm to execute on it. In [14] a performance-history
based scheduler is proposed to schedule tasks on the computing resource that demonstrated
to be the most efficient in executing those tasks during previous executions. Since tasks
are not analyzed nor classified on the bases of their features but are instead considered as
blackboxes of which only the completion time is known, the scheduler requires to be retrained
every time it is ported to a different CPU-GPU platform. E. Hermann et al. present a
task scheduling approach for interactive physics simulations that allows to split tasks across
multiple CPUs and GPUs[12] on the basis of task size and estimated completion time.

With the introduction of APUs, such as the Intel Ivy Bridge® and the AMD Fusion®

family, the CPU-GPU communication performance has decisively increased[1], thanks to
a novel architectural interconnection that overcomes the limits of the PCI-express bus
and to the chance for the CPU and the GPU to effectively share data without the need
for copies. APUs may therefore raise the chance for algorithms to be partitioned across
heterogeneous processing resources in a device-specific manner. At the same time, given the
different balances between computing and communication performance of integrated versus
discrete GPUs, APU’s and discrete GPUs in a hybrid multi-GPU system can be indepedently
specialized to accelerate different kind of computations.

Our work consists in leveraging on the APU’s capabilities to investigate on the chances
to specialize both the on-chip resources and discrete GPUs in order to schedule portions of
data and control flow on the bases of the specific characteristics of each device. Since APUs
represent a relatively recent architecture, there are currently few resources on them, such
as costs models, performance analysis or researches towards scheduling strategies to exploit
this kind of tightly coupled platforms. S. Keely[8] discusses about adaptive mapping kd-tree
construction on APUs to get the most from both the CPU and the integrated GPU, showing
that on-chip communication performance allows to reduce the penalities of synchronization
and host-device data transfer costs. K. Spafford et al.[5] propose an extensive comparison
of various algorithms running on discrete versus APU’s GPUs, illustrating the benefits of
tighter coupling when data exchange becomes a dominant portion of the runtime. M. Daga
at al. show a similar comparison[1], but int this case the intergrated GPU and a discrete
one are tested using two different platforms. Since the two GPUs do not share the CPU
executing the host code, comparing their performances is difficult and not fully reliable.

2 Methodology

The main aspects that characterize APUs is an high CPU-GPU communication performance
and a computing power usually much lower than the computing power of mainstream discrete



G. Cocco and A. Cisternino 37

GPUs. Given this, computations for which the time spent in CPU-GPU communication
outclasses computing time should benefit of integrated GPU execution. The first step
of our work consists in verifying this idea using a set of algorithms with different data-
transfer/operations ratio (section 3.1).

The second step of the research consists in defining a reliable metric for classification
of algorithms in terms of the device (integrated or discrete GPU) that is more suitable for
their execution. We plan to train this metric on a particular system using a set of samples
(i.e. popular and widely used parallel programming patterns) and taking into account the
characteristics of the various devices in order to obtain a convenience threshold. Algorithms
for which the value of the metric is below the threshold should be scheduled on the APU’s
GPU while algorithms for which the metric is above the threshold should be run on the
discrete GPU. Following the results of the first step, the classification metric should be
mainly based on the amount of data transferred and on the amount of operations executed on
data. The term "operations" may refer to device ISA or intermediate language (PTX, AMD
IL) instructions, to higher-level assembly instructions (MSIL, LLVM), to source-language-
based operations (C/C++ assignments, arithmetic operations, etc.) or to language-unaware
algorithmic complexity. Even if moving from device ISA to virtual machine assembly affects
the amount of instructions executed, the number of operations considered in the metric
should not necessarly match instructions executed by a device but instead characterize the
complexity of the algorithm in a device-unaware manner. Moreover, as shown in section 3, the
relative integrated versus discrete GPU performance seems to be correlated to the complexity
of the (sequential) algorithm, which suggests the reliability of expressing operations in terms
of sequential algorithms. The first definition of this metric, based on language-unaware
algorithmic complexity, is discussed in section (3.2). For future work we plan to move to
LLVM and to analyze LLVM code to determine the value of the metric for generic algorithms.
LLVM provides various tools and services, such as loop informations, dead-code elimination
and more, that can be exploited to simplify code analysis.

In addition to the operations executed and to the amount of data transferred other
aspects may affect the GPUs relative performance, such as synchronization, branching,
number of working threads and memory conflicts. While most of these aspects might be
taken into account, we decide to start with a very simple metric and to refine it introducing
additional parameters as soon as we encounter examples for which the metric fails in modeling
the integrated versus discrete GPU performance. In addition, some of these features, like
synchronizations and memory conflicts, are not exposed at LLVM level. Whenever the metric
requires to take them into account, an OpenCL implementation of the algorithm should be
available or it should be generated starting from LLVM implementation. AMD is currently
developing an LLVM backend to produce AMD IL binaries, while an LLVM to Nvidia PTX
is already available [19].

Founding our work on a device-unaware analysis of operations allows to overcome the
dependency of device ISA/IL from the specific GPU model and vendor and of the source
code from a specific programming language. Moreover, working on LLVM allows to extend
the analysis to include the CPU as a scheduling target.

Since the final target of our research is to partition and to schedule generic algorithms in a
control-flow-aware manner, the most important step consists in developing a partitioning and
scheduling system based on code similarity pattern discovery engine to recognize well-known
parallel patterns inside generic algorithms. The engine is paired with a database of popular
computations, such as map, reduce, scan, convolution, matrix reduction and multiplication.
The classification metric defined in the previous steps is used to train the scheduler on a

ICCSW’12



38 Device specialization in heterogeneous multi-GPU environments

Table 1 Specifications of the testing platform.

Device Clock rate SIMDs Cores Processing power
AMD A8-3850 (CPU) 2.9 GHz - 4 CPUs -
AMD 6550D (Integrated) 600 MHz 5 400 radeon 480 GFLOPS
AMD HD 5870 (Discrete) 850 MHz 20 1600 radeon 2720 GFLOPS

particular system to determine the integrated versus discrete GPU convenience threshold.
For each computation in the database we store a marker representing the device on which it
is more suitable to execute. Finally, the database and the markers are employed to partition
a generic algorithm in terms of the patterns it contains, scheduling each pattern recognized
on the device stored in the relative marker. For this part of the work we can benefit of many
researches on code similarity and pattern discovery [16, 17, 18].

3 Preliminary results

In order to investigate on the chance for the CPU, the integrated and the discrete GPU to be
specialized to accelerate different sets of computations, we start analyzing the performances
of integrated and discrete GPUs in running a set of algorithms with specific computing
requirements. The algorithms that compose the test suite are vector/matrix addition (saxpy),
reduction, convolution and matrix multiplication. The choice of the set of algorithms has been
driven by the aim to take into account both memory-bound and compute-bound algorithms.

Each algorithm is executed on the testing platform (table 1) under different conditions.
In particular, we run each algorithm using all the possible data-transfer strategies, like
mapping, placement (ALLOC_HOST_PTR, USE_PERSISTENT_MEM_AMD, etc.) and
pre-pinning and employing different data types (float, float2, float4, etc.). For each algorithm
and for each device we select the conditions that lead to the lowest completion time.

3.1 Experimental results

Figures 1, 2 and 3 compare the completion times of the integrated GPU and of the discrete
GPU resulting from the execution of the benchmarks. Since we show the ratio between the
completion times of the two devices, values higher than one mean that the integrated GPU
is faster than the discrete GPU, while a ratio lower than one signifies that the discrete GPU
is faster than the integrated one.

The integrated GPU is more efficient in executing both saxpy and reduction for every
input size. Matrix multiplication falls into the opposite situation, since the discrete GPU
outperforms the integrated one regardless the matrix size. Finally, convolution exhibits a
mixed behaviour, where the discrete GPU is faster for small input matrixes and gradually
becomes slower than the integrated GPU as bigger the matrix size. Since the convolution
algorithm depends on both the input matrix size and the filter size, we also run the algorithm
fixing the input matrix size and gradually increasing the filter. The results of this test, shown
in figure 4, confirm the partial convenience of the integrated GPU and allow to conclude that
the discrete GPU outperforms the integrated one for small input matrixes and for big filters.



G. Cocco and A. Cisternino 39

Figure 1 Saxpy completion time ratio: dis-
crete GPU / integrated GPU.

Figure 2 Matrix multiplication completion
time ratio: discrete / integrated GPU.

Figure 3 Convolution completion time ratio:
discrete / integrated GPU.

Figure 4 Convolution completion time ratio
varying filter size: discrete / integrated GPU.

3.2 Computation Density
For each algorithm, we calculate the ratio between the number of operations performed on
data and the amount of data transferred between the CPU and the GPU. We call this metric
Computation Density(CD). The aim of this metric is to classify the efficiency of integrated
versus discrete GPUs in executing a particular algorithm. As shown in table 2, saxpy and
reduction have a constant CD while matrix multiplication is characterized by a CD that is
linear on the data size. In matrix convolution, the CD depends both on the input matrix size
and on the filter size. When the matrix size is much bigger than the filter area (N � M2),
the CD can be approximated to the following, which is constant on the input matrix size.

CDsmallfilter = 2M2 (1)

When the matrix size and the filter area are similar (N u M2), the ratio can be instead
approximated using the below formula, which is linear on the input size.

CDbigfilter = 2N3

2N2 = N (2)

The values of CD calculated for the algorithms taken into account suggest that the
efficiency of integrated GPUs versus discrete GPUs is highly correlated to the balance

ICCSW’12



40 Device specialization in heterogeneous multi-GPU environments

between the amount of operations performed on data and the amount of data transferred to
and from the GPU. In particular, when the CD is constant and below a certain threshold, the
integrated GPU is the faster device. Whereas the CD is more than constant on the input size
(e.g. linear, for matrix multiplication), the discrete GPU is instead capable of outclassing the
integrated GPU. The most interesting test revealing this correlation is the matrix convolution,
where CD can be considered constant on the input size except for matrixes and filters of
similar sizes. Since the filter size is always smaller than the input matrix size, there are two
chances for input matrix and filter to have similar sizes, that is decreasing the input matrix
size and increasing the filter size. These two situations are the one discovered executing the
algorithm on the testing platform (fig. 3 and 4).

Table 2 Computation Density of the tested algorithms

Saxpy N2

3N2 = 1
3 (N2 matrix size)

Reduction N
N+1 ≈ 1 (N vector size)

Matrix multiplication 2N3

3N2 = 2
3 N (N2 matrix size)

Matrix convolution 2M2N2

2N2+M2 (N2 matrix size, M2 filter size)

4 Conclusion

In this paper we shown that APU’s GPUs and discrete GPUs can effectively accelerate
different kind of computations, giving us the chance to specialize algorithms in order to
obatain the best performances from an hybrid multi-GPU system. We also tried to correlate
the test results with the characteristics of each specific algorithm, leading to a metric called
Computation Density. Actually, many aspects can influence the completion time, such as
thread synchronization, memory access patterns (influencing bank conflicts and coalescing)
and loop unrolling. We are working to refine the metric to take into account all these aspects
while trying to keep it as simple as possible. The following step is to take into account
the CPU, which is particularly challenging due to it’s different execution model and to
the CPU-GPU memory sharing. In particular, memory sharing poses contention problems,
since empoying the CPU to perform part of a computation may limit the memory access
bandwidth and therefore the performances of the integrated GPU. Finally, we plan to use the
Computation Density1 to train a classifier on a large set of widely used computational patterns.
The target is to employ machine-learning and parallel patterns discovery to partition and
classify general purpose algorithms on the basis of the set of parallel computational patterns
recognized during code analysis.

References
1 M. Daga, A. M. Aji, and W.-c. Feng. On the efficacy of a fused cpu+gpu processor (or apu)

for parallel computing. In Proceedings of the 2011 Symposium on Application Accelerators
in High-Performance Computing, SAAHPC ’11, pages 141–149, Washington, DC, USA,
2011. IEEE Computer Society.

2 A. D. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov, G. Juckeland, R. Dietrich,
D. Poole, and C. Lamb. Parallel performance measurement of heterogeneous parallel sys-

1 Refined and eventually intergated with other metrics



G. Cocco and A. Cisternino 41

tems with gpus. In Proceedings of the 2011 International Conference on Parallel Processing,
ICPP ’11, pages 176–185, Washington, DC, USA, 2011. IEEE Computer Society.

3 S. Ryoo, C. I. Rodrigues, S. S. Stone, J. A. Stratton, S.-Z. Ueng, S. S. Baghsorkhi, and
W.-m. W. Hwu. Program optimization carving for gpu computing. J. Parallel Distrib.
Comput., 68:1389–1401, October 2008.

4 R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney, and A. Shringarpure. On the
limits of gpu acceleration. In Proceedings of the 2nd USENIX conference on Hot topics in
parallelism, HotPar’10, pages 13–13, Berkeley, CA, USA, 2010. USENIX Association.

5 The Tradeoffs of Fused Memory Hierarchies in Heterogeneous Computing Architectures. K.
Spafford, J. S. Meredith, S. Lee, D. Li, P. C. Roth and J. S. Vetter. Future Technologies
Group, Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1
Bethel Valley Road-MS6173, Oak Ridge, TN 37831.

6 G. de Bailliencourt. M-JPEG Decoding Using OpenCL on Fusion AMD Fusion Developer
Summit, 2011.

7 Accelerating Lossless Data Compression with GPUs. R.L. Cloud, M.L. Curry, H.L. Ward,
A. Skjellum and P. Bangalore. July, 2011.

8 S. Keely. Heterogeneous Kd-tree Construction on an APU AMD Fusion Developer Summit,
2012.

9 S. Venkatasubramanian, R. W. Vuduc. Tuned and Wildly Asynchronous Stencil Kernels
for Hybrid CPU/GPU Systems. Georgia Institute of Technology, College of Computing,
School of Computer Science, 266 Ferst Drive, Altanta, Georgia, USA.

10 D. Grewe and M.F.P. O’Boyle A Static Task Partitioning Approach for Heterogeneous
Systems Using OpenCL. School of Informatics, The University of Edinburgh, UK, 2011.

11 C. Luk 1, and S.H.H. Kim 2. Exploiting Parallelism on Heterogeneous Multiprocessors
with Adaptive Mapping. 1 SSG Software Pathfinding and Innovation, Intel Corporation,
Hudson, MA. School of Computer Science. 2 Georgia Institute of Technology, Atlanta, GA.

12 Multi-GPU and Multi-CPU Parallelization for Interactive Physics Simulations. E.
Hermann1, B. Ran1, F. Faure2„ T. Gautier1 and J. Allard1. 1INRIA. 2Grenoble University.

13 M. D. Linderman, J. D. Collins, H. Wang and T. H. Meng. Merge: A Programming Model
for Heterogeneous Multi-core Systems Abstract. 2011.

14 V.J. Jimenez1, L. Vilanova2, I. Gelado2, M. Gil2, G. Fursin3 and N. Navarro2. Predictive
Runtime Code Scheduling for Heterogeneous Architectures. 1Barcelona Supercomputing
Center (BSC). 2Departament d’Arquitectura de Computadors (UPC). 3ALCHEMY Group,
INRIA Futurs and LRI, Paris-Sud University.

15 Advanced Micro Device. AMD Accelerated Parallel Processing with OpenCL. Revision 2.2.
June, 2012.

16 M. Miron Bernal, H. Coyote Estrada, J. Figueroa Nazuno. Code Similarity on High Level
Programs. Proceedings of the 18th Autumn Meeting on Communications, Computers, Elec-
tronics and Industrial Exposition. (IEEE - ROCC07). Acapulco, Guerrero, Mexico. 2007.

17 N. Wu, S. M. M. Tahaghoghi. Evolving similarity functions for code plagiarism detec-
tion. Honours Thesis. School of Computer Science and Information Technology. RMIT
University. Melbourne, Australia. October, 2007.

18 J. Dong1, Y. Sun2, Y. Zhao1. Design Pattern Detection by Template Matching. 1Computer
Science Department, University of Texas, TX 75083, USA. 2American Airlines, 4333 Amon
Carter Blvd, Fort Worth, TX 76155, USA.

19 J. Holewinski. PTX Back-End: GPU Programming with LLVM. The Ohio State University.
LLVM Developer’s Meeting. November 18, 2011.

ICCSW’12


	Introduction
	Methodology
	Preliminary results
	Experimental results
	Computation Density

	Conclusion

