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Abstract
In the Semantic Web, knowledge integration is frequently performed between heterogeneous know-
ledge bases. Such knowledge integration often requires the schema expressed in one knowledge
modelling language be translated into an equivalent schema in another knowledge modelling
language. This paper defines how schemas expressed in OWL-DL (the Web Ontology Language
using Description Logic) can be translated into equivalent schemas in the Hypergraph Data Model
(HDM). The HDM is used in the AutoMed data integration (DI) system. It allows constraints
found in data modelling languages to be represented by a small set of primitive constraint op-
erators. By mapping into the AutoMed HDM language, we are then able to further map the
OWL-DL schemas into any of the existing modelling languages supported by AutoMed. We show
how previously defined transformation rules between relational and HDM schemas, and our newly
defined rules between OWL-DL and HDM schemas, can be composed to give a bidirectional map-
ping between OWL-DL and relational schemas through the use of the both-as-view approach in
AutoMed.
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1 Introduction

One of the crucial impediments that hinder the realisation of the Semantic Web vision is the
integration of ontologies [1, 2]. Since ontologies are a form of knowledge representation, we
use the terms ontology integration (OI) and knowledge integration (KI) interchangeably.

The increasing number of ontologies that were made publicly available on the Web,
has evolved the Web into a global ontology [3]. The main purpose of this global ontology
is to provide a unified query interface for the local ontologies. A crucial problem in this
context is how to specify the mappings between the global ontology and the local ontologies
[1]. The main mapping approaches cited in the literature are Global-As-View (GAV) [4],
Local-As-View (LAV) [4], Global-Local-As-View (GLAV) [5], and Both-As-View (BAV) [6].

The problem of OI has been extensively investigated in the literature (e.g. [1, 2, 7, 8,
9, 10, 11]). By closely examining these OI proposals, we have identified two things. Firstly,
while BAV is the most expressive mapping approach, none have used it. In contrast to GAV,
LAV, and GLAV, BAV is not only capable of providing a complete mapping between schemas
in both directions, but also the mappings between schemas are described as a pathway
of primitive transformation steps applied in sequence in the form of add, delete, rename,
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2 Knowledge Transformation using a Hypergraph Data Model

extend, and contract. Hence a further advantage of the approach, is that composition of
data mappings may be performed such that mapping two schemas to one common schema
will produce a bidirectional mapping between the original two data sources [12]. Secondly,
current approaches integrate ontologies represented, for example, in the Resource Description
Framework Schema (RDFS) [13] or the Web Ontology Language (OWL) [14] by choosing one
of them as the Common Knowledge Model (CKM) and converting all the other modelling
languages into that CKM. Using a high-level CKM such as RDFS or OWL greatly complicates
the mapping process. This is because there is rarely a simple correspondence between their
modelling constructs [15].

In this paper, we show how to integrate knowledge bases, represented in OWL-DL, using
a low-level Hypergraph Data Model (HDM) as the CKM. Our approach has the advantage
of clearly separating the modelling of data structure from the modelling of constraints on
the data. Moreover, the HDM supports a very small set of low-level elemental modelling
primitives (nodes, edges, and constraints) which makes it better suited for use as a CKM
than higher-level modelling languages [15]. The HDM is the common data model of the
AutoMed DI system [12]. The AutoMed system [12] is distinguished from other DI systems
for handling a wide range of data modelling languages through representing their constraints
as BAV transformations [16]. Furthermore, by mapping into AutoMed’s HDM language, we
are then able to map the OWL-DL schemas into any of the existing modelling languages
supported by AutoMed.

The remainder of this paper is structured as follows. Section 2 gives a brief description
about the HDM. In Section 3, we show some of the representations of OWL-DL axioms
in HDM and in Section 4, we show how previously defined transformation rules between
relational and HDM schemas [16], and our newly defined rules between OWL-DL and HDM
schemas, can be composed to give a mapping between relational and OWL-DL schemas.
Finally, we state our conclusions in Section 5.

2 HDM Overview

In this Section, we provide a brief overview over the HDM and we refer the reader to [16]
for full details. An HDM schema is a structure in which data may be held and is defined as
follows:

I Definition 1. HDM Schema Given a set of Names that we may use for modelling the
real world, an HDM schema, S, is a triple Nodes, Edges, Cons where:

Nodes ⊆ {〈〈nn〉〉 | nn ∈ Names} Nodes is a set of nodes in the graph, each denoted by
its name enclosed in double chevron marks.
Schemes = Nodes ∪ Edges

Edges ⊆ {〈〈ne, s1, . . . , sn〉〉 | ne ∈ Names ∪ {_} ∧ s1 ∈ Schemes ∧ . . . ∧ sn ∈ Schemes}
Edges is a set of edges in the graph where each edge is denoted by its name, together
with the list of nodes/edges that the edge connects, enclosed in double chevron marks.
Cons ⊆ {c(s1, . . . , sn) | c ∈ Funcs ∧ s1 ∈ Schemes ∧ . . . ∧ sn ∈ Schemes} Cons is a set
of boolean-valued functions (constraints) whose variables are members of Schemes and
where the set of functions Funcs forms the HDM constraint language. In this paper we
only use the following:
1. inclusion(s1, s2) ≡ s1 ⊆ s2
2. mandatory(s1, . . . , sm, s) ≡ < s1, . . . , sm > B s

3. unique(s1, . . . , sm, s) ≡ < s1, . . . , sm > C s

4. reflexive(s1, s) ≡ s1
id→ s
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I Example 1. We list in here the contents of an example HDM schema that we shall later, in
Figure 2, show to be equivalent to a relational schema. Note how the names of edges are
sometimes given as the character ‘_’ representing an unnamed edge.
Nodes = {〈〈ug〉〉, 〈〈ug:ppt〉〉, 〈〈student〉〉, 〈〈student:name〉〉, 〈〈student:sid〉〉,

〈〈result:grade〉〉, 〈〈course〉〉, 〈〈course:code〉〉, 〈〈course:dept〉〉}
Edges = {〈〈_,ug,ug:ppt〉〉, 〈〈_,student,student:sid〉〉, 〈〈_,student,student:name〉〉,

〈〈result,student,course〉〉, 〈〈_,〈〈result,student,course〉〉,result:grade〉〉,
〈〈_,course,course:dept〉〉, 〈〈_,course,course:code〉〉}

Cons = {〈〈ug〉〉C 〈〈_,ug,ug:ppt〉〉, 〈〈ug〉〉B 〈〈_,ug,ug:ppt〉〉,
〈〈ug:ppt〉〉B 〈〈_,ug,ug:ppt〉〉, 〈〈ug〉〉 ⊆ 〈〈student〉〉,
〈〈student〉〉C 〈〈_,student,student:sid〉〉, 〈〈student〉〉B 〈〈_,student,student:sid〉〉,
〈〈student:sid〉〉B 〈〈_,student,student:sid〉〉, 〈〈student〉〉C 〈〈_,student,student:name〉〉,
〈〈student〉〉B 〈〈_,student,student:name〉〉, 〈〈student〉〉 id→ 〈〈_,student,student:name〉〉,
〈〈student:name〉〉B 〈〈_,student,student:name〉〉,
〈〈result:grade〉〉B 〈〈_,〈〈result,student,course〉〉,result:grade〉〉,
〈〈result,student,course〉〉C 〈〈_,〈〈result,student,course〉〉,result:grade〉〉,
〈〈course〉〉C 〈〈_,course,course:dept〉〉, 〈〈course〉〉B 〈〈_,course,course:dept〉〉,
〈〈course:dept〉〉B 〈〈_,course,course:dept〉〉, 〈〈course〉〉C 〈〈_,course,course:code〉〉,
〈〈course〉〉B 〈〈_,course,course:code〉〉, 〈〈course〉〉 id→ 〈〈_,course,course:code〉〉,
〈〈course:code〉〉B 〈〈_,course,course:code〉〉}

3 Representing OWL-DL in HDM

We now discuss how OWL-DL axioms and facts may be represented in the HDM, and hence
translated into other modelling languages. For conciseness, we only discuss those OWL-DL
constructs listed in Table 1, which are sufficient to describe how the OWL-DL ontology
depicted in Figure 1 can be translated into the HDM shown in Figure 1(b).

Table 1 HDM Representations of Some OWL-DL Axioms.

OWL-DL Name DL Syntax Scheme HDM Representation
owl:Thing > 〈〈owl:Thing〉〉 Node 〈〈owl:Thing〉〉
owl:Nothing ⊥ 〈〈owl:Nothing〉〉 Node 〈〈owl:Nothing〉〉
Class C 〈〈C〉〉 Node 〈〈C〉〉
SubClassOf (C1 C2) C1 v C2 〈〈v, C1, C2〉〉 Constraint 〈〈⊆, 〈〈C1〉〉, 〈〈C2〉〉〉〉
ObjectProperty P 〈〈P, C1, C2〉〉 Edge 〈〈P, 〈〈C1〉〉, 〈〈C2〉〉〉〉
FunctionalProperty T v≤ 1P 〈〈P, C1, C2, func〉〉 Edge 〈〈P, 〈〈C1〉〉, 〈〈C2〉〉〉〉

Constraint 〈〈B, 〈〈C1〉〉, 〈〈C2〉〉〉〉
Constraint 〈〈C, 〈〈C1〉〉, 〈〈C2〉〉〉〉

I Example 2. Consider the OWL-DL schema illustrated in Figure 1(a) which represents
concepts in a university Universe of Discourse and its relationships. Using the representations
of OWL-DL axioms shown in Table 1, we present an equivalent HDM schema for the OWL-DL
schema depicted in Figure 1(b). All classes such as owl:Thing, student, and course were
represented as HDM Nodes. Functional properties such as hasName, hasSid, and hasPpt were
represented as HDM edges with mandatory (B) and unique (C) constraints. The SubClassOf
axioms such as (student v owl:Thing), (course v owl:Thing), and (ug v student) were
represented as an inclusion constraint (⊆). Note that in the HDM diagram, HDM nodes are
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student ⊑ owl:Thing ⊓ 1 hasName.name ⊓ 1 hasSid.sid

course ⊑ owl:Thing ⊓ 1 hasCode.code ⊓ 1 hasDept.dept

ug ⊑ student ⊓ ∃ hasPpt.ppt

result ⊑ owl:Thing

result ≡ 1.forStudent
result ≡ 1.forCourse
1.hasGrade ⊑ result

grade ⊑ ∃ hasGrade

T ⊑ hasGrade.grade

T ⊑ hasGrade−.result

T ⊑ forStudent.student

T ⊑ forStudent−.result

T ⊑ forCourse.course

T ⊑ forCourse−.result

student ⊓ course ⊑ ⊥

(a) An OWL-DL schema of the student-course knowledge base

ug

ug:

ppt

✄

✁

✄

student:
name

✄

student

✄

✁

student:
sid

✄

✁

✄

⊆

⊆ ⊇

⊆

owl:
Thing

✄

✁

✄

✁

✁

✄

result

result:
grade

course:
code

✄

course

✄

✁

forStudent forCourse

hasDepthasGradehasSidhasPpt

hasName hasCode

course:
dept

✄

✁

✄

(b) HDM representation of the OWL-DL schema

Figure 1 An OWL-DL schema and its equivalent HDM schema.

represented by white circles with thick outlines, and HDM edges are represented by thick
black lines. The HDM constraint language is represented by grey dashed boxes connected by
grey lines to the nodes and edges to which the constraint applies. Edges pass through black
circles in a straight line, hence any edge or constraint applying to an edge meets that edge at
an angle.

4 OWL-DL Knowledge Bases Transformation using the BAV Model

In [16], five general purpose equivalence mappings that allow the transformation between
different modelling languages were proposed namely: Inclusion Merge, Identity Node Merge,
Unique-Mandatory Redirection, Identity Edge Merge, and Node Reidentify. In this paper, we
show how we can use them to transform between a knowledge model, the OWL-DL shown
in Figure 1(a) and a data model, the relational shown in Figure 2(a). Taking the HDM
equivalent schemas of these OWL-DL and relational schemas illustrated in Figure 1(b) and
Figure 2(b) respectively and applying some of these BAV-defined mappings, we were able to
transform the HDM relational schema into an HDM OWL-DL schema through 21 steps as
shown below.
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ug(name,ppt)
student(name,sid)
course(code,dept)
result(code,name,grade?)

ug.name → student.name
result.name → student.name
result.code → course.code

(a) Relational schema for the student-course database

ug:
name

✄

ug

id
→

✄✁

ug:

ppt

✄

✁

✄

student:
name

✄

student

id
→

✄✁

student:

sid

✄

✁

✄

⊆

id
→

✄✁

✶

result:
name

✄

✁

result

result:
grade

✄

⊇
result:
code

✄

⊆
course:
code

✄

course

id
→

✄✁

course:

dept

✄

✁

✄

(b) HDM representation of the relational database schema

Figure 2 A relational schema and its equivalent HDM schema.

The first 5 steps are identical to those in transforming relational to ER HDM schemas
shown in [16]. Applying these 5 steps results in Figure 3. When transforming from a key
based model (such as relational) and a knowledge model that does not provide means to
define keys (such as OWL-DL), we must overcome some fundamental differences which
require, in our example, extending the object identifiers (OIDs) of 〈〈student〉〉, 〈〈course〉〉, and
〈〈result〉〉 respectively as illustrated in steps 6-8. The transformations associated with step
6 are illustrated in Example 3. Steps 7 and 8 are similar to step 6 thus, we do not explain
them here. Step 9 is again similar to step 7 in relational and ER HDM schemas conversion
given in [16]. Steps 10-13 illustrate adding the 〈〈owl:Thing〉〉 node along with three inclusion
constraints (⊆) to it from the 〈〈student〉〉, 〈〈course〉〉, and 〈〈result〉〉 nodes. Finally, all we need
to do to obtain the OWL-DL HDM schema is to rename the edges as shown in steps 14-21.
The result of these 21 steps is the schema shown in Figure 1(b).

1. inclusion_merge (〈〈student:name〉〉,〈〈_,result:name, result〉〉)
2. inclusion_merge (〈〈course:code〉〉, 〈〈_, result:code, result〉〉)
3. identity_node_merge (〈〈_,ug:name, ug〉〉)
4. unique_mandatory_redirection (〈〈_, student:name, result〉〉, 〈〈_, student:name, student〉〉)
5. unique_mandatory_redirection (〈〈_, course:code, result〉〉, 〈〈_, course:code, course〉〉)
6. extend_OID (〈〈student〉〉 id→〈〈_,student,student:name〉〉)
7. extend_OID (〈〈course〉〉 id→〈〈_,course,course:code〉〉)
8. extend_OID (〈〈result〉〉 id→〈〈_,result,student:name〉〉 on 〈〈_,result,course:code〉〉)

ICCSW’12



6 Knowledge Transformation using a Hypergraph Data Model

9. move_dependants (〈〈student:name〉〉, 〈〈student〉〉, 〈〈_,student:name, student〉〉)
10. addNode (〈〈owl:Thing〉〉)
11. addCons (〈〈student〉〉 ⊆ 〈〈owl:Thing〉〉)
12. addCons (〈〈course〉〉 ⊆ 〈〈owl:Thing〉〉)
13. addCons (〈〈result〉〉 ⊆ 〈〈owl:Thing〉〉)
14. renameEdge(〈〈_,course,course:dept〉〉,〈〈hasDept,course,course:dept〉〉)
15. renameEdge(〈〈_,course,course:code〉〉,〈〈hasCode,course,course:code〉〉)
16. renameEdge(〈〈_,result,result:grade〉〉,〈〈hasGrade,result,result:grade〉〉)
17. renameEdge(〈〈_,result,course〉〉,〈〈forCourse,result,course〉〉)
18. renameEdge(〈〈_,result,student〉〉,〈〈forStudent,result,student〉〉)
19. renameEdge(〈〈_,student,student:sid〉〉,〈〈hasSid,student,student:sid〉〉)
20. renameEdge(〈〈_,student,student:name〉〉,〈〈hasName,student,student:name〉〉)
21. renameEdge(〈〈_,ug,ug:ppt〉〉,〈〈hasPpt,ug,ug:ppt〉〉)

ug

ug:

ppt

✄

✁

✄

student:
name

✄

student

id
→

✄✁

student:

sid

✄

✁

✄

⊆

id
→

✄✁

✶

✁

✄

result

result:
grade

course:
code

✄

course

id
→

✄✁

course:

dept

✄

✁

✄

Figure 3 Intermediate HDM schema in relational to OWL-DL conversion, after steps 1–5.

I Example 3. Transformations associated with step 6:
1. inverse_identity_node_merge(〈〈student〉〉,〈〈student:oid〉〉)
2. deleteCons(〈〈student〉〉 id→〈〈_,student,student:oid〉〉)
3. node_reident(〈〈student〉〉, { 〈x, y〉 | 〈o,x〉 ∈ 〈〈_,student,student:oid〉〉∧〈o,y〉 ∈ 〈〈_,student,student:name〉〉})
4. deleteCons(〈〈student〉〉 id→〈〈_,student,student:name〉〉)
5. deleteCons(〈〈student〉〉 C 〈〈_,student,student:name〉〉)
6. deleteCons(〈〈student〉〉 B 〈〈_,student,student:name〉〉)
7. deleteCons(〈〈student:oid〉〉 C 〈〈_,student,student:name〉〉)
8. deleteCons(〈〈student:oid〉〉 B 〈〈_,student,student:name〉〉)
9. contractEdge(〈〈_,student,student:name〉〉)

10. contractNode(〈〈student:name〉〉)
11. renameNode(〈〈student:oid〉〉, 〈〈student:name〉〉)

Note that the inverse of identity node merge in transformation 1 generates a new
node 〈〈student:oid〉〉, connected to 〈〈student〉〉 by a new edge 〈〈_,student,student:oid〉〉. Trans-
formations 2-4 have the net effect of repopulating the 〈〈student〉〉 node with values of the
〈〈student:name〉〉 attribute, and deleting the keys from name and oid. Transformations 5-11
delete the 〈〈student:name〉〉 node (with its associated constraints and edge) and rename the
node 〈〈student:oid〉〉 with 〈〈student:name〉〉.
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5 Conclusions

In this paper, we have defined how schemas expressed in OWL-DL can be translated into
equivalent schemas in HDM. We have also given an example, using the AutoMed system,
that shows how to map between HDM OWL-DL schemas and HDM relational schemas
which results in a bidirectional mapping between OWL-DL and relational schemas, and vice
versa. Our future work will expand our approach by defining schemas expressed in other
knowledge modelling languages such as OWL 2 in HDM. This might include extending the
HDM constraint language in order to accomodate the richness of such modelling languages.
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