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Abstract
Current tracking methods rely on color-, intensity-, and edge-based features to compute a de-
scription of an image region. These approaches are not well-suited for low-quality images such as
mm-wave data from full-body scanners. In order to perform tracking in such challenging grayscale
images, we propose several enhancements and extensions to the Visual Tracking Decomposition
(VTD) by Kwon and Lee [6]. A novel region descriptor, which uses texture-based features, is pre-
sented and integrated into VTD. We improve VTD by adding a sophisticated weighting scheme
for observations, better motion models, and a more realistic way for sampling and interaction.
Our method not only outperforms VTD on mm-wave data but also has comparable results on
normal-quality images. We are confident that our region descriptor can easily be extended to
other kinds of features and applications such that tracking can be performed in a large variety
of image data, especially low-resolution, low-illumination and noisy images.
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1 Motivation

To improve airport security, the detection of threats (especially non-metallic ones) attached
to a person’s body is very important. Full-body scanners that use mm-wave radiation are
currently in development with the goal of automated threat detection. Smith Heimann
GmbH provided us with several image sequences obtained from such scanners that show a
person (carrying one or more threats) with raised arms performing a full rotation around
the vertical axis. Our goal for the master’s thesis by Salz [13] was to achieve an automated
tracking of a threat through the sequence using a manually selected initial bounding box of
the threat.

The grayscale images are very challenging with respect to the tracking method since
they have a low resolution (with even smaller object sizes) and low contrast while several
artefacts further reduce quality: Even between a very small number of frames we observe
severe appearance and illumination changes, whole body parts are shadowed for some time,
metal objects produce bright responses, and flares decrease the already small SNR.

Since these image sequences are confidential property of Smith Heimann GmbH, we are
not able to provide any graphical descriptions. The sample images of Figure 11 should give a
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rough overview of the image quality, although no threats are shown and real-world scanner
data are usually much noisier with less contrast and illumination.

Figure 1 Sample mm-wave images of a female and a male person1.

2 Overview

2.1 Contributions

We conducted a thorough analysis of several detection and tracking algorithms with respect
to their applicability to mm-wave sequences (as is described in detail in [13]). Since we
discovered several shortcomings of Visual Tracking Decomposition (VTD), we propose some
enhancements (with respect to general tracking) and extensions (to apply it to other kinds
of image data), such as a more sophisticated observation and motion model, better sampling
and tracker interaction and integration of our own region descriptor.

This region descriptor is based on texture features as known from ultrasound texture
discrimination and is computed using a patch decomposition of an image region, taking
a carefully designed weighting scheme into account. We adapted the Förstner distance to
compare sample and model covariance matrices computed from these patches in a robust
way.

2.2 Results

As presented in Section 5, we achieved quite promising results on mm-wave sequences,
especially compared to other approaches like VTD. When applied to the same data Kwon and
Lee used for VTD, our method is comparable to it in terms of location error and sometimes
even has better results.

In other low-resolution, low-light grayscale image data we expect our method to be
superior to VTD as well, since the texture-based region descriptor is generally well suited for
objects that are not easily represented by color and edge features.
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2.3 Paper Organization
This paper is organized as follows: Section 3 introduces all related publications that were
the basis for the proposed algorithm. Section 4 describes our algorithm in detail, presents all
the sub-parts and gives an overview of the whole algorithm. In Section 5, some results are
presented, including a report on mm-wave tracking and a comparison to Visual Tracking
Decomposition on normal data. Finally, Section 6 concludes the paper, outlining our
contributions and future work.

3 Related Work

3.1 Introduction
There are two dominant approaches for matching an image region to a template. In detection
methods, the target object’s position, scale, rotation, and other parameters can be almost
arbitrary, i.e. the relation between the template and the target image is not known. This
is especially helpful when dealing with images of the same scene, taken in different camera
configurations, at a different time or in different circumstances (e.g. lighting). One of the
major drawbacks is the global and usually exhaustive search in the target image. This is
very expensive and often constrains the choice of a region descriptor, but more importantly,
it might cause confusion of similar looking objects.

In video sequences on the other hand, tracking is performed in adjacent frames where
only small changes both in appearance and in location are expected. This leads to the use of
a motion model to predict the movement from frame to frame and an observation model to
predict and cope with appearance changes.

Please refer to [13] for a much more extensive description and analysis of the presented
methods.

3.2 Region Covariance
Region Covariance is a detection method proposed by Tuzel, Porikli and Meer [14] that
uses the covariance matrix of pixel-based statistics as a region descriptor. It incorporates
different features like position, color, and partial derivatives, but can easily be extended to
other kinds of features. To make an exhaustive search in scale-space feasible, the covariance
matrix of a region is computed using Integral Images, proposed by Viola and Jones [15].
This intermediate representation can be pre-computed for the whole image such that a
covariance matrix for a region can be computed in constant time. To compare covariance
matrices of a template and target region, the Förstner distance (Förstner and Moonen [4])
is used. This distance is based on generalized eigenvalues and assumes that all eigenvalues
are positive, which is usually not valid in noisy, real-world data. Therefore, we propose an
adapted Förstner distance computation that only considers a few dominant eigenvalues, as
presented in Section 4.4.

3.3 Incremental Learning
In contrast to Region Covariance, Incremental Learning is a multi-template tracking method
proposed by Ross et. al. [12] that maintains an appearance model based on previous
observations. Their algorithm starts with a single template and incrementally updates
the appearance model while down-weighting older observations with a forget factor. An
intensity vector for all pixels in the image region is used as a region descriptor (I), while the

VLUDS’11



92 Texture-based Tracking in mm-wave Images

appearance model consists of the eigenbasis U from A = UΣV T with A = [I1, ..., In]. Their
update procedure incorporates new observations without re-computing the whole eigenbasis.
A Gaussian motion model and a particle filter with the state consisting of translation,
rotation, scale, aspect ratio and skew are used for tracking. See for example the tutorial by
Arulampalam, Maskell and Gordon [1] for an overview of particle filters.

The method has some disadvantages, such as the high-dimensional feature vector that
only includes raw intensity and requires a scaling of each target region to a common size.
Furthermore, the Mahalanobis distance is used as the dominant distance measure for the
observation model, utilizing a distance from the mean observation vector. This mean might
not be very expressive, since the implicit assumption of a normal distribution of observation
templates is not always valid in low-quality, noisy image data. The eigenbasis computation
using Principal Component Analysis (PCA) allows for fast frame rates, since only a partial
update of the covariance matrix is necessary for new observations. On the other hand, since
we use a sparse variant of PCA (SPCA, see below), this is not feasible and a full covariance
matrix computation is needed for each model update.

The incremental update procedure, the forget factor, and the subsequent implicit limitation
of observation model size are valuable contributions to multi-template tracking and are also
utilized in our method (see Section 4.3).

3.4 Visual Tracking Decomposition
Visual Tracking Decomposition (VTD) is a multi-template, particle-filter based tracking
method proposed by Kwon and Lee [6]. They partition the observation model into different
sub-models which are then utilized by basic trackers with different motion models. As
state, the position and a single scale parameter are used, while the HSV representation (for
grayscale images: intensity) and Sobel-based edge strength serve as features. To compute
similarity of an observation to a sub-model, the Diffusion Distance by Ling and Okada [7]
is used. Motion models consist of Gaussians with different variances (representing small
and abrupt displacements between frames) and the partitioning of the observation model is
computed by Sparse Principal Component Analysis (SPCA, d’Aspremont et. al. [3]) of the
(non-centered) covariance matrix. SPCA produces sub-models that capture the most severe
appearance changes, have a compact representation, and are almost complementary.

The eight basic trackers (with four observation and two motion models) generate Markov
chains of samples using the Metropolis Hastings algorithm [5]. Interactive Markov Chain
Monte Carlo (IMCMC) by Campillo et. al. [2] is used to fuse those basic trackers. One
tracker proposes a state and the others decide whether to leap to this state or maintain their
own Markov chain.

The authors report that their method can cope with severe appearance changes (because of
the multi-template model), occlusion and illumination changes (robust features), and abrupt
motion (different motion models). However, variance parameters for the motion models and
the scaling parameter are adapted to the specific image sequence and the implementation
deviates from the description in the paper. First, the motion model is centered at the original
object position, not the current one, which is helpful for most of the sample sequences where
the camera follows the object of interest. Second, basic trackers propose new states in each
iteration, although in the paper this sampling is only done with a certain probability or
an interaction step is performed. Furthermore, VTD has several other drawbacks that are
addressed in our method. The features are not applicable to low-quality images. The old
position of a basic tracker is ignored when sampling new states and Metropolis-Hastings
sampling yields an acceptance rate close to 100% (while theoretically it should be around
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23%, see Roberts et. al. [11]). The entries of sparse principal components are not utilized to
weight their influence, although their variance contribution differs significantly.

3.5 Texture Features
In most tracking applications, a combination of color or intensity and edge information is
used to compute feature vectors of an image region. For low-quality, noisy and colorless
images, these region descriptors perform very poorly. In the field of ultrasound texture
classification, another set of features has been proposed that relies on intensity and several
intensity transformations (gradient magnitude, difference to mean, horizontal and vertical
residuals), as described by Muzzolini et. al. [10] and Liu and Jernigan [9].

The following set of features both from the spatial as well as from the frequency domain
has been chosen for our method: The Kolmogorov-Smirnov distance between the cumulative
distributions (approximated by histograms) of each target patch and a representative sample
(which is known to belong to the texture class of interest) and the standard deviation of each
patch are spatial features. Frequency features include the energy at the major peak of the
normalized power spectrum (given by the Fourier transform), the Laplacian of major and
secondary peak, relative orientation of major and secondary peaks, isotropy of the power
spectrum, and relative energy and entropy of inner regions of the power spectrum.

3.6 Sparse Principal Component Analysis
One disadvantage of Principal Component Analysis (PCA) is the non-sparsity of entries.
Just thresholding (such that small entries are ignored) is not sufficient for dimensionality
reduction. Therefore, a variant of PCA is used, which captures most of the variance in
the data, but with a desired sparsity of principal components. It is called Sparse Principal
Component Analysis (SPCA). Please refer to [13] for a detailed description.

In our method, the sparse principal components (SPCs) are computed using an iterative
elimination strategy (Wang and Wu [16]) with project deflation to eliminate the influence of
a pseudo-eigenvector. A single parameter controls the percentage of variance that this SPC
should preserve.

4 Texture-based Tracking using Visual Tracking Decomposition

4.1 Model Representation
The tracking result for a single frame consists of a state and the corresponding observation
or feature vector. In the original VTD approach, only a single scale parameter was used, but
in many applications an object might change its scale in both dimensions, so we propose to
incorporate a total of four state variables: x,y position of the region center and x,y scaling
parameters for the scale change with respect to the first template. VTD also has a fixed
observation model size of ten templates, while older templates are discarded and all current
templates are treated equally, relying on SPCA to sort out features and time steps that
do not capture important appearance changes. Instead, we make use of the forget factor,
introduced in [12], to down-weight older samples and thus implicitly restrict the template
size.

Since the observation model is supposed to capture appearance changes, a representative
sample has to be chosen during model update (using the terminology introduced in [10]).
In our approach, a manually selected template is initially available, which serves as the
representative until the first model update. This representative is supposed to replace the
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model mean, since it is a true part of the model (describing the object best in a certain point
in time) and thus is more useful for computing the variance in the template dataset. The
representative is described in Section 4.3.

The motion model is very similar to the one in VTD, although some of its shortcomings
have been addressed. As proposal density functions for the Metropolis-Hastings algorithm,
Gaussian functions with different parameters have been commonly used and are easily
sampled. In an initialization phase, basic trackers are spread out from the current location.
If they encounter a better state than the old one, they move to this state and continue
sampling from there. In contrast to VTD, our motion models try to predict the movement
in the current frame based on previously detected movements. The first motion model is
centered at the current location of the basic tracker and has a location variance that depends
on the absolute difference of the current and previous position (the larger this difference,
the larger the variance). The second motion model assumes that an object continues its
movement from the previous frame, so the mean of the Gaussian is shifted in that direction,
using the same variances as the first motion model.

The eight basic trackers are constructed from combinations of those two motion models
and the four basic observation models.

4.2 Feature Computation
Let R be an image region of size W ×H. In VTD, the different features were computed as a
matrix of all features and pixels. For our texture-based approach the whole region is not
discriminative enough since the texture features are supposed to be constructed from small
patches. Therefore, we partition the region into five smaller, overlapping patches. These
patches are evenly sized, and four of them fill the whole region while overlapping each other
slightly, thereby ensuring that structures near patch borders are not omitted. The fifth patch
is placed in the center of the region, overlaps with all other patches, and usually does not
contain any irritating non-object pixels from the borders of the region.

Since the center patch is most likely to contain only parts of the object of interest, it is
assigned a dominant weight of 0.5, while the remaining four patches get a weight of 0.125
each. For the patch decomposition we chose an overlap parameter ω ∈ [0, 1], which we set
to ω = 0.1. The patch width (for all patches) is Wω = [0.5 · (1 + ω) ·W ], with [·] being the
round operator, and the patch height is computed accordingly.

For each of these five patches, the d = 21 features (see Section 3.5) are computed, resulting
in a 21× 5 feature matrix F (R) for the region R. Note that this matrix is independent from
the region size, so no scaling is necessary compared to the Incremental Learning approach in
[12].

4.3 Model Update using SPCA
Observation model size
The observation model is initialized with the manually selected reference template, so for the
first few frames our method is equal to a single template region matching. After m frames,
we therefore gathered m+ 1 templates from which the new observation model is computed.
With a forget factor f ∈ [0, 1] and a total number of templates t, the new effective database
size after the update becomes t← f(t−m) +m. In VTD, m is set to two and f = 1, while
the database size is restricted to ten templates. In Incremental Learning, m = 5 and f = 0.95
with an effective database size of 100 templates. For our approach we set m = 3 and f = 0.8
because of the severe appearance changes in mm-wave sequences, resulting in a maximum
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database size of m
1−f = 15. Therefore, if the database size is larger than the effective size,

the oldest templates are discarded (because they do not contribute to the model anymore)
and the weights of remaining templates are re-normalized.

Representative sample
At the beginning of each model update, a new representative template is computed as follows:
1. Find median mp

k for each feature 1 ≤ k ≤ d and patch 1 ≤ p ≤ 5, resulting in a d × 5
matrix of median values.

2. Compute the d× d covariance matrix for this median and for each template from their
patches.

3. Compute Förstner distance between covariance matrices of median and each template.
4. The template with smallest distance to the median is chosen as new representative FRep.
This representative template is a true part of the model which describes the object best at a
certain time step, and it also has a minimal distance to the median, so any template with a
large variance with respect to this representative describes a certain appearance change of
the object.

Template covariance matrix
Each template has a feature matrix Fl, l = 1, ..., t and a weight wl (the maximum a-posteriori
value from the tracking process), which gets down-weighted by powers of the forget factor.
For l = t− 1, ..., t−m for example, fl = f0 = 1, while the exponent is increased by one for
every m weights.

The template covariance matrix CM is constructed from the d×5t data matrix DM [k, 5·l+
p] =

√
wl · fl (Fl[k, p]− FRep[k, p]) with 1 ≤ k ≤ d features, 1 ≤ l ≤ t time steps, 1 ≤ p ≤ 5

patches, and Fl the l-th template’s feature matrix. DM is normalized by 1√∑
l fl · wl

,

resulting in the template covariance matrix

CM = 1

1−
∑

l
(wlfl)2

(5·
∑

l
wlfl)2

DM ·DT
M . (1)

SPCA
The purpose of SPCA is to reduce the number of features and time steps that contribute
to a submodel to only those that explain severe appearance changes (with respect to the
representative), and to split the observation model into different submodels for each basic
tracker. To compute sparse principal components from the template covariance matrix, we
use the Iterative Elimination algorithm by Wang and Wu [16] since it is easy to compute and
is controlled by a single parameter that controls the amount of variance a sparse principal
component (SPC) should contain.

For the r = 4 observation models, we need the first four SPCs of CM , where the first SPC
captures 40% percent of the whole variance and the remaining SPCs 24%, 9.6% and 3.84%,
respectively, so 77.54% of the total variance is captured by the basic observation models.
The corresponding eigenvalues serve as weights for each SPC (normalized such that they
sum up to one) and the first SPC u1 is obtained from the full covariance matrix CM . For
the other SPCs uc, a projection deflation CM ←

(
I − uc−1u

T
c−1
)
CM

(
I − uc−1u

T
c−1
)
is used

to remove the influence of other pseudo-eigenvectors uc−1.
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Feature reduction
For each basic observation model 1 ≤ c ≤ r, we obtained a sparse principal component uc. If
its k-th entry is considerably larger than zero (where 1 ≤ k ≤ d), feature k is added to the
sub-model c with weight uc[k]. Sometimes only one feature is dominant with a weight close
to one. Unfortunately, in that case the time step selection described in the next section does
not work, so we add the next feature k + 1 mod d with weight 0.1.

After the feature selection, each submodel c contains dc features, while some features
may contribute to more than one model since the SPCs are not completely orthogonal (in
contrast to true principal components).

Time step selection
To further reduce the complexity of the basic observation models, we use only those time
steps that exhibit a large variance with respect to the representative. This differs from the
VTD approach where feature reduction and time step selection are performed in a single
application of SPCA. In contrast, due to the complex but more realistic weighting scheme in
our method, we apply an additional SPCA to select relevant time steps.

For each remaining feature of a basic observation model we compute the t× t covariance
matrix from the five patches of templates. From SPCA we obtain the first SPC that captures
75% of variance in all time steps and store it in a t× dc weight matrix Tc.

For each time step we decide to keep or discard it:
1. t× 5 data matrix Dt for each feature 1 ≤ k ≤ dc, weighted as above, each row 1 ≤ l ≤ t

is multiplied by wl · fl (wl is the weight of the time step, fl influence of the forget factor)
⇒ t× t covariance matrix Ct ⇒ SPC uk ⇒ k-th column of Tc.

2. For each row of Tc take the average (weighted with feature weights from feature reduction),
if larger than 0.15, add time step to basic observation model c with weight wl multiplied
by weighted average.

3. Also add the representative time step to each model such that each basic model contains
a representative observation and appearance changes.

Model update
For each basic observation model c we now have dc features and tc time steps, so all weights
are normalized to sum up to one and the normalized eigenvalue from the c-th SPCA is the
weight of that model. This leads to a covariance matrix Cc for that basic model, which is
positive semi-definite, so in practice not all singular values are non-zero. For the sample
weight computation below, we eventually need the inverse of the covariance matrix, so using
a Singular Value Decomposition Cc = UΣV T we construct a pseudo-inverse C+

c = V Σ′TUT ,
where Σ′ contains the reciprocal of each diagonal element that is larger than some ε > 0.
This pseudo-inverse is stored in the observation model since it is computed only during the
model update but is used heavily during the sample weight computation.

4.4 Sample Weight Computation

Förstner distance
To determine the confidence that a region contains the object of interest (i.e. belongs to the
observation model) we need a weight w ∈ [0, 1] that is proportional to some distance that
measures similarity between a sample and the model. For VTD the Diffusion Distance [7] was
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chosen that compares histograms of the feature vectors. Our region representation instead
consists of five feature vectors, one for each patch, that are stored in a feature matrix. Since
these features have very different ranges (their theoretical bounds are known, for example
intensity is in [0, 255], but practical upper bounds are difficult to define), a normalization
is applied based on empirical bounds. Note that sometimes a patch has a very low mean
intensity (i.e. is almost black) such that the feature computation would not be robust. In
such a case we discard the sample immediately by setting the weight to zero.

Each basic observation model c has tc templates, each with the same dc features, including
the representative. The covariance matrix of feature matrix F for a sample region is computed
using the patch-specific weights wp (0.5 for the central patch and 0.125 for the others) and the

mean (for feature k: µk = 1
5

5∑
p=1

wp ·F [k, p]) from the data matrix D[k, p] = √wp(F [k, p]−µk),

resulting in CS = 1
1−

∑5
p=1 w

2
p

D ·DT (of size dc × dc).

For each template 1 ≤ l ≤ tc the covariance matrix Cl has been precomputed at the

model update, so the Förstner distance is FD(CS , Cl) =

√√√√dimCS∑
i=1

log2 λi, where dimCS
is the

number of eigenvalues of CS that are larger than ε = 10−6 and λi is the i-th eigenvalue of
matrix C = CS · C+

l . By restricting the distance computation to only the dimCS
largest

eigenvalues we improve robustness since a lot of the smaller eigenvalues are very close to
zero and therefore distort the distance function.

Let wl be the weight from the SPCA, then the overall distance of a sample region to the

model is the weighted average d =
tc∑

t=1
wl · FD(CS , Cl).

Weight map
To transform the distance into a meaningful and expressive weight w ∈ [0, 1], a weight map
needs to be designed. In VTD, a simple exponential function was used to map the Diffusion
Distance to a weight. In our low-quality images and with our specific features and distance,
we observed that weights decrease too fast to very small values when using an exponential
function. We also noted that there is a sharp boundary between samples that should be
accepted or rejected. We therefore decided to use a sigmoid function since it should only
take positive values, its maximum value should be at zero (because a distance of zero is a
perfect match), for values larger than zero we expect a decrease in weights with a sharp
transition from large to small weights.

This results in the following weight map with empirically tuned parameters:

w(d) = 1
1 + e4(d−2) (2)

4.5 Tracker Interaction
The r · s = 8 basic trackers independently produce samples from the same distribution. The
interaction scheme used here is similar to VTD, but with a lower acceptance rate of samples,
a more realistic spread of initial samples, a better state evaluation of other trackers, and a
better weighting of a tracker’s contribution.

In each iteration the interaction step is performed with probability α, which is initially set
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to one and linearly decreases to 0.5. The sum of weights of all basic trackers is sw =
rs∑

i=1

1
s
λiwi,

where λi is the normalized eigenvalue (i.e. the significance of contribution) and wi is the
weight a tracker has at the current state.

For each basic tracker 1 ≤ o ≤ rs we have po = 1
sλowo

1
sw

, which, in the original VTD
approach, is the probability that a proposed state is accepted by tracker c. It is not clear,
however, whether this will indeed improve the state of this tracker. Therefore, we decided
to compute the weight of tracker c at the state proposed by tracker o with probability po

and accept it only if the weight is larger than the current one, thereby guaranteeing that c
actually improves its state.

We also replace the Metropolis-Hastings sampling algorithm with its multiple-try variant
[8] to increase confidence in a proposed sample by drawing more intermediate samples. This
requires less iterations (indeed we reduce VTD’s 100 iterations to only 20, because the
maximum a-posteriori is usually found very fast) and also produces better samples.

First, ten samples yi are drawn from the motion model (which serves as proposal density
function) associated with basic tracker c and compute the weight wyi . The samples are
sorted by their weight, starting with the largest one, and one sample y = yi is selected with
probability wyi

. Then we center the motion model at y, draw nine additional samples xj

and set x10 to the current state of c. We compute weights wxj and the acceptance ratio

γ =
∑10

i=1 wyi∑10
j=1 wxj

. The state y is accepted with probability γ and y is added to the list of

accepted samples. The accepted sample with largest weight is then selected as the maximum
a-posteriori (MAP) estimate. This weight is added to the list of weights of all templates,
which are then re-normalized.

Note that the acceptance rate for a Gaussian proposal density function should theoretically
be around 23% (compare Roberts, Gelman and Gilks [11]). For VTD we observed acceptance
rates of more than 95%, while our method mostly achieves acceptance rates between 17%
and 40%.

4.6 Algorithm Summary
For every frame of the sequence:
1. Compute global intensity transforms.
2. After every 3 frames update observation model using SPCA.
3. Perform initial sampling using extended motion model.
4. Repeat for each iteration:

Tracker interaction with probability α ∈ [0.5, 1].
Reduce α linearly.
State sampling using Multiple Try Metropolis-Hastings algorithm.

5. Select maximum a-posteriori estimate from accepted states.

5 Results

Application to mm-wave data
As mentioned before, we cannot provide any graphical examples for mm-wave data, but we
achieved promising results in our experiments, especially in comparison to the original VTD
method which only used intensity and edge strength as features. To our knowledge, no other
method is capable of dealing with this kind of challenging data.
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Figure 2 shows a comparison of absolute pixel errors of the bounding box center with
respect to a manually selected ground truth.

Note that in mm-wave sequences threats are only visible for a few frames and severe
appearance and illumination changes occur even between a small number of frames. Addi-
tionally, threats might be subject to imaging artefacts and their appearances often do not
deviate much from surrounding regions.

For more evaluations of tracking in mm-wave sequences, please refer to [13].
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Figure 2 Results for two mm-wave sequences. The blue graph shows the errors of the presented
method, while the red graph represents the VTD results. Pixel errors are on the vertical axis, frame
numbers on the horizontal axis.

Comparison to VTD on standard data

We also compared our method to VTD using higher-quality images that Kwon and Lee
used themselves. It turned out that our method mostly had similar results, sometimes even
outperforming VTD, although with a lower framerate. This is depicted in Figure 3.

(a) A sample image
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(b) As above, blue represents the presented method
and red the VTD.

Figure 3 A sample sequence of real-world data. Note that in this case, our method actually
outperforms the VTD.
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6 Conclusion

6.1 Summary and Contributions
We presented an extension to the framework Visual Tracking Decomposition [6] that improves
some of its shortcomings and enables tracking in low-quality images, especially mm-wave
data from full-body scanners. We proposed a new region descriptor that is based on features
introduced in ultrasound texture discrimination [10] and applied it successfully to mm-wave
data and color images. Our method uses the Förstner distance [4] for region comparison,
improves the multi-template observation model of VTD using a forget factor [12] and a more
sophisticated weighting scheme, incorporates a better motion model and sampling method
[8] for particle filtering, and replaces the model mean with the template closest to the model
median.

In comparison with VTD our method is superior on mm-wave data (low-quality and noisy
grayscale images), while it has similar results for data with color and strong edges.

6.2 Future Work
The feature set we have chosen consists of 21 features both from the spatial and the frequency
domain. A comparative study is necessary to evaluate the usefulness of each feature in order
to reduce the number of features to a minimum while keeping tracking quality. Furthermore,
feature computation is quite expensive since most computations need to be done locally
and more than 16000 Fourier transforms are necessary for each frame. An optimized and
parallelized way of feature computation will improve frame rates significantly, although
real-time results are not expected to be feasible. Finally, we would like to extend our method
to track several objects simultaneously and also incorporate color features to improve tracking
results in colored image data.

Since the presented tracking algorithm works well on mm-wave images, a very challenging
kind of data that to our knowledge nobody ever dealt with, we definitely expect it to be
well-suited for similar applications. Therefore, we plan to test and tune our method to a
variety of different imaging techniques, such as infrared imaging and especially ultrasound
data. We adapted the texture features from the ultrasound imaging domain, so our region
descriptor should be capable of tracking objects or anatomical structures.
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