
Visualization and Evolution of Software
Architectures
Taimur Khan1, Henning Barthel2, Achim Ebert1, and
Peter Liggesmeyer2

1 Computer Graphics and HCI Group
University of Kaiserslautern, Germany
{tkhan,ebert}@informatik.uni-kl.de

2 Fraunhofer IESE
Kaiserslautern, Germany
{Henning.Barthel,Peter.Liggesmeyer}@informatik.uni-kl.de

Abstract
Software systems are an integral component of our everyday life as we find them in tools and
embedded in equipment all around us. In order to ensure smooth, predictable, and accurate
operation of these systems, it is crucial to produce and maintain systems that are highly reliable.
A well-designed and well-maintained architecture goes a long way in achieving this goal. However,
due to the intangible and often complex nature of software architecture, this task can be quite
complicated. The field of software architecture visualization aims to ease this task by providing
tools and techniques to examine the hierarchy, relationship, evolution, and quality of architecture
components. In this paper, we present a discourse on the state of the art of software architecture
visualization techniques. Further, we highlight the importance of developing solutions tailored
to meet the needs and requirements of the stakeholders involved in the analysis process.

1998 ACM Subject Classification D.2.11 Software Architectures

Keywords and phrases Sofware architecture visualization, software comprehension, software
maintenance, software evolution, human perception

Digital Object Identifier 10.4230/OASIcs.VLUDS.2011.25

1 Motivation

The field of software visualization is centered on visual representations aimed at making
the software more comprehensible. These representations are a necessity for analysts to
examine software systems due to their “complex, abstract, and difficult to observe” nature
[53]. These difficulties are further compounded in large-scale software systems where it
becomes increasingly difficult for analysts to examine the systems’ behavior and properties,
due to the systems’ scale.

Software visualization focuses on various aspects of software systems, such as source
code, software structure, runtime behavior, component interaction, or software evolution, to
unravel patterns and behaviors through the different software development stages [1]. Due
to the diverse nature of these data sets, different types of visualizations can be found in
literature. However, for the focus of this research we highlight the visualization of software
architecture as well as software architecture evolution.

The visualization of software architecture is an essential component of software visualiza-
tion. “Not only are architects interested in this visualization but also developers, testers,
project managers, and even customers” [32]. From the perspective of a software analyst,

© Taimur Khan, Henning Barthel, Achim Ebert, and Peter Liggesmeier;
licensed under Creative Commons License ND

Proceedings of IRTG 1131 – Visualization of Large and Unstructured Data Sets Workshop 2011.
Editors: Christoph Garth, Ariane Middel, Hans Hagen; pp. 25–42

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.VLUDS.2011.25
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


26 Visualization and Evolution of Software Architectures

(a) General node-link diagram (b) As found in SAVE [23]

Figure 1 General and tool specific node-link diagram.

software architecture focuses on the structure of a software system – the focal point of
which is to examine composing entities, their metrics, and relationships [11]. Additionally,
recent studies have shown an increased interest in not only the visual exploration of software
modules, their structure, and interrelations, but also in the evolution of these modules [19].
The key feature of software architecture visualization is to uncover visual metaphors that are
both efficient and effective in depicting the software architecture of a system and to encode
software code metrics within these representations. Several questions need to be addressed in
finding such solutions, such as: who is the end-user of the architecture visualization [50], what
needs to be analyzed through the visualization [52], and how can appropriate visualization
metaphors and interaction techniques be chosen [2].

2 Visualizing Software Architectures

One of the core topics in the field of software visualization is a means to effectively visualize,
navigate, and explore the software architecture of a system [31, 32, 34]. Generally, object-
oriented software tends to be structured hierarchically – with packages containing sub-
packages, which in turn contain classes that hold methods and attributes. It is this hierarchy
and relationships between software components that are of interest when it comes to software
architecture visualization [15].

In this section, we explore representations of the global architecture of a system, such as
tree, graph, and diagram model depictions. Further, we also investigate representations that
highlight relationships between components as well as the importance of visualizing software
metrics.

2.1 Architecture Representations
Tree structures are an ideal way of representing the hierarchical structure of software
architecture. However, research in this area has shown the need to move forward from well-
known techniques such as node-link layouts to more sophisticated ones to handle the larger
hierarchies found in software systems nowadays [70]. Fig. 1 shows both a generic node-link
diagram as well as one found in a commercial tool. Inspection of these representations shows
that they quickly become too large and utilize available screen space far too poorly for proper
investigation. Further, the amount of textual information represented in the nodes as well as
the way relationships are depicted should be revisited to avoid visual clutter and information
overload [41].

This section inspects several 2D visual representations [10] that may not be specific to just
software visualization, but have been effectively applied to highlight the hierarchal structure
of a software system [70, 4]. Here, it is important to note that a lot of these representations



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 27

(a) Rectangular TreeMap (b) Circular TreeMap

Figure 2 Rectangular and Circular TreeMaps from [57].

have been extended to 3D visualizations [2, 6, 49]. While 3D approaches have been shown to
display larger hierarchies and minimize clutter [58], they have also suffered from the well
documented drawbacks of 3D visualizations, such as: object occlusion, cumbersome view
adjustments, performance issues, as well as poor readability of 3D texts [48, 17]. Due to
these drawbacks and the requirements of our stakeholders, this survey focuses mostly on 2D
representations.

The Treemap visualization (Fig. 2a), first introduced by Johnson and Schneiderman [39],
is an effective means to visualize an entire software hierarchy. It is essentially a space-filling
technique that displays hierarchical data as a set of nested rectangles. This is usually
performed by a tiling algorithm that slices a box into smaller boxes for each level of the
hierarchy, recursively, alternating between horizontal and vertical slices. “The resulting
visualization displays all the elements of the hierarchy, while the paths to these elements
are implicitly encoded by the Treemap nesting” [15]. In the context of software architecture
visualization, Treemaps are used to represent methods as elementary boxes and classes as
composed boxes. Several modifications of Treemaps appear in literature and in practise –
some improve readability by enforcing an aspect ratio as close as possible to 1, while others
have used irregular shapes such as Voronoi instead of rectangles to show more information
[8]. Typically, designers are limited to the encoding of a single metric – the box color. While
this provides a symbolic idea of how such a metric value is spread through the hierarchy, it
is not simple to determine or represent metrics of enclosing entities [22]. Treemaps provide
an extremely compact layout, however, they are limited by mainly showing the leaves of the
software structure. Similarly, the circular Treemap visualization (Fig. 2b) and variations
of it have been researched in order to have circles fill the available space [74]. However, as
shown in Fig. 2b circular treemaps are not efficient with respect to the used space.

The Icicle Plot principle of Fig. 3a is where a line represents a tree level and each line is
split according to its number of children [10]. While Icile Plots provide better understanding
of structural relationships as packages can be used as root and classes and methods as tree
elements, scalability and navigation may be an issue with hierarchies of large systems [22].
Typically, two metrics maybe encoded in the visual representations: node size and color.

An alternative space-filling technique to nested geometry is the use of a Sunburst visual-
ization that focuses on adjacencies instead [62]. This technique was first proposed by Stasko
and Zhang [65], where they utilized a circular or radial display to depict the hierarchy rather
than a rectangular layout (Fig. 3b). In a sunburst, the hierarchy is laid out radially with the
root at the center and dics or portions of discs as deeper levels further away from this center
[3]. In contrast to the Treemap techniques mentioned earlier and similar to the Icile Plot,
designers have the added flexibility to encode two distinct metrics: the angle swept out by

VLUDS’11



28 Visualization and Evolution of Software Architectures

(a) Icicle Plot (b) Sunburst Tree Layout (c) Hyperbolic Tree Layout

Figure 3 Icicle Plot [10], Sunburst Tree Layout [57], and Hyperbolic Tree Layout [57].

an item and its color [22]. Studies have shown the performance of localization, comparison,
and identification tasks in Treemap and Sunburst visualizations to be comparable, however
the Sunburst is found to be easier to learn and more pleasant [64]. While screen-space is
better utilized as compared to node-link diagrams, scalability and navigation may still be an
issue in larger systems.

Another approach is to make use of the hyperbolic space, which intrinsically provides more
space than a layout that employs Euclidean coordinates. This well-established technique is
more commonly referred to as the hyperbolic tree layout (Fig. 3c) and was first introduced
in the context of information visualization by Lamping et al. [43]. Essentially, it lays out
the hierarchy in a uniform manner on a hyperbolic plane and maps the results back on to
the Euclidean space. The resulting hierarchy is laid out on a circular display region and
may be complemented with focus and context techniques such as fisheye distortion [40],
where components tend to diminish in size as they move outwards. This leads to a larger
representation of the center or focused area while still displaying the overall structure of the
tree. Hyperbolic trees show detail and context at once; initially the root of the hierarchy is
placed in the center, however, the display can be transformed to bring another node into
focus through interaction. It would probably be best to encode metrics through the use of
color alone, as varying the node size would adversely affect the layout algorithm. When the
graph is deemed too large to be rendered effectively, nodes are pruned together and may be
interactively expanded to reveal the subtree structure.

2.2 Visualizing Relationships
In contrast to visualizing the software hierarchy of a system, visualizing relationships of
the software system is a more complex task. This is due to both the higher amount and
the different types of relations that exist in a system, such as: inheritance, method calls,
dynamic invocation, accesses, etc.

Generally, graphs have all the characteristics required to represent relationships of a
software system. This is typically done by expressing software components as nodes and
relationships between them as edges [63]. However, this often leads to the visualization of
an extremely large graph due to the high interconnectivity between the large amount of
components found in software systems nowadays. Thus, the resulting visualization tends to
be extremely confusing and cluttered – it becomes difficult to discern between nodes and
edges due to the cluttering, overlapping, and occlusion of edges (Fig. 4).

A well-known approach to remedy this clutter issue is to replace node-link diagrams with
a square matrix that has matching row and column labels. The matrix then highlights the



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 29

Figure 4 Cluttered Software Architecture [23].

number of relations between row and column elements within each matrix entry, possibly
through some visual representation [78]. This well-known technique is often referred to as the
Dependency Structure Matrix [59] in literature and provides a compact and uncomplicated
representation of relations in a complex system. However, keeping a mental map of the
system hierarchy can still be an issue in these visualizations.

The most accepted graph-based software visualization in the field of object-oriented
software engineering are UML class diagrams. This modeling language was created and
developed by the Objected Management Group and has since become the industry standard
for modeling software systems [28]. Its main purpose is to portray inter-class relations, such
as: composition, inheritance, generalizations, aggregations, and associations. However, due
to the amount of textual information depicted by each component such as the listing of
methods and variables, these graphs grow exponentially with each additional component or
class notation and are highly prone to information overload. Some researchers have looked
at reducing the visual complexity associated with such graphs by reducing the number of
overlapping edges, the use of orthogonal layouts, the horizontal writing of the labels, and
edge bundling [24, 56, 68]. While some success in reducing the complexity has been achieved,
the drawbacks associated with node-link diagrams such as poor screen-space management
and information overload still need to be tackled.

Some researchers have experimented with different layout and filter techniques in order to
resolve the clutter issue. An example of this is the work of Pinzger et al. [55] that focuses on
the creation of condensed and aesthetically pleasing graphs that show information relevant
to solve a given program comprehension task. Their solution was to use nested graphs and
a feature that allowed to add and filter appropriate nodes and edges. Other researchers
such as Holten [36] have chosen to implement better space-filling techniques in combination
with improved edge representations. Holten’s approach was to place software elements on
concentric circles according to their depth in the hierarchical tree and then to display edges
above the hierarchical visualization (Fig. 5). Further, he extended the work of Fekete et al.
[26] that used spline edges to replace explicit arrow directions, in order to reduce the visual
clutter and edge congestion by allowing edges to bundle together according to a parameter
(Fig. 5a and 5b). Similarly, techniques displaying, clustering, and filtering edges on top of
structural representations can be utilized in other visualizations (Treemaps, circular trees,
etc.) to represent the hierarchical graph structure of a software system.

Another approach to resolve the issues of cluttered 2D graphs is the use of 3D visualizations
[29], where the user can access a view without occlusions. However, 3D representations of
large graphs have their own problems, such as: navigation can not only be difficult but
also disorienting [60], object occlusion, performance issues, and text illegibility [48]. For the
purpose of completion it would be prudent to mention some of the more prominent work in
the area of 3D software architecture visualization. Some researchers in this field experimented
with real-world metaphors to take advantage of the intuitiveness of these representations [51].

VLUDS’11



30 Visualization and Evolution of Software Architectures

(a) β = 0 (b) β = 0.75

Figure 5 Hierarchical Edge Bundles [36].

Figure 6 Clustered graph layout [7].

For example, the City or Cities metaphors are often used to depict relationships through a
visually understandable metaphor [2, 52], where cities (packages) are connected via streets
(two-directional calls) and water (uni-directional calls). Similarly, researchers have realized
the Solar System [33], Island [52], and Landscape [6, 9] metaphors, where the respective
relationships between each contributing element is exploited to depict packages, classes, and
their relationships. Another interesting approach towards handling large and complex graphs
is the clustered graph layout (Fig. 6), where clustering, dynamic transparency, and edge
bundling are used to visualize a graph without altering its structure or layout [7].

2.3 Visualizing Software Metrics
The incorporation of software metrics is an important component in the analysis of a software
systems architecture, as they not only provide an insight into the quality of the software
design [14, 27] but also a means to monitor this quality throughout the design process [12].
Typical static software metrics express different aspects of a complex system, such as: design
complexity, resource usage, and system stability.

The idea behind metric-centered visualizations is to transform numerical statistical data
into a visual representation that is easier to understand and grasped far more intuitively
and instantaniously [75]. Here, the greatest challenge is to find an effective mapping from a
numerical representation to a graphical one that enhances the structural visualization [38].

In this section, selected visualization techniques that implement static software metrics
are highlighted – the purpose of which is to provide an idea of the implemented approaches.
One such approach is to combine them with UML class diagrams. An example of this is



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 31

(a) Metric View (b) Areas of Interest

Figure 7 Metric View [71] and Areas of Interest Visualizations [13].

the MetricView (Fig. 7a) visualization that displays metric icons on top of UML diagram
elements [71].

An extension of this approach is the areas of interest (Fig. 7b) technique developed by
Byelas and Telea [13]. They apply a layout algorithm that groups software entites with
common properties, encloses these entities with a contour, and adds colors to depict software
metrics. In order to distinguish overlapping areas, each area is given its own texture, such as:
horizontal lines, vertical lines, diagonal lines, and circles. Further, shading and transparency
techniques are used to improve the distinction between several areas.

In visual representations other than UML Diagrams, similar approaches have to be
implemented in order to combine metrics and structural information. An example of this is
the work of Holten et al., where they used texture and color to show two different software
metrics on a Treemap [35]. Their results show that the combination of color and texture
provides high information density, assists in finding correlations between metrics, and can
reveal patterns and potential problem areas.

To visualize multiple aspects of a software system, Lanza et al. introduced the concept
of polymetric views, where the visualization of a software is enriched with software metrics
[46]. Essentially, they propose a node representation that encodes up to five distinct metrics;
node width, height, x and y-coordinates and color, and edge width and color. They applied
this to an inheritance tree where nodes represent classes and edges depict the inheritance
relationship between them. Node width and height is used to encode the number of attributes
and the number of methods. Further, a color tone is applied to represent the number of lines
of code.

Similarly, in 3D visualizations the encompassing visual entities have been encoded with
software metrics [33, 76]. Another technique that may be applied in the analysis of system
metrics is the use of filters. An example of this can be found in the Solar system metaphor,
where filters may be applied to the overall system to visualize planets with metric values
that lie within a chosen interval [33].

3 Visualization of Architecture Evolution

A general obstacle with regards to software evolution visualization is coping with the
complexity that emerges from the huge quantity of evolution data; it is quite common to
have hundreds of versions of thousands of files [72]. The technical challenges associated with
extrapolating these historical data are deemed out-of-context with respect to this paper,
instead, the focus will be on visualizing the evolution of the software architecture.

VLUDS’11



32 Visualization and Evolution of Software Architectures

(a) Code Flow (b) Visual comparison of hier-
archically organized data

Figure 8 Code Flow technique [69] and structural comparison of two source code versions [37].

Real software solutions undergo continuous change to meet new requirements, adapt to
new technology, and to repair errors [47]. Inevitably, the software in question magnifies in
both size and complexity, often leading to a situation where the original design gradually
decays unless proper maintenance is performed [20]. As such, visualizing the evolution of the
software architecture is one of the key topics in the field of software evolution visualization
[15]. It is essential to have a global overview of the entire system evolution in order to
explain and document how a system has evolved to its present state and to predict its future
development [18].

This section follows the same pattern as the previous one, where we first focus on how
the global architecture of the software changes with each release and then examine how
relationships and metrics evolve within each version.

3.1 Visualizing Hierarchical Changes

Since software maintenance is performed mainly at code level, most visualizations have
implemented a 2D line-based approach to represent the software evolution [25, 69, 73].
Generally, the adopted approach is to visually map a code line to pixel line, where color
is typically used to show the age of a code fragment [25]. Additional focus has been to
develop interaction techniques that allow users to effectively navigate and explore the data
[73]. In order to highlight the state of the art in this traditional approach, the Code flows
visualization technique [69] is briefly examined. Fig. 8a shows an evolution from left to right
of four versions of a source code class. This technique employs an icile layout and bundled
edges to show how a source code line changes over subsequent versions. Source code lines that
do not change from one version to another are colored black, while code lines that changed
are highlighted using different colors. In general, these tools are successful in tracking the
line-based structure of software systems and reveal change dependencies at given moments
in time [73]. However, they lack the sophistication to provide insight into attribute changes
and more so the structural changes made throughout the development process.

In contrast, there are only few visualizations aimed at representing structural changes
of a system architecture over time [15]. As explained earlier, there definitely exists a
requirement to monitor the evolution of a systems architecture, however, current graph
animation algorithms are limited and need to mature further to handle this requirement [21].

One such approach is the work of Holten et al. [37] that presents a technique aimed
at comparing the software hierarchies of two software versions . To better compare the
two versions, the algorithm tries to position matching nodes opposite to each other. This



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 33

(a) Inheritance graph of successive versions

(b) Evolving Cities

Figure 9 Successive Inheritance graphs [16] and development stages of CrocoCosmos [66].

technique is presented in Fig. 8b, where the source code of Azureus v2.2 is displayed on the
left and v2.3 is portrayed on the right. Nodes that are present in one version but not the
other are highlighted via red shading. Further, the Edge Bundles technique of Section 2.2 is
used to highlight and track the selected hierarchy.

Collberg et al. [16] describe a system that visualizes the evolution of a software system
using a graph drawing technique that handles a temporal component for the visualization of
large graphs. They accomplish this by utilizing a force-directed layout to plot call graphs,
control-flow graphs, and inheritance graphs of Java programs. Changes that the graphs have
gone through since inception are highlighted through the use of color. Nodes and Edges are
initially given the color assigned to its author (red, yellow, or green) and progressively age to
blue (Fig. 9a).

Lately, there has been some effort by researchers to extend known metaphors to handle
the evolution of software systems. Steinbrückner et al. [66] have an interesting approach
that implements the city metaphor for the representation of large software systems in the
form of evolving software cities. Their work is illustrated in Fig. 9b, where a system grows
from an initial 389 classes to 439 classes in revision 100 and 466 classes in revision 200. In
this implementation of the city metaphor, streets represent Java packages and building plots
represent Java classes. The sequence of visual depictions aims to highlight basic changes
in the software structure, how elements may be added, removed, and moved within the
software hierarchy. Further, they extend this general representation to address the needs of
two distinct application scenarios by: 1) applying an evolution map that uses contour lines to
show different versions of each subsystem and 2) using a modification history map that uses
a contour line map combined with property towers that depicts the number of modifications
as height and modification date as color.

VLUDS’11



34 Visualization and Evolution of Software Architectures

3.2 Visualizing Software Metrics Evolution
As covered in Section 2.2, visualizing relationships is an extremely complex task that is
further compounded in the case of software evolution. Typically, researchers and practitioners
focus more on the logical coupling between source code artifacts, as it can be encoded easily
into metric values [30].

Software metrics are an ideal abstraction as they encapsulate, summarize, and provide
essential quality information about source code [44]. As such, they are essential in providing
a continual understanding and analysis of the quality of a system during all phases of the
product life cycle. Instead of tedious, inefficient, and hard to grasp numerical representations,
metrics tend to be mapped to graphical characteristics so that they may be intuitively
interpreted. In this section, we explore the state of the art in the visualization of software
metrics across different software versions.

The Evolution Matrix is a visualization technique that provides an exploratory view of
an object-oriented systems evolution, both at the system and class granularity levels [45].
In this work, Lanza et al. combine software visualization and software metrics by using
two-dimensional boxes to represent classes and encoding metric measurement of the classes
to the width and height of the boxes. In the example of Fig. 10a, they use the metric
number of methods for the width and number of instance variables for the height, columns to
represent different versions of the software, and rows to depict different versions of the same
class. At the system level, this technique recovered the following characteristics regarding
the evolution of a system: size of the system, addition and removal of classes, and growth
and stagnation phases in the evolution. While at the class level, it shows if the class grows,
shrinks, or stays the same from one version to another. These features allow the expert to
analyze a number of interesting aspects, such as a class growing and shrinking repeatedly, a
class suddenly exploding in size, or a class that had a certain size but lost its functionality.

The visualization framework by Langelier et al. also facilitates the analysis of software
over many versions [44], albeit in a slightly different manner. Instead of employing a technique
that displays the entire system evolution in one picture [45], they rely on animated transitions
from one version to another. As Fig. 10b shows, there are different static representations for
each subsequent version; the image on the left is a previous version and the image on the
right is the next. The user controls forward and backward navigation in time, which in turn
animates three graphical characteristics that are mapped to metric values – color, height, and
twist. While the animations are of a short duration, they are well-designed and help attract
the attention of the viewer towards program modifications [44]. This work of Langelier et al.
contains references to extensive case studies aimed at detecting both evolution patterns and
known anomalies. With respect to evolution patterns, users were able to identify constantly
growing classes, quick birth and death of classes, and explosions in complexity in a short
time-span. On the other hand, while looking for common anomalies, patterns such as the
God Class or Shotgun Surgery were observed. The former is detected when a class constantly
grows in complexity and coupling, while the latter occurs when a class constantly grows in
terms of coupling and whose complexity increases globally but with an up-and-down local
pattern.

Wettel and Lanza present interactive 3D visualizations in their CodeCity tool that
examines the structural evolution of large software systems at both a coarse-grained and a
fine-grained level [77]. At a coarse-grained level of granularity, classes are shown as monolithic
blocks that lack details of the internal structure. At the fine-grained level, the focus is on
methods that appear as building bricks. Fig. 11a shows this fine-grained representation,
where classes are illustrated as buildings located in districts that represent the packages in



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 35

(a) Evolution Matrix

(b) Two frames of RSSSowl using VERSO

Figure 10 Evolution Matrix [45] and two frames from VERSO [44].

which the classes are defined. Metric values are then encoded in the visual properties of the
city artefacts; class properties such as the number of methods and number of attributes are
mapped on to the buildings’ height and base size, package depth is mapped on the districts’
color saturation. Further, the age distribution of classes is represented through an Age Map
color mapping, where the color scheme ranges from light-yellow for recent entities to dark
blue for earlier versions. Similar to the work of Langelier et al., back and forth transitions
through the history of the system allow the city to update itself and reflect the currently
displayed version. Additionally, at a finer level-of-detail the entire evolution of a single class
or package may be tracked (Fig. 11b).

Pinzger et al. introduced a multivariate visualization technique that can display the
evolution of numerous software metrics related to modules and relationships [54]. This is
accomplished through a combination of graphs and Kiviat diagrams to graphically represent
several metric values by plotting each value on its corresponding line (Fig. 12). The individual
Kiviat diagrams present quantitative metrics, where low values are placed near the center of
the Kiviat diagram and high values are found further away from the center. Dependency
relationships between source code entities are highlighted by the layout of the diagram and
the relationship between modules. Furthermore, this approach encodes the temporal aspects
of multiple versions through a rainbow color gradient, where different colors indicate the time
period between subsequent releases. Finally, the amount of coupling between two modules
is represented by the width of edges connecting Kiviat diagrams. While this visualization
contains lots of informations and can help identify critical source code entities or critical
couplings, it requires a good knowledge of software metrics. A positive feature of this
technique is that all information regarding metrics and evolution is represented in a single
static view that requires no animation. However, at times the color stripes overlap, making
it futile to discern the corresponding metric values. This problem of overlapping has been

VLUDS’11



36 Visualization and Evolution of Software Architectures

(a) A fine-grained CodeCity Age Map (b) Timeline of a single class

Figure 11 Fine-grained CodeCity Age Map and Timeline of a single class [77].

Figure 12 Kiviat graph with 20 metrics, 7 modules, and 7 subsequent releases [54].

solved using 3D Kiviat diagrams that displays each version of the software on a different
level of elevation [42].

4 Tools

There are a number of tools available both in academia and industry that cater to the various
needs of stakeholders. On the one side, vendors have developed commerical Architecture
Visualization Tools (AVTs): Lattix, Enterprise Architect, NDepend, Klockwork Architect,
IBM Rational Architect, Bauhaus [70], etc. On the other hand, the research community
has also produced numerous tools: SHriMP [67], BugCrawler [19], DiffArchViz [61], etc.
Commercial tools are generally designed to be used as-is, while research tools are open-source
that allow users to customize them.

The main aim of these tools is to employ a combination of metaphors and techniques
presented in this paper to assist technical users, project managers, and researchers in analyzing
software architectures. The study of Telea et al. shows that the mainstream masses are
starting to realize the potential of these visualization techniques. For example, tools such
as Lattic and NDepend have incorporated newer diagram-layout techniques, realizing the
limitations of traditional node-link diagrams [70]. However, this modernization of AVTs is
much slower than the advent of cutting-edge visualization solutions.



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 37

AVTs typically support a combination of the following tasks: “comparing desired and
actual architectures, identifying architecture violations, highlighting architecture patterns or
layers extracted from code bases, assessing architecture quality, and discovering evolutionary
patterns such as architectural erosion” [70]. However, no single tool can satisfy all these
needs and requirements, as they differ in the features they provide, the audience they cater
to, and the tasks they support [50, 70].

The reader may refer to the work of Babu et. al [5] for a thorough comparison of AVTs
according to the taxonomies they support. A closer inspection of these taxonomies is required,
as it is imperative that visualizations are constructed to address problems and issues faced by
the users of the system, rather than just provide ’pretty pictures’. The challenge often is that
different stakeholders, such as: architects, developers, maintainers, and managers, require
contrasting tools and techniques to delve into different levels of details. In the context of
software architecture, several researchers, such as: McNair et al. [50] and Panas et al. [52],
have conducted in-depth analysis of what to visualize and how best to achieve it. A good
synopsis of these findings can be found in the survey of Ghanam et al. [32].

The most significant lesson learnt from the above-mentioned surveys is not to lose sight
of the audience and to conduct appropriate evaluations where possible to determine the true
worth of a proposed software architecture visualization; does it allow for a more thorough
analysis (number of issues detected) or for a more efficient one (task completion time).

5 Conclusion

In this paper, we provided a comprehensive and up-to-date review of both literature and
mainstream practices in the field of software architecture visualization. Our research shows
that the architecture visualization domain has evolved significantly in recent years giving
developers new tools to better understand, evaluate, and develop software and helping
managers to monitor design and refactoring issues. However, there remains the need to
incorporate these cutting-edge tools and techniques with standard software development and
maintenance practices.

Some visualization techniques like parallel coordinates and bundled diagram layouts are
less known in industry, while other techniques such as node-link layouts are well known.
The software architecture community has not made widespread use of these recent advances.
There is a definite need to bridge this gap, as software systems are getting far too large to
be analyzed through traditional means alone. This delay in adopting new technology may be
due to the stakeholders not having enough time to try out every new tool, lack of knowledge
with respect to technical visualization terms often used in marketing these tools, or simply a
reluctance to try unknown visualization metaphors and techniques.

The way forward is for researchers to work closely with experts, tailor tools to meet
specific requirements, and to conduct comprehensive evaluations. This would lead to research
prototypes making their way into mainstream tools and a widespread adoption. It is
envisioned that this transition would improve quality and reduce the time and cost factors.
Lastly, we would like to point out the need for both industry and academia to look into
the evolution of software at higher level of abstraction than current linebased methods; this
remains an open area for future research.

References
1 SOFTVIS 2008. ACM Symposium on Software Visualization, September 2008. Online;

Accessed 17-November-2011.

VLUDS’11



38 Visualization and Evolution of Software Architectures

2 Sazzadul Alam and Philippe Dugerdil. Evospaces: 3d visualization of software architecture.
In SEKE, pages 500–505. Knowledge Systems Institute Graduate School, 2007.

3 Keith Andrews and Helmut Heidegger. Information slices : Visualising and exploring large
hierarchies using cascading , semi-circular discs. Information Visualization, pages 9–12,
1998.

4 Daniel Archambault, Tamara Munzner, and David Auber. Grouseflocks: Steerable ex-
ploration of graph hierarchy space. IEEE Transactions on Visualization and Computer
Graphics, 14:900–913, 2008.

5 K. Delhi Babu, P. Govindarajulu, and A.N. Aruna Kumari Ahmed. Development of the
conceptual tool for complete software architecture visualization: Darch (da). International
Journal of Computer Science and Network Security (IJCSNS), 9(4):277–286, April 2009.

6 Michael Balzer and Oliver Deussen. Hierarchy based 3d visualization of large software
structures. In Proceedings of the conference on Visualization ’04, VIS ’04, pages 598.4–,
Washington, DC, USA, 2004. IEEE Computer Society.

7 Michael Balzer and Oliver Deussen. Level-of-detail visualization of clustered graph layouts.
In Seok-Hee Hong and Kwan-Liu Ma, editors, APVIS, pages 133–140. IEEE, 2007.

8 Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for the visu-
alization of software metrics. In Proceedings of the 2005 ACM symposium on Software
visualization, SoftVis ’05, pages 165–172, New York, NY, USA, 2005. ACM.

9 Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. Software landscapes:
Visualizing the structure of large software systems. In Oliver Deussen, Charles D. Hansen,
Daniel A. Keim, and Dietmar Saupe, editors, VisSym, pages 261–266. Eurographics Asso-
ciation, 2004.

10 Todd Barlow and Padraic Neville. A comparison of 2-d visualizations of hierarchies. In
Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01),
pages 131–, Washington, DC, USA, 2001. IEEE Computer Society.

11 Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-
Wesley, Boston ; Munich [u.a.], 2005.

12 I. Brooks. Object-oriented metrics collection and evaluation with a software process. In
Proc. OOPSLA ’93 Workshop Processes and Metrics for Object-Oriented Software Devel-
opment, Washington, D.C., 1993.

13 Heorhiy Byelas and Alexandru Telea. Visualizing metrics on areas of interest in software
architecture diagrams. In Peter Eades, Thomas Ertl, and Han-Wei Shen, editors, PacificVis,
pages 33–40. IEEE Computer Society, 2009.

14 David N. Card and Robert L. Glass. Measuring Software Design Quality. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

15 Pierre Caserta and Olivier Zendra. Visualization of the static aspects of software: A survey.
IEEE Transactions on Visualization and Computer Graphics, 17:913–933, 2011.

16 Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin Wampler. A
system for graph-based visualization of the evolution of software. In Proceedings of the
2003 ACM symposium on Software visualization, SoftVis ’03, pages 77–ff, New York, NY,
USA, 2003. ACM.

17 Raimund Dachselt and Jürgen Ebert. Collapsible cylindrical trees: A fast hierarchical
navigation technique. In Proceedings of the IEEE Symposium on Information Visualization
2001 (INFOVIS’01), pages 79–, Washington, DC, USA, 2001. IEEE Computer Society.

18 Marco D’Ambros and Michele Lanza. Reverse engineering with logical coupling. In Proceed-
ings of the 13th Working Conference on Reverse Engineering, pages 189–198, Washington,
DC, USA, 2006. IEEE Computer Society.



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 39

19 Marco D’Ambros and Michele Lanza. Bugcrawler: Visualizing evolving software systems.
In 11th European Conference on Software Maintenance and Reengineering, 2007. CSMR
’07., pages 333 –334, march 2007.

20 Marco D’Ambros and Michele Lanza. Visual software evolution reconstruction. J. Softw.
Maint. Evol., 21:217–232, May 2009.

21 Stephan Diehl. Software Visualization: Visualizing the Structure, Behaviour, and Evolution
of Software. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

22 Stéphane Ducasse, Simon Denier, Françoise Balmas, Alexandre Bergel, Jannik Laval,
Karine Mordal-Manet, and Fabrice Bellingard. Visualization of Practices and Metrics
(Workpackage 1.2). Research report, Squale Consortium, March 2010.

23 Slawomir Duszynski, Jens Knodel, and Mikael Lindvall. Save: Software architecture vi-
sualization and evaluation. In Andreas Winter, Rudolf Ferenc, and Jens Knodel, editors,
CSMR, pages 323–324. IEEE, 2009.

24 Holger Eichelberger. Aesthetics and automatic layout of UML class diagrams. PhD thesis,
UniversitÃďt WÃĳrzburg, Am Hubland, 97074 WÃĳrzburg, 2005.

25 Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr. Seesoft – a tool for visualizing
line oriented software statistics. In Stuart K. Card, Jock D. Mackinlay, and Ben Shnei-
derman, editors, Readings in information visualization, pages 419–430. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

26 Jean-Daniel Fekete, David Wang, Niem Dang, and Catherine Plaisant. Overlaying graph
links on treemaps. IEEE Symposium on Information Visualization Conference Com-
pendium (demonstration), Oct 2003.

27 Ronald B. Finkbine, Ph.D. Metrics and models in software quality engineering. SIGSOFT
Softw. Eng. Notes, 21:89–, January 1996.

28 UML Forum. Uml faq @ONLINE, December 2011.
29 Alexander Fronk, Armin Bruckhoff, and Michael Kern. 3d visualisation of code structures

in java software systems. In Proceedings of the 2006 ACM symposium on Software visual-
ization, SoftVis ’06, pages 145–146, New York, NY, USA, 2006. ACM.

30 Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based on
product release history. In Proceedings of the International Conference on Software Main-
tenance, ICSM ’98, pages 190–, Washington, DC, USA, 1998. IEEE Computer Society.

31 K Gallagher, A Hatch, and M Munro. Software architecture visualization : an evaluation
framework and its application. IEEE Transactions on Software Engineering, 34(2):260–270,
2008.

32 Y. Ghanam and S. Carpendale. A survey paper on software architecture visualization.
Technical Report, University of Calgary, pages 1–10, June 2008.

33 Hamish Graham, Hong Yul Yang, and Rebecca Berrigan. A solar system metaphor for 3d vi-
sualisation of object oriented software metrics. In Proceedings of the 2004 Australasian sym-
posium on Information Visualisation – Volume 35, APVis ’04, pages 53–59, Darlinghurst,
Australia, Australia, 2004. Australian Computer Society, Inc.

34 A. Hatch. Software Architecture Visualization. Phd dissertation, University of Durham,
2004.

35 D. Holten, R. Vliegen, and J. J. van Wijk. Visual realism for the visualization of software
metrics. In Proceedings of the 3rd IEEE International Workshop on Visualizing Software
for Understanding and Analysis, VISSOFT ’05, pages 12–, Washington, DC, USA, 2005.
IEEE Computer Society.

36 Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in hier-
archical data. IEEE Transactions on Visualization and Computer Graphics, 12:741–748,
September 2006.

VLUDS’11



40 Visualization and Evolution of Software Architectures

37 Danny Holten and Jarke J. van Wijk. Visual comparison of hierarchically organized data.
Computer Graphics Forum, 27(3):759–766, 2008.

38 Warwick Irwin and Neville Churcher. Object oriented metrics: Precision tools and con-
figurable visualisations. In Proceedings of the 9th International Symposium on Software
Metrics, pages 112–, Washington, DC, USA, 2003. IEEE Computer Society.

39 Brian Johnson and Ben Shneiderman. Tree-maps: a space-filling approach to the visu-
alization of hierarchical information structures. In Proceedings of the 2nd conference on
Visualization ’91, VIS ’91, pages 284–291, Los Alamitos, CA, USA, 1991. IEEE Computer
Society Press.

40 T.A. Keahey. A brief tour of nonlinear magnification @ONLINE, November 2011.
41 Andreas Kerren, Achim Ebert, and Jörg Meyer, editors. Human-Centered Visualization

Environments. Lecture Notes in Computer Science, LNCS. Springer-Verlag Gmbh, 1 edition,
2007.

42 Andreas Kerren and Ilir Jusufi. Novel visual representations for software metrics using 3d
and animation. In Jürgen Münch and Peter Liggesmeyer, editors, Software Engineering
(Workshops), volume 150 of LNI, pages 147–154. GI, 2009.

43 John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyper-
bolic geometry for visualizing large hierarchies. In Proceedings of the SIGCHI conference
on Human factors in computing systems, CHI ’95, pages 401–408, New York, NY, USA,
1995. ACM Press/Addison-Wesley Publishing Co.

44 Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. Exploring the evolution of soft-
ware quality with animated visualization. In Proceedings of the 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing, VLHCC ’08, pages 13–20, Washington,
DC, USA, 2008. IEEE Computer Society.

45 Michele Lanza. The evolution matrix: recovering software evolution using software visu-
alization techniques. In Proceedings of the 4th International Workshop on Principles of
Software Evolution, IWPSE ’01, pages 37–42, New York, NY, USA, 2001. ACM.

46 Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual approach to
reverse engineering. IEEE Trans. Softw. Eng., 29:782–795, September 2003.

47 M. M. Lehman and L. A. Belady, editors. Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego, CA, USA, 1985.

48 J.D. Mackinlay. Opportunities for information visualization. Computer Graphics and Ap-
plications, IEEE, 20(1):22 –23, jan/feb 2000.

49 Andrian Marcus, Louis Feng, and Jonathan I. Maletic. Comprehension of software analy-
sis data using 3d visualization. In Proceedings of the 11th IEEE International Workshop
on Program Comprehension, IWPC ’03, pages 105–, Washington, DC, USA, 2003. IEEE
Computer Society.

50 Andrew McNair, Daniel M. German, and Jens Weber-Jahnke. Visualizing software architec-
ture evolution using change-sets. In Proceedings of the 14th Working Conference on Reverse
Engineering, pages 130–139, Washington, DC, USA, 2007. IEEE Computer Society.

51 T Panas, R Berrigan, and J Grundy. A 3d metaphor for software production visualization.
Proceedings on Seventh International Conference on Information Visualization 2003 IV
2003, 314:314–319, 2003.

52 Thomas Panas, Thomas Epperly, Daniel Quinlan, Andreas Saebjornsen, and Richard
Vuduc. Communicating software architecture using a unified single-view visualization. In
Proceedings of the 12th IEEE International Conference on Engineering Complex Computer
Systems, pages 217–228, Washington, DC, USA, 2007. IEEE Computer Society.

53 M. Petre and E. Quincey. A gentle overview of software visualization. PPIG News Letter,
pages 1–10, September 2006.



T. Khan, H. Barthel, A. Ebert, and P. Liggesmeier 41

54 Martin Pinzger, Harald Gall, Michael Fischer, and Michele Lanza. Visualizing multiple
evolution metrics. In Proceedings of the 2005 ACM symposium on Software visualization,
SoftVis ’05, pages 67–75, New York, NY, USA, 2005. ACM.

55 Martin Pinzger, Katja Graefenhain, Patrick Knab, and Harald C. Gall. A tool for visual
understanding of source code dependencies. In Proceedings of the 2008 The 16th IEEE In-
ternational Conference on Program Comprehension, ICPC ’08, pages 254–259, Washington,
DC, USA, 2008. IEEE Computer Society.

56 Helen C. Purchase, Jo-Anne Allder, and David A. Carrington. User preference of graph
layout aesthetics: A uml study. In Proceedings of the 8th International Symposium on
Graph Drawing, GD ’00, pages 5–18, London, UK, 2001. Springer-Verlag.

57 Werner Randelshofer. Visualization of large tree structures @ONLINE, November 2011.
58 Jun Rekimoto and Mark Green. The information cube: Using transparency in 3d infor-

mation visualization. In In Proceedings of the Third Annual Workshop on Information
Technologies & Systems (WITS’93, pages 125–132, 1993.

59 Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency models
to manage complex software architecture. In Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
OOPSLA ’05, pages 167–176, New York, NY, USA, 2005. ACM.

60 C. Russo dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud, and J. P. Paris. Metaphor-
aware 3d navigation. In Proceedings of the IEEE Symposium on Information Vizualization
2000, INFOVIS ’00, pages 155–, Washington, DC, USA, 2000. IEEE Computer Society.

61 Amit P. Sawant and Naveen Bali. Diffarchviz: A tool to visualize correspondence between
multiple representations of a software architecture. Visualizing Software for Understanding
and Analysis, International Workshop on, 0:121–128, 2007.

62 Hans-Jorg Schulz, Steffen Hadlak, and Heidrun Schumann. The design space of implicit
hierarchy visualization: A survey. IEEE Transactions on Visualization and Computer
Graphics, 17:393–411, April 2011.

63 Hans-Jorg Schulz and Heidrun Schumann. Visualizing graphs – a generalized view. In
Proceedings of the conference on Information Visualization, pages 166–173, Washington,
DC, USA, 2006. IEEE Computer Society.

64 John Stasko. An evaluation of space-filling information visualizations for depicting hierar-
chical structures. Int. J. Hum.-Comput. Stud., 53:663–694, November 2000.

65 John Stasko and Eugene Zhang. Focus+context display and navigation techniques for en-
hancing radial, space-filling hierarchy visualizations. In Proceedings of the IEEE Symposium
on Information Vizualization 2000, INFOVIS ’00, pages 57–, Washington, DC, USA, 2000.
IEEE Computer Society.

66 Frank Steinbrückner and Claus Lewerentz. Representing development history in software
cities. In Proceedings of the 5th international symposium on Software visualization, SOFT-
VIS ’10, pages 193–202, New York, NY, USA, 2010. ACM.

67 Margaret-Anne Storey, Casey Best, and Jeff Michaud. Shrimp views: An interactive envi-
ronment for exploring java programs. The 9th International Workshop on Program Com-
prehension, 0:111–112, 2001.

68 Dabo Sun and Kenny Wong. On evaluating the layout of uml class diagrams for program
comprehension. In Proceedings of the 13th International Workshop on Program Compre-
hension, pages 317–326, Washington, DC, USA, 2005. IEEE Computer Society.

69 Alexandru Telea and David Auber. Code flows: Visualizing structural evolution of source
code. Comput. Graph. Forum, 27(3):831–838, 2008.

70 Alexandru Telea, Lucian Voinea, and Hans Sassenburg. Visual tools for software architec-
ture understanding: A stakeholder perspective. IEEE Software, 27:46–53, 2010.

VLUDS’11



42 Visualization and Evolution of Software Architectures

71 M. Termeer, C. F. J. Lange, A. Telea, and M. R. V. Chaudron. Visual exploration of com-
bined architectural and metric information. In Proceedings of the 3rd IEEE International
Workshop on Visualizing Software for Understanding and Analysis, VISSOFT ’05, pages
11–, Washington, DC, USA, 2005. IEEE Computer Society.

72 Lucian Voinea and Alexandru Telea. Multiscale and multivariate visualizations of software
evolution. In Proceedings of the 2006 ACM symposium on Software visualization, SoftVis
’06, pages 115–124, New York, NY, USA, 2006. ACM.

73 Lucian Voinea, Alexandru Telea, and Michel R. V. Chaudron. Version-centric visualization
of code evolution. In Ken Brodlie, David J. Duke, and Kenneth I. Joy, editors, EuroVis,
pages 223–230. Eurographics Association, 2005.

74 Weixin Wang, Hui Wang, Guozhong Dai, and Hongan Wang. Visualization of large hierar-
chical data by circle packing. In Proceedings of the SIGCHI conference on Human Factors
in computing systems, CHI ’06, pages 517–520, New York, NY, USA, 2006. ACM.

75 Colin Ware. Information visualization: perception for design. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2000.

76 Richard Wettel and Michele Lanza. Visualizing software systems as cities. In Jonathan I.
Maletic, Alexandru Telea, and Andrian Marcus, editors, VISSOFT, pages 92–99. IEEE
Computer Society, 2007.

77 Richard Wettel and Michele Lanza. Visual exploration of large-scale system evolution. In
Proceedings of the 2008 15th Working Conference on Reverse Engineering, pages 219–228,
Washington, DC, USA, 2008. IEEE Computer Society.

78 Dirk Zeckzer. Visualizing software entities using a matrix layout. In Proceedings of the
5th international symposium on Software visualization, SOFTVIS ’10, pages 207–208, New
York, NY, USA, 2010. ACM.


	Motivation
	Visualizing Software Architectures
	Architecture Representations
	Visualizing Relationships
	Visualizing Software Metrics

	Visualization of Architecture Evolution
	Visualizing Hierarchical Changes
	Visualizing Software Metrics Evolution

	Tools
	Conclusion

