
Online Transitivity Clustering of Biological Data
with Missing Values
Richard Röttger∗1,2, Christoph Kreutzer1, Thuy Duong Vu4,
Tobias Wittkop5, and Jan Baumbach1,2,3

1 Max Planck Institute for Informatics, Saarbrücken, Germany,
{roettger,ckreutzer,jbaumbac}@mpi-inf.mpg.de

2 Center for Bioinformatics, Saarbrücken, Germany
3 Cluster of Excellence on Multimodal Computing and Interaction, Center for

Bioinformatics, Saarland University, Saarbrücken, Germany
4 Bioinformatics group, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The

Netherlands, d.vu@cbs.knaw.nl
5 Buck Institute for Age Research, Navato, NV, USA,

twittkop@buckinstitute.org

Abstract
Motivation: Equipped with sophisticated biochemical measurement techniques we generate a
massive amount of biomedical data that needs to be analyzed computationally. One long-standing
challenge in automatic knowledge extraction is clustering. We seek to partition a set of objects
into groups such that the objects within the clusters share common traits. Usually, we have given
a similarity matrix computed from a pairwise similarity function. While many approaches for
biomedical data clustering exist, most methods neglect two important problems: (1) Computing
the similarity matrix might not be trivial but resource-intense. (2) A clustering algorithm itself
is not sufficient for the biologist, who needs an integrated online system capable of performing
preparative and follow-up tasks as well.
Results: Here, we present a significantly extended version of Transitivity Clustering. Our first
main contribution is its’ capability of dealing with missing values in the similarity matrix such
that we save time and memory. Hence, we reduce one main bottleneck of computing all pairwise
similarity values. We integrated this functionality into the Weighted Graph Cluster Editing
model underlying Transitivity Clustering. By means of identifying protein (super)families from
incomplete all-vs-all BLAST results we demonstrate the robustness of our approach. While most
tools concentrate on the partitioning process itself, we present a new, intuitive web interface
that aids with all important steps of a cluster analysis: (1) computing and post-processing of a
similarity matrix, (2) estimation of a meaningful density parameter, (3) clustering, (4) comparison
with given gold standards, and (5) fine-tuning of the clustering by varying the parameters.
Availability: Transitivity Clustering, the new Cost Matrix Creator, all used data sets as well
as an online documentation are online available at http://transclust.mmci.uni-saarland.de/.
Contact: roettger@mpi-inf.mpg.de

1998 ACM Subject Classification I.5.3 Clustering

Keywords and phrases Transitivity Clustering, Large Scale clustering, Missing Values, Web
Interface

Digital Object Identifier 10.4230/OASIcs.GCB.2012.57

∗ to whom correspondence should be addressed

© Richard Röttger, Christoph Kreutzer, Thuy Duong Vu, Tobias Wittkop, and Jan Baumbach;
licensed under Creative Commons License ND

German Conference on Bioinformatics 2012 (GCB’12).
Editors: S. Böcker, F. Hufsky, K. Scheubert, J. Schleicher, S. Schuster; pp. 57–68

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
{roettger, ckreutzer, jbaumbac}@mpi-inf.mpg.de
d.vu@cbs.knaw.nl
twittkop@buckinstitute.org
http://transclust.mmci.uni-saarland.de/
roettger@mpi-inf.mpg.de
http://dx.doi.org/10.4230/OASIcs.GCB.2012.57
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

58 Online Transitivity Clustering of Biological Data with Missing Values

1 Introduction

Sophisticated biomedical measurement techniques generate a massive amount of data that
needs to be analyzed efficiently. One example is the availability of next-generation sequencing
(NGS) technology that provided us with almost two thousand whole-genome sequences [23].
This data is easily accessible for any researcher in the world-wide scientific community.
However, the sequences are worthless without annotations of the biological meaningful
elements, i.e. genes and non-coding functional elements, such as microRNAs. Analyzing
millions of such DNA sequences individually to determine their function is an impossible task
without the aid of specific bioinformatics tools [3, 25]. Just to give some numbers, the NCBI
database hosts data about approximately 5.2 million bacterial and 3.2 million eukaryotic
genes [22].

Although it appears that we have finally arrived in the post-genome era we still lack
fundamental knowledge about crucial genetic programs, the interplay of genes and proteins as
well as their biochemical regulation networks. We know very little about how cells, organs and
tissues regulate survival, reproduction, movement, etc. in response to altering environmental
conditions [20]. Therefore, we use so-called OMICS technology to generate even more data
in order to unravel this crucial knowledge about interactions of all kinds of biological entities.
The database content of the Gene Expression Omnibus (GEO) with data on more than
630,000 samples may exemplify this trend for the case of gene expression data [8].

Analyzing this impressive amount of data manually is infeasible. In order to draw
conclusions from such huge data sets successfully, we often start with compressing the raw
data such that the contained information becomes visible. One typical computational tool
is clustering [2]. Clustering is a computer science method that partitions data objects into
groups such that the objects share common traits, i.e. the elements within the groups
are more similar to each other than to objects from other groups. In bioinformatics, for
many tasks we have given a pair-wise similarity function s(u, v) that assigns each pair of
objects (u and v) a similarity value [12]. The corresponding similarity matrix serves as
input for many computational biology clustering problems: protein complex detection from
protein-protein interaction networks, cancer sub-typing from gene expression data and protein
homology detection from all-vs.-all BLAST [1] results. In our paper we exemplarily focus on
the later data type: protein sequence similarities utilized for finding clusters of potentially
homologous proteins. Various tools have been developed for this purpose: k-means, Affinity
Propagation, Markov Clustering, and FORCE as well as Transitivity Clustering, to name
just a few [11, 10, 9, 16, 27].

Here, we concentrate on the problem of finding clusters of homologous proteins with
Transitivity Clustering. While this task was extensively studied and published before (refer
to [26, 28, 29]), we will focus on two sideline challenges arousing in this context: (1) running
time aspects for computing the similarity matrix and (2) online access to a web interface
that allows for performing all necessary steps of a typical cluster analysis efficiently without
the need for downloading, installing and running the software tool on the local desktop PC.
While there exist clustering tools, which allow for clustering with incomplete information,
they mainly focus on repairing noise and incompleteness due to the underlying assays (e.g.
microarray studies or patient data collections) [13, 7, 18, 21]. Here, we present a systematic
approach of saving runtime and memory by omitting the calculation of a share of the similarity
values for homology detection while still using the well accepted standard NCBI BLAST.
This approach allows the user to save time and enables large-scale studies with almost no
drawbacks in the quality of the clustering results. Furthermore, the web front-end offers

R. Röttger, C. Kreutzer, T.D. Vu, T. Wittkop, and J. Baumbach 59

easy-to-use interfaces to typical data pre-processing, clustering as well as post-processing
tasks. In the following, we briefly describe our previous work on Transitivity Clustering
followed by a summary of our new contributions. Afterwards, we describe our approach in
detail. Finally, we will evaluate our improved method and discuss its’ robustness for protein
homology detection.

1.1 Our previous work

We recently developed Transitivity Clustering, an integrated software package dedicated
to partitioning biomedical data sets. In previous publications, we studied and evaluated
its’ performance for remote homology detection and protein (super)family reconstruction
[27, 28] as well as protein complex identification [29]. Based on gold standard data from
Paccanaro et al. [16] and Brown et al. [5] we demonstrated that Transitivity Clustering
performs equally well or outperforms other popular bioinformatics clustering tools for these
tasks. It is based on exact and heuristic algorithms for solving the Weighted Transitive Graph
Projection (WTGP) problem [19]. Given a similarity matrix and a user-given threshold
(density parameter), we compute a cost graph by removing all edges below the threshold.
Afterwards, we make the graph transitive by adding/deleting edges with respect to a cost
function that we minimize. Finally, we report the emerging cliques as clusters (see Definitions
in the Methods section). As demonstrated in [29], the average similarity within the clusters
is above the threshold while the average similarity between elements from different clusters
is below the density cutoff. So far, Transitivity Clustering comes as stand-alone tool, Java
library and as Cytoscape [24] plugin.

1.2 Our new contributions

However, Transitivity Clustering as well as most other approaches neglect two important
problems: First, computing the similarity matrix might not be trivial but resource-intense
(main memory, running time, costs for allocating appropriate data sets, etc.). Second, a
clustering algorithm itself is not sufficient for the biomedical researcher, who needs an
integrated online system capable of performing preparative and follow-up tasks as well. The
goal of Transitivity Clustering is to assist the user through the entire clustering pipeline. We
present a significantly extended version of Transitivity Clustering:

1. Missing similarity values: We added the capability of dealing with missing values in the
similarity matrix to the Transitivity Clustering framework such that we may save time
and memory. Hence, we reduce one main bottleneck of computing all pairwise similarity
values. We will describe how we integrated this functionality into the underlying Weighted
Graph Cluster Editing model such that we still achieve accurate results.

2. Evaluation of the robustness: We use the gold standard data from Brown et al. [5], as
well as a larger data set containing the protein sequences of 27 different corynebacteria,
to study the robustness of our extended approach. We utilize all-vs.-all BLAST results
and remove a varying amount of similarity values based on a block-wise scheme. We
study how this affects the accuracy of the clustering performance as well as the running
time improvement.

3. Web interface: We present a new, intuitive web interface that aids with all important
steps of a typical cluster analysis. We give examples and describe a workflow through the
interface.

GCB 2012

60 Online Transitivity Clustering of Biological Data with Missing Values

2 Methods

2.1 Extension of the Weighted Transitive Graph Projection model
Given a set of objects V , a threshold t ∈ R, and a pairwise similarity function sim:

(
V
2
)
→ R,

we define a graph G as

G = (V, E); E =
{

uv ∈
(

V

2

)
; sim(uv) > t

}
.

The WTGP problems is now defined as the determination of a transitive graph G′ = (V, E′),
such that there exists no other transitive graph G′′ = (V, E′′), with cost (G→ G′′) <

cost (G→ G′). The costs for edge additions/deletions are defined as

cost (G→ G′) :=
∑

uv∈E\E′

|sim (uv)− t|

︸ ︷︷ ︸
deletion cost

+
∑

uv∈E′\E

|sim (uv)− t|

︸ ︷︷ ︸
addition cost

.

This problem is NP-hard [14] and APX-hard [6] and we tackle it with a combination of exact
and heuristic algorithms (refer to [19, 27]). This problem is also known as “Cluster Editing”
and several other exact approaches are mentioned in literature. For an overview of exact
methods refer to [4].

Now we need to integrate a possibility to deal with missing edges in the graph G. Therefore,
we slightly adjust the underlying similarity function.

sim (uv) :=
{
∈ R if similarity available
t if missing value

The similarity of the missing values is set to the user-given threshold t. As a result, the costs
for adding/remove an edge with a missing value is

|sim (uv)− t|︸ ︷︷ ︸
deletion cost

= |sim (uv)− t|︸ ︷︷ ︸
addition cost

= |t− t| = 0

In consequence, the overall costs for transforming a graph G into the transitive G′ is not
affected by the missing values:

cost (missing values) =
∑

uv∈E\E′

|sim (uv)− t| =
∑

uv∈E\E′

|t− t| = 0

In summary, since the missing values have no information content we adapted our
approach such that they do not impact the clustering process. The remaining edges with
existing similarity values have to account for the clustering result. We are confident that
this does not affect the clustering quality much, as for most transitive most of the similarity
information is redundant anyways. Thus, whenever we find a cluster with high intra-cluster
similarity it is likely that missing similarities within this cluster are comparably high as well.
Our transitivity model is perfectly suited for this key feature, as the missing values do not
influence the clustering process itself. Thus, the remaining high similarities are capable of
forming the final cluster.

2.2 Costmatrix creation with missing values
With the presented method, the user is able to include missing values in the similarity input
files for Transitivity Clustering. In comparison to available methods [13, 7, 18, 21], we not

R. Röttger, C. Kreutzer, T.D. Vu, T. Wittkop, and J. Baumbach 61

only allow for missing values, which are repaired either a priori or during the clustering
process (in our case by exploiting the transitivity properties of the clusters), but we also
provide the user with the possibility to systematically benefit from missing values in order to
save calculation time of the similarity file and resulting cost matrices.

In this paper we concentrate on protein homology detection based on a BLAST all-vs-all
run. In our approach, we do not use missing values on randomly chosen positions but omit
the calculation of entire blocks of the similarity file. Therefore, we have developed the new
CostMatrixCreator (CMC) assisting the user in creating a similarity file with missing values.
First, a BLAST database for all protein sequences is created. Afterwards, only a certain
percentage of the proteins are BLASTed against the database. Figure 1 depicts this process.
CMC can either choose these proteins randomly (as in our evaluation) or the user can provide
a manually created list if the user wants to incorporate prior knowledge. Consequently, we
compute similarity values for only those pairs of sequences where at least one of them is in
the list of proteins compared against the database. The similarities for the other sequence
pairs are missing. That keeps the similarity file small, as the missing values are not required
to be explicitly marked as missing. The only additional information needed are the IDs
of the proteins left out. Note that this procedure distinguishes between missing similarity
values due the BLAST cut-off and missing values due to an omitted comparison. The missing
values resulting from the BLAST cut-off indeed carry information: They are very dissimilar
and are set to a minimum value. The missing values resulting from omitted comparisons do
not carry any information and are set to the density threshold.

This approach has four major advantages: (1) The user is still able to utilize the well
accepted standard BLAST. (2) The user saves the calculation time for the missing similarities.
(3) As the missing values are not stored explicitly, which reduces the memory consumption
of the result file drastically. (4) The created cost matrices can afterwards be analyzed with
the standard Transitivity Clustering workflow as before. Also note that our approach would
also work with any other similarity function than BLAST as well.

2.3 Data sets
We utilize the gold standard data set from Brown et al. for studying the effect of missing
values to the clustering performance, i.e. accuracy and running time. The data set comprises
of five enzyme superfamilies (amidohydrolase, crotonase, enolase, haloacid dehalogenase,
and vicinal oxygen chelate) with different levels of sequence diversity. On the one hand,
the enolase and crotonase superfamilies contain a very discrete set of sequences, i.e. high
sequence similarities. The other extreme are the haloacid dehalogenase and parts of the
amidohydrolase, which include a very divers set of sequences with a comparably high number
of outliers. Therefore, in congruence with Brown et al., this set of protein sequences serves
as an evaluation data set for clustering tools.

The five superfamilies consist of 4,887 proteins that are further divided into 91 families.
Each of the amino acid sequences is either annotated to a gold or a silver standard family.
Gold standard families only contain sequences with experimentally determined functions,
while silver standard families are less restrictive. As done in previous studies, when we
compared Transitivity Clustering to other approaches [27], we only used the 866 sequences
that are assigned to a gold standard family.

As the data set from Brown et al. resembles a rather small problem instance, we can not
expect huge improvements in terms of reduced computational time. Thus, we also apply our
methods to a larger remote homology detection data set consisting of 66,000 proteins of 27
different corynebacteria. In the remainder of this manuscript, we refer to this data set as the
“Coryne-Data”.

GCB 2012

62 Online Transitivity Clustering of Biological Data with Missing Values

Figure 1 Illustration of the block-based scheme for saving similarity value computation time. For
illustration reasons, we arbitrarily ordered the data to form six blocks. Now, only the data from
block three and six are selected to be BLASTed against the database. The remaining values in the
similarity matrix are displayed as "?". These are the steps used by the CostMatrixCreator to create
cost matrices for Transitivity Clustering.

2.4 Evaluation
We use the F-measure for comparing the results of Transitivity Clustering to the above
described gold standard. Essentially, the F-measure is an equal combination of precision
and recall. It gives a value between 0 and 1, where values near 0 mean "bad" results and a
value of 1 means a perfect overlap between clustering result and gold standard, i.e. protein
families in our case.

Let C = {C1, . . . , Cn} be the clusters obtained by Transitivity Clustering and K =
{K1, . . . , Km} be the gold standard. Furthermore let T = (ti,j) ∈ Nm×n denote the matrix
where each entry is the number of common objects between Ki and Cj ,

ti,j := |{Ki ∩ Cj}|, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We follow the scheme of Paccanaro et al. [16] for computing the F-measure for a clustering
C against a reference clustering K in the following way:

F-measure(Ki) = max
1≤j≤n

2 · ti,j

|Cj |+ |Ki|
.

The overall F-measure is then defined as

F-measure(C, K) = 1∑m
i=1 |Ki|

m∑
i=1

(|Ki| · F-measure(Ki))

= 1∑m
i=1 |Ki|

m∑
i=1

(
|Ki| · max

1≤j≤n

2 · ti,j

|Cj |+ |Ki|

)
.

R. Röttger, C. Kreutzer, T.D. Vu, T. Wittkop, and J. Baumbach 63

Note that we refer to the F-measure when we use the term “accuray”.
In order to use the above described Brown et al. gold standard data set we first downloaded

all amino acid sequences for all proteins and BLASTed them all-vs.-all (E-value threshold
0.01). We furthermore downloaded the corresponding protein family annotations. For the
Coryne-Data, we obtained all protein sequences of all 27 fully-sequenced corynebacteria from
the NCBI website. As there is no gold standard for this data set, we performed an all-vs.-all
BLAST and performed a TC clustering with a threshold of 20 in order to produce our own
"gold standard". Anyway, we may use this data set for studying the effect of missing values
compared a full-coverage similarity matrix and for evaluating run time savings.

For creating a similarity matrix with missing values we utilize the new CostMatrixCreator
to construct a BLAST database containing all proteins of a dataset. Here, only a certain
percentage of the available proteins are compared to the database (again with E-value
threshold 0.01). Figure 1 depicts this process. For systematic evaluation, we vary the
coverage from 1% to 90% and create the cost matrices accordingly. We call this method the
“block-based scheme”, as we exclude no single entries from the similarity matrix calculation
but entire blocks or rather stripes (Figure 1 illustrates that as well).

The emerging cost matrices are then used to perform the clustering with TC. For each
clustering we compute the accuracy (F-Measure) and measure the runtime. The running
time for the entire clustering is the time for CMC plus the successive clustering process. In
order to assess the variability (robustness) of the best threshold, we clustered both data sets
with different thresholds and always picked (and reported) the threshold leading to the best
F-measure.

2.5 Web interface

TransClust, our Transitivity Clustering implementation, and the new CostMatrixCreator can
be downloaded as stand-alone Java programs. Nevertheless, in order to increase the accessib-
ility of the presented tools, a web interface helps in attracting more users. Especially non
computer experts benefit from the now obsolete step of an installation process. Furthermore,
the results can be accessed from any computer with Internet connection, which allows for
an optimized workflow and eases collaborations. For the web interface, we mainly used the
following libraries and programming languages:

LAP: We use Linux, Apache, and PHP to generate the HTML code, for data handling
and for executing the Transitivity Clustering software.

JavaScript and jQuery: jQuery is a JavaScript library under GPL or MIT license
that can be used to automate common tasks in web design. We make use of this for the
toggle switches that show/hide information such as advanced options for different steps in
the clustering process. We also used JavaScript to check input forms for correctness and for
changing contents of input forms, when using sliders, for instance.

jQueryUI: jQueryUI is an extension of jQuery specifically designed for providing exten-
ded functionality such as widgets and animations. We use jQueryUI for the tabs that can be
used to toggle the different outputs and for the sliders that can be used to change different
input parameters.

Highcharts: Highcharts is a charting library from Highsoft Solutions under the Creative
Commons Attribution-NonCommercial 3.0 License (free for non-academics). We use to create
the graphical representations of the results. We use jQuery/JavaScript to process the output
files and feed them to Highcharts.

The new web interface is publicly available online at http://transclust.mmci.uni-saarland.de/.

GCB 2012

http://transclust.mmci.uni-saarland.de/

64 Online Transitivity Clustering of Biological Data with Missing Values

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

F-
M

e
a
su

re

coverage (%)

20

20

21

21
20 20 21 20 20 20 20 20

(b)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 10 20 30 40 50 60 70 80 90 100
 200

 300

 400

 500

 600

 700

 800

 900

 1000

ti
m

e
 (

B
LA

S
T
)

/
s

ti
m

e
 (

cl
u
st

e
ri

n
g
)

/
s

coverage (%)

BLAST runtime
Clustering with CMC

(c)

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 10 20 30 40 50 60 70 80 90 100

F-
M

e
a
su

re

coverage (%)

24

23
24

22 22

23

23 23 23 23

(d)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70 80 90 100
 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

ti
m

e
 (

B
LA

S
T
)

/
s

ti
m

e
 (

cl
u
st

e
ri

n
g
)

/
s

coverage (%)

BLAST runtime
Clustering with CMC

Figure 2 The plots depict the runtime and accuracy of both datasets, Coryne-Data is on the
top ((a) and (b)), the data set of Brown et al. on the bottom ((c) and (d)). Figures (a) and (c)
display the F-measure as a function of the coverage. The numbers on the line give the threshold,
which yielded to the corresponding F-meassure. Figures (b) and (d) give two runtime measures,
again as a function of the coverage: red displays the time consumed for calculating the BLAST
results, green depicts the runtime for the clustering plus CMC. Note that both runtime plots have
different timescales displayed on the left for BLAST and on the right for clustering respectively.

3 Results and discussion

3.1 Clustering with missing values
We first investigate the robustness of our approach by comparing the F-Measure for different
percentages of missing values (inverse similarity coverage). The results are depicted in Figure
2. We can see that even for a low coverage (high amount of missing values) the F-Measure
only drops by a few percent when comparing against the protein families from Brown et al.,
as well as for the Coryne-Data. Furthermore, it is important to notice, that the threshold
delivering the best F-measure is very stable for all coverages. That means in conclusion,
that all methods for finding a good threshold (e.g. using a smaller gold standard dataset for
parameter training or utilizing the same threshold from a comparable study) can be applied
for clustering with missing values as well.

Running time scales as expected: BLAST computing times grow linearly with the number
of sequence comparisons while the runtime for the clustering process is essentially constant
with little variation.

Figure 3 plots the average runtime of the cost matrix creation CMC with missing values
against the F-Measures. It shows that with our approach the runtime can be drastically
reduced, while the drop of the F-Measure is comparably moderate, i.e. less than 10%
F-Measure drop for about 70% runtime saving. All runtimes are based on a single thread

R. Röttger, C. Kreutzer, T.D. Vu, T. Wittkop, and J. Baumbach 65

(a)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
ti

m
e
 /

 s

F-measure

(b)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0.86 0.87 0.88 0.89 0.9 0.91 0.92

R
u
n
ti

m
e
 /

 s

F-measure

Figure 3 Runtime of CMC as a function of the F-Measure for (a) Coryne-Data and (b) Brown
et al. dataset. Due to the small size of the Brown et al. dataset and the resulting short BLAST
runs, we observe a certain variation of the clustering runtime. For the larger dataset, this is not
observed anymore.

execution of BLAST and CMC. Note, that CMC also supports parallel execution, which may
further reduce the runtime.

3.2 Web interface

The clustering process with the web interface is divided into three steps. In the first step, the
user provides the input (cost-matrix file, similarity file, or BLAST and FASTA files). In the
second step, a review of the given similarities is presented as a similarity distribution plot.
The user may then specify further clustering options, such as the clustering threshold(s) or
a gold standard file to compare against, if available/desired. In the third step the results
are presented as intra/inter-cluster similarity distribution graphs. The best way, however,
to evaluate our new web interface is navigating with your browser to the new Transitivity
Clustering web site. It is easy-to-use and provides start-to-end solutions for each important
step of a typical cluster analysis. Briefly, the new interface now assists with the following
typical data processing tasks: (1) computing and post-processing of a similarity matrix, (2)
estimation of a meaningful density parameter, (3) running the clustering process itself, (4)
automatic comparison with given gold standards, and (5) fine-tuning of the clustering by
varying the threshold and by visualizing inter-cluster vs. intra-cluster similarity distributions.

4 Conclusion and outlook

To sum up, we directly integrated the concept of missing similarity values with the weighted
transitive graph projection model of Transitivity Clustering in a straight forward fashion. We
demonstrated the power of the approach for protein homology detection based on all-vs.-all
BLAST results. The accuracy only drops slightly while run time for computing the similarity
matrix can be reduced linearly, with the presented tool. The new web interface saves time
and effort with download, configuration and installation.

The new CostMatrixCreator is a JAVA implementation and supports the user with the
creation of cost matrices with missing values step by step. Note that we do not use an own
BLAST implementation but we execute the standard NCBI Blast binaries from within CMC.
Thus our CMC implementation could easily be adapted for performing the necessary steps
with any kind of similarity function. The resulting cost matrices can finally be included

GCB 2012

66 Online Transitivity Clustering of Biological Data with Missing Values

easily into the normal clustering workflow by using our new Transitivity Clustering web
interface, for instance.

In the future, we aim to apply our method to more run time intense similarity computation
problems (3D structures of proteins, for instance). We will also integrate the new version of
Transitivity Clustering into clusterMaker [15]. The most important future work, however, is
to evaluate our method on more data sets. We are working closely together with the SFLD
(Structure-Function Linkage Database) team [17] to make this possible in the near future.
Another example for future applications is huge gene expression data sets.

Acknowledgement

JB and RR are grateful for financial support from the Cluster of Excellence on Multimodal
Computing and Interaction of the German Research Foundation (DFG). RR’s work was also
supported by the International Max Planck Research School in Computer Science. JB, RR
and CK wish to thank the Center for Bioinformatics Saar (ZBI).

References
1 S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J.

Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

2 Bill Andreopoulos, Aijun An, Xiaogang Wang, and Michael Schroeder. A roadmap of clus-
tering algorithms: finding a match for a biomedical application. Briefing in Bioinformatics,
Feb 2009.

3 Enrique Blanco and Josep F Abril. Computational gene annotation in new genome assem-
blies using geneid. Methods Mol Biol, 537:243–61, 2009.

4 S. Böcker, S. Briesemeister, and G.W. Klau. Exact algorithms for cluster editing: Evalu-
ation and experiments. Algorithmica, 60(2):316–334, 2011.

5 Shoshana D Brown, John A Gerlt, Jennifer L Seffernick, and Patricia C Babbitt. A gold
standard set of mechanistically diverse enzyme superfamilies. Genome Biology, 7(1):R8,
2006.

6 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with qualitative
information. Journal of Computer and System Sciences, 71:360–383, 2003.

7 S. Dubnov, R. El-Yaniv, Y. Gdalyahu, E. Schneidman, N. Tishby, and G. Yona. A new non-
parametric pairwise clustering algorithm based on iterative estimation of distance profiles.
Machine Learning, 47(1):35–61, 2002.

8 Ron Edgar, Michael Domrachev, and Alex E Lash. Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res, 30(1):207–10, Jan
2002.

9 A. J. Enright, S. Van Dongen, and C. A. Ouzounis. An efficient algorithm for large-scale
detection of protein families. Nucleic Acids Research, 30(7):1575–1584, Apr 2002.

10 A. J. Enright and C. A. Ouzounis. GeneRAGE: a robust algorithm for sequence clustering
and domain detection. Bioinformatics, 16(5):451–457, May 2000.

11 B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science,
315(5814):972–976, 2007.

12 John A. Hartigan. Clustering Algorithms. Wiley, 1975.
13 Dae-Won Kim, Ki-Young Lee, Kwang H Lee, and Doheon Lee. Towards clustering of

incomplete microarray data without the use of imputation. Bioinformatics, 23(1):107–113,
Jan 2007.

R. Röttger, C. Kreutzer, T.D. Vu, T. Wittkop, and J. Baumbach 67

14 Mirko Křivánek and Jaroslav Morávek. NP-hard problems in hierarchical-tree clustering.
Acta Informatica, 23(3):311–323, 1986.

15 John H Morris, Leonard Apeltsin, Aaron M Newman, Jan Baumbach, Tobias Wittkop,
Gang Su, Gary D Bader, and Thomas E Ferrin. clustermaker: a multi-algorithm clustering
plugin for cytoscape. BMC Bioinformatics, 12(1):436, Nov 2011.

16 A. Paccanaro, J. A. Casbon, and M. A. Saqi. Spectral clustering of protein sequences.
Nucleic Acids Research, 34(5):1571–1580, 2006.

17 Scott C-H Pegg, Shoshana D Brown, Sunil Ojha, Jennifer Seffernick, Elaine C Meng,
John H Morris, Patricia J Chang, Conrad C Huang, Thomas E Ferrin, and Patricia C
Babbitt. Leveraging enzyme structure-function relationships for functional inference and
experimental design: the structure-function linkage database. Biochemistry, 45(8):2545–55,
Feb 2006.

18 J. Poland and T. Zeugmann. Clustering pairwise distances with missing data: Maximum
cuts versus normalized cuts. pages 197–208, 2006.

19 Sven Rahmann, Tobias Wittkop, Jan Baumbach, Marcel Martin, Anke Truss, and Se-
bastian Böcker. Exact and heuristic algorithms for weighted cluster editing. Comput Syst
Bioinformatics Conf, 6:391–401, 2007.

20 Richard Röttger, Ulrich Rückert, Jan Taubert, and Jan Baumbach. Towards the size of
gene regulatory networks – how little do we actually know? IEEE/ACM Transactions on
Computational Biology and Bioinformatics, in press, 2012.

21 M. Sarkar and T. Y. Leong. Fuzzy k-means clustering with missing values. Proc AMIA
Symp, pages 588–592, 2001.

22 Eric W Sayers, Tanya Barrett, Dennis A Benson, Evan Bolton, Stephen H Bryant, Kathi
Canese, Vyacheslav Chetvernin, Deanna M Church, Michael DiCuccio, Scott Federhen, Mi-
chael Feolo, Ian M Fingerman, Lewis Y Geer, Wolfgang Helmberg, Yuri Kapustin, David
Landsman, David J Lipman, Zhiyong Lu, Thomas L Madden, Tom Madej, Donna R Ma-
glott, Aron Marchler-Bauer, Vadim Miller, Ilene Mizrachi, James Ostell, Anna Panchenko,
Lon Phan, Kim D Pruitt, Gregory D Schuler, Edwin Sequeira, Stephen T Sherry, Martin
Shumway, Karl Sirotkin, Douglas Slotta, Alexandre Souvorov, Grigory Starchenko, Ta-
tiana A Tatusova, Lukas Wagner, Yanli Wang, W John Wilbur, Eugene Yaschenko, and
Jian Ye. Database resources of the National Center for Biotechnology Information. Nucleic
Acids Res, 39(Database issue):D38–51, Jan 2011.

23 Eric W Sayers, Tanya Barrett, Dennis A Benson, Evan Bolton, Stephen H Bryant, Kathi
Canese, Vyacheslav Chetvernin, Deanna M Church, Michael Dicuccio, Scott Federhen, Mi-
chael Feolo, Lewis Y Geer, Wolfgang Helmberg, Yuri Kapustin, David Landsman, David J
Lipman, Zhiyong Lu, Thomas L Madden, Tom Madej, Donna R Maglott, Aron Marchler-
Bauer, Vadim Miller, Ilene Mizrachi, James Ostell, Anna Panchenko, Kim D Pruitt,
Gregory D Schuler, Edwin Sequeira, Stephen T Sherry, Martin Shumway, Karl Sirotkin,
Douglas Slotta, Alexandre Souvorov, Grigory Starchenko, Tatiana A Tatusova, Lukas Wag-
ner, Yanli Wang, W. John Wilbur, Eugene Yaschenko, and Jian Ye. Database resources of
the National Center for Biotechnology Information. Nucleic Acids Research, Nov 2009.

24 Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel
Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software en-
vironment for integrated models of biomolecular interaction networks. Genome Research,
13(11):2498–2504, Nov 2003.

25 Vasily Tcherepanov, Angelika Ehlers, and Chris Upton. Genome annotation transfer utility
(gatu): rapid annotation of viral genomes using a closely related reference genome. BMC
Genomics, 7:150, 2006.

GCB 2012

68 Online Transitivity Clustering of Biological Data with Missing Values

26 Tobias Wittkop, Jan Baumbach, Francisco P Lobo, and Sven Rahmann. Large scale clus-
tering of protein sequences with force -a layout based heuristic for weighted cluster editing.
BMC Bioinformatics, 8:396, 2007.

27 Tobias Wittkop, Dorothea Emig, Sita Lange, Sven Rahmann, Mario Albrecht, John H
Morris, Sebastian Böcker, Jens Stoye, and Jan Baumbach. Partitioning biological data
with transitivity clustering. Nat Methods, 7(6):419–20, Jun 2010.

28 Tobias Wittkop, Dorothea Emig, Anke Truss, Mario Albrecht, Sebastian Böcker, and
Jan Baumbach. Comprehensive cluster analysis with transitivity clustering. Nat Protoc,
6(3):285–95, Mar 2011.

29 Tobias Wittkop, Sven Rahmann, Richard Röttger, Sebastian Böcker, and Jan Baumbach.
Extension and robustness of transitivity clustering for protein-protein interaction network
analysis. Internet Mathematics, 7(4):255–273, 2011.

	Introduction
	Our previous work
	Our new contributions

	Methods
	Extension of the Weighted Transitive Graph Projection model
	Costmatrix creation with missing values
	Data sets
	Evaluation
	Web interface

	Results and discussion
	Clustering with missing values
	Web interface

	Conclusion and outlook

