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Abstract
Genome-wide transcript profiles are often the only available quantitative data for a particular
perturbation of a cellular system and their interpretation with respect to the metabolism is a
major challenge in systems biology, especially beyond on/off distinction of genes.

We present a method that predicts activity changes of metabolic functions by scoring reference
flux distributions based on relative transcript profiles, providing a ranked list of most regulated
functions. Then, for each metabolic function, the involved genes are ranked upon how much they
represent a specific regulation pattern. Compared with the naïve pathway-based approach, the
reference modes can be chosen freely, and they represent full metabolic functions, thus, directly
provide testable hypotheses for the metabolic study.

In conclusion, the novel method provides promising functions for subsequent experimental
elucidation together with outstanding associated genes, solely based on transcript profiles.
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1 Background

The comprehensive study of the cell’s metabolism would include measuring metabolite
concentrations, reaction fluxes, and enzyme activities on a large scale. Measuring fluxes is
the most difficult part in this, for a recent assessment of techniques, see [31]. Although mass
spectrometry allows to assess metabolite concentrations in a more comprehensive way, the
larger the set of potential metabolites, the more difficult [8]. Enzyme activities are currently
measured only for selected enzymes [15, 33]. In contrast, the measurement of transcript RNA
[35, 41] and protein levels [4] on a large scale is an established technique. Chip assays allow
the high-throughput estimation for different conditions in a single experiment at manageable
cost. Thus, we are confronted with the situation that for many cellular systems there are
plenty of measured RNA profiles and a lack of accurate data for metabolite concentrations
and enzyme activities. Even though the RNA will not allow accurate quantitative predictions
of fluxes it is desirable to draw as many conclusions from that data as possible.

In the context of metabolic networks, transcript values are often used to select a subset of
active reactions using a threshold [3, 38, 20, 23, 11, 22]. This has two immediate problems:
(i) the selection of a proper threshold value and (ii) the subnetwork selected in that way may
not be a functional network. The first problem is tackled in the GIMME algorithm [3] by
gradually penalizing a reaction below a certain threshold, or in the approach by Shlomi et al.
[38] by using a three-valued system — off, on and intermediate — with two thresholds. The
second problem is solved either by the successive addition of necessary reactions considered
off [3, 38] or by maximizing the number of concordant genes in an optimization framework
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2 ModeScore: Infer Changed Activity from Transcript Profiles

[20]. More elegantly, both problems are combined in a method which sets the threshold
according to network function [22].

However, the main problem of reducing the transcript information to on and off genes is
that it discards any information on gradual metabolic changes. But a complete switch-off of
a metabolic enzyme is a rare event, most regulation is just the reduction or amplification of a
particular function. Lee et al. predicted the metabolic state from absolute expression profiles
without thresholding [28] but for expression changes it has not yet been done. This prompted
us to develop a method focusing on quantitative changes of metabolic functionality.

To tackle this ambitious task the problem is restated first. While in transcript-based
flux-balance analysis [3, 38, 22] the flux distribution resp. activity network is the result of
the computation, here we assume that a plethora of functional flux distributions is already
known. The transcript profile are used to decide which of them change their activity, in
which direction, and how much.

In fact, functional reaction paths are studied throughout the last decades and are well-
known for a large number of functions. On the basis of well-curated metabolic networks
[10, 40] these functional flux modes can even be computed automatically [16].

In the context of the metabolism, transcript profiles are often used to find co-expressed
genes, e.g. to understand the pattern of regulation [37, 21] and, thus, to predict targets of
transcription factors. The Mamitsuka applied the approach to predefined metabolic reaction
paths [30, 39] based on the KEGG database [25]. They used the results to rank the reaction
paths [14], an idea which is also used here. However, the question of co-expression is not
the main aspect here, instead it is the relative change of activity. Thus, we combine the
idea of using expression profiles to score metabolic paths [14] with the idea of functional
flux distributions [16]. The approach is supported by a finding of Notebaart et al. that the
strongest gene co-expression occurs for coupled fluxes [32].

2 Results
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Figure 1 Flow chart of the ModeScore analysis.

The final goal of a ModeScore analysis is a set of remarkable function-related gene patterns
from a series of full-genome transcript (or protein) profiles. It is a multi-step method with
backwards jumps depicted in Figure 1, where the novel scoring algorithm is one of the steps.
While some of the steps are computed (blue boxes in Figure 1) others involve manual curation
(green rhomboids) and selective evaluation (khaki rhombi).

Preparation of flux distributions and gene annotations
For the predictivity of the ModeScore analysis sound representative flux distributions are
critical. Sometimes, reference modes are already the result of the network testing process [12]
but it still it may be worthwhile to tailor the flux distributions to a particular application.
In a broad screening of metabolic functions, 1000s of different functions can be used with
several alternate solutions computed automatically [18]. But the focus can be shifted, and
also a confined analysis with just a few functions is sensible.
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The gene–reaction association may be given in the reconstruction process [7] but even
then it is advisable to manually refine this with the help of UniProt [1] and BRENDA [36]
and the literature referenced with, e.g. if a respective isoform is expressed but at such a low
level that another isoform is dominant it should be discarded, or if the enzyme is present but
has a low affinity to the substrate. If several genes remain for one reaction, and if several
repeat experiments have been performed their average expression is used. In the comparison
between two cellular states, their expression values (as log2) are subtracted.

Scoring function
Let the k-th reference mode be denoted withMk = (mi)i, where mi is the flux rate of the i-th
reaction. The relative expression profile is denoted by V = (vi)i, where vi is the difference of
the log2 values of the transcript abundances of one state and a reference state. Then the
score of the mode is

Score(Mk, V ) =
∑
i∈Ik wiscorei(mi, vi)∑

i∈Ik wi

where

Ik = {i|mi 6= 0} and wi =
√
|mi|ωi

and

scorei(mi, vi) = e
− 1

2

(
2λvi−mi|mi|

)2

.

λ is chosen such that Score(Mk, V ) is maximal. The non-negative numbers ωi are fixed
adjustments to modify the impact of a reaction on the score. If the gene expression changes
are proportional to flux rates of a reference mode, the score would be equal to 1, and λ is
the scaling factor between fluxes and expression changes. The rationale of this approach is
that the larger the required flux increase, the larger the necessary enzyme amount and, thus,
the increase in RNA transcription.

In the application below, reactions with stoichiometric factors larger than one (except
protons) receive a weight ωi which is the number of individual conversions for lumped
reactions, and zero for non-enzymatic reactions, see Supplementary file 6.

The number 1/λ, called amplitude in the sequel, is a measure for the function’s expression
difference. In fact, if all genes related to a specific function are regulated by the same amount
α, then the score would be 1 and the amplitude equal to α. In this sense, the amplitudes are
compatible to the expression changes.

Optimization procedure
The scoring function has been observed to have many local maxima for larger reference flux
distributions, especially near zero. Therefore a specifically tuned calculation method has
been recruited.

To find the global optimum of the scaling factor λ the derivation of the scoring function
has been calculated algebraically. A set of probe points is calculated with the following
procedure: (i) for every mi/vi a first level probe point is defined (ii) for every pair of first level
probe points the arithmetic mean is added as another probe point (iii) for every consecutive
pair (x, y) of second level probe points n = 10 + 10( 1

1+x ) intermediate points with equal
distance are added as another probe point. This procedure is tailored to search for maxima
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in superposed Gaussian bell curves with centers at mi/vi. It uses the fact that a higher
density of local maxima can be expected where the density of mi/vi is higher (→ii) and the
steepness of the bell curves for mi near zero is higher, thus more probe points are generated.
The huge abundance of probe points (compared to just a few maxima) to ensure a very
low probability to miss solutions. The zeros of the derivation function are computed with
the function fzero in octave [9] by supplying the probe points with different signs of the
derivation function value. The zeros of the derivation function are the candidates for the
global maximum which is subsequently selected.

ModeScore analysis
There are two different layers on which the ModeScore results can be analyzed, on the layer
of functions and on the layer of individual genes (for one selected function).

The ranking of the amplitudes of the different functions reveals which are the most up and
down-regulated functions in the comparison between two expression profiles. Additionally,
three or four expression profiles can be compared in a way that the difference of amplitudes
is ranked. This way, the functions with the most remarkable pattern are selected.

The next step is to check the layer of individual reactions and genes. For each function
and pair of expression profiles the individual score components scorei(mi, vi) are analyzed. A
high scorei(mi, vi) means that the reaction is considered belonging to the regulation pattern
that led to the evaluation of the function with the amplitude 1/λ. If the score is small or
zero this reaction has been overruled by other reactions.

Possibly, a reaction’s score scorei(mi, vi) has been the result of different genes, e.g.
subunits of a protein complex. If it becomes for instance apparent that only one subunit is
responsible for the regulation, other subunits can be deleted from the gene assignment to
the reaction. The same should be done if several isozymes are recorded, but some of them
are apparently not active in this particular experiment. It should be clear that a general
network reconstruction includes all the possible reaction assignments, and only at this point
of the analysis it is possible to select from the genes. After this modification, the ModeScore
calculation must be repeated.

After this process has been iteratively repeated, the final reaction scores will reflect the
function’s regulation as shown by the expression profiles. For visualization it is now advisable
to discard the genes which are not part of the regulation pattern.

In a nutshell, the following criteria are used to select the functions:
functions with high absolute amplitudes are favored,
central, well-known functions are favored to more peripheral functions,
if a function can be seen as a sub-function of another function, check if the super-function
is also a good candidate,
prefer functions which are top/bottom scorer in more than one of the comparisons,
prefer functions which show a plausible pattern of genes regulated in a consistent manner,
prefer functions which have already been noted as specifically sensitive in the experiment,
prefer functions which contain genes with highly remarkable regulation amplitude or
pattern, and
prefer functions whose pattern is not based on a single gene regulation.

Note that this selection process takes into account available domain knowledge.
The following criteria are used to select for each selected function the relevant genes

which led to the amplitude estimation of the whole function are selected. This is also a
manual process which takes into account several information sources and is guided by the
following criteria:
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prefer genes with large transcript value changes,

prefer genes with large absolute values,

prefer genes associated to reactions which are adjacent to reactions whose genes have
already been selected,

prefer genes of highly specific enzymes or transporters,

prefer genes of reactions which are most important for the function under regard and not
for any more important function, and

close gaps in an otherwise preferable reaction path.

Mostly, a connected reaction path (as a subset for the whole flux distribution) appears
to be responsible for the regulation. Transporters are also integrated if consistent with the
regulation of the enzymes. This aspect is noteworthy in comparison to the PathRanker [14]
concept which ignores transporters altogether. Another important aspect in comparison to
PathRanker (based on the KEGG MODULE reaction paths [26]) is that the definition of
the relevant paths is not predefined (and fixed) but flexible and dependent on the actual
expression values of the experiment. Often, they are in accordance with well-known reaction
paths but in some cases there is a unique and noteworthy different selection of genes forming
a functional unit.

Application of the method to TGFβ treatment of hepatocyte cultures

As an application of the proposed method, transcript profiles of primary mouse hepatocytes
in monolayer culture (3 time points, 1h, 6h, and 24h, control versus TGFβ stimulation, 3
repeats) [6, 13, 5] are screened for remarkable functional alterations.

The functions with very high and low amplitudes of the profile comparisons 1h vs. 24h
in the untreated sample and the control vs. TGFβ comparison at 24h have been analyzed
for their functional relevance, see Supplementary File 4. Functions related to intermediates
are replaced by their superordinate function, similar functions have been collected. For each
of these functions the scores for individual reactions, see Supplementary File 5, have been
analyzed for the set of genes which are responsible that the function in question has appeared
with a particular regulation pattern.

The most prominent functions are the down-regulation of tyrosine degradation and ethanol
degradation. The ethanol degradation pathway has already been verified to be sensitive to
TGFβ [5]

However, the strong down-regulation of tyrosine degradation is a novel finding yet to
be confirmed on the metabolic level, see Figure 2. The amplitudes 1

λ of the C1h/24h and
the C/T24h comparisons are -3.5 and -0.87, respectively, belonging to the largest negative
amplitudes among all functions. The scores Score(Mk, V ) are 0.41 and 0.44 indicating
a relatively strong coherence of the expression changes. The scores scorei(mi, vi) for the
individual genes are especially high (≥0.5) for the genes coding the reaction cascade from
Phenylalanine to Acetoacetate+Fumarate, see Supplementary File 5 for details. Thus, the
complete degradation pathway is down-regulated in time, amplified by TGFβ treatment, in
a very consistent pattern, even suggesting a common regulation factor.
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Figure 2 Regulation of the degradation cascade of phenylalanine and tyrosine. Red bars indicate
down-regulation. For each gene, the respective first bar (C1h/24h) shows the comparison of the beginning
of the experiment (1h) with the 24h time point of the control experiment, the second bar (C/T 24h) shows
the comparison of control vs. treated sample at 24h. Error bars indicate average standard deviation of the
3 repeat experiments. P-values refer to the probability that there is an equal expression of two respective
probe values, determined from the 3 repeats using Welch’s t test [42], implemented in R [29]. The chart
was prepared with R.

3 Discussion

Scoring algorithm
The scoring function is based on the superposition of Gaussian bell curves. The Gaussian
bell curve is the typical approximation in situation where an expected behavior (the expression
pattern matches the flux pattern) is blurred by a number of not quantitatively described
factors which is the case for the relation of the RNA expression to the expressed enzyme and
further to the reaction flux: RNA can be selectively degraded before translation, the rate
of misfolded protein differs for different proteins, the life span of the enzymes differs, the
reaction flux may deviate from the maximal catalytic rate, the enzyme life span is different
and so is the catalytic efficiency.

The influence of the scores of individual spots to the total score of the metabolic functions
is not equal but controlled by a weighting scheme. The weight mainly depends on the flux in
the reference flux distribution. This is based on the assumption that the importance of the
individual reactions to indicate the metabolic function as a whole can be approximated by
the flux. However, that one or very few reactions dominate the scoring of the whole scoring
function must be avoided. A good compromise has been found in a number of different trials
as the square root of the absolute flux rate.

The luminescence signal on a gene chip is not actually measuring the RNA concentration
in the sample as the affinity of the RNA to the probes is not equal and unknown for most
genes. However, with a high signal the expectation value of the RNA concentration is high
as well and the same is true for the resulting protein concentration, the enzyme activity, and
finally the reaction flux. As the relation can be assumed to be normally distributed, the
use of Gaussian bell curves is the most robust way to account for the uncertainty if the
signal-flux relation.

The ModeScore concept would also be applicable if not just gene array luminescence data
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but quantitatively more reliable qPCR [41], protein data, or even enzyme activity data were
available. The salient point is that array data suffices to draw first conclusions before the
laborious and costly other techniques are applied. On the other side, if data more closely
representing metabolic function (such as enzyme activity data) was available then methods
based on actual enzyme mechanisms could and should be applied such as kinetic modeling
with time-resolved differential equations.

Maxima in the scoring function
In the scoring formula the global maximum of the scoring function has been used to obtain
the scaling factor from the relative expression profile to the reference flux distribution. For
some examples alternative local maxima have been observed with only slightly smaller scoring
value. These alternative solutions can be seen as alternative ways to match the expression
pattern to the flux distribution. The alternative solutions can be analyzed in the same way
but generally their existence can be interpreted as an ambiguity of the expression profiles.

Reference flux distributions
The method critically depends on the quality of the predicted reference flux distributions.
For this work they have been obtained in a similar way as in [12]. Different computation
series have been preformed combining thermodynamic realizability [19] and flux minimization
[17] in different proportions. The obtained flux distributions have individually been checked
on biochemical plausibility while the one with the fewest reactions used is preferred, see
Supplementary File 3.

An advantage of the ranking concept is that the flux distributions need not be repre-
sentative (in the sense that overlaps are critical). Only a sufficient coverage of the whole
metabolic network should be ensured (not to miss remarkable transcript changes). Not to
miss a remarkable regulation abundance rather plentiful flux distributions should be used.

Comparison with other approaches
One may want to compare the ModeScore approach with a simple concept using the same
reference modes: average the expression changes of all genes associated to the function. This
has been tested and it showed almost no discriminative power. The problem is that even if a
function contains a recognizable pattern of regulation, other genes are constant or regulated
in the opposite direction. Thus the average expression changes are always close to zero. The
ModeScore function however finds an amplitude that is consistent with the changes of several
genes even if it is far from zero.

One may want to compare ModeScore with just filtering the largest changes of genes
associated to the metabolic network. The functional context of these genes then had to
be added manually. But many genes play a role in different functions, so they should be
discriminated again manually. Even if this has been done, the result would not be able
to detect moderately sized but very consistent regulation patterns (such as the Tyrosine
degradation function above).

Often, lists of transcript changes are filtered by a certain threshold and the regulated
genes (in both directions) are counted for each metabolic subsystem in either the gene
ontology [2] or in the KEGG maps [24]. The main problem is that in such a collection of
reactions/genes, the genes may have a completely different functional context: for instance in
the amino acid metabolism maps there are reactions specific to synthesis, degradation, and
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trans-amination, some of the reactions are needed to synthesize further cellular components
from amino acids, for gluconeogenesis or urea synthesis. A pathway-oriented approach can
not distinguish between these functions. Occasionally, even the same reaction located in
different compartments participates in different functions: HMG-CoA synthase in the cytosol
is involved in cholesterol synthesis while HMG-CoA synthase in the mitochondrium is only
recruited for the generation of ketone bodies (in mammalian hepatocytes).

4 Methods and Materials

The stoichiometric network of the human hepatocyte’s metabolism [12] has been adapted
to the mouse and a plethora of about 1000 metabolic functions defined, see Supplementary
File 2. The gene assignments have been obtained from the following resources: (i) Metabolic
reactions with a KEGG reaction annotation in HepatoNet can be mapped to a mouse gene
using KEGG [25]. (ii) Other metabolic functions with a EC number can also be mapped to a
mouse gene using KEGG. (iii) Transporters with an annotation in TCDB can be mapped to
a mammalian enzyme (UniProt nomenclature) using the TCDB [34]. (iv) Protein synthesis
reactions have been mapped to the protein directly which makes sense for this work as
the RNA is the most specific requisite for the synthesis reaction using Uniprot [1]. (v)
Proteins have been mapped to their coding gene using Ensembl/BioMart [27]. (vi) Genes
of the different species have been mapped to mouse genes (Ensembl nomenclature) using
the computed homologies contained in BioMart database. (vii) BioMart database has also
been used to assign the Affymetrix probeset identifiers to Ensembl annotations. HepatoNet
was enlarged by the synthesis reactions of collagens. See Supplementary file 1 for the final
network with gene annotations.

Availability

Calculation of the ModeScore scores is implemented in the freely available software FASIMU
[18] in the function modeset-score. Supporting scripts including the score optimization
process is available from the authors upon request.
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