
Train Scheduling and Rescheduling in the UK with
a Modified Shifting Bottleneck Procedure∗

Banafsheh Khosravi1, Julia A. Bennell1, and Chris N. Potts2

1 School of Management, CORMSIS Research Group, University of
Southampton
Southampton, SO17 1BJ, UK
B.Khosravi@soton.ac.uk, J.A.Bennell@soton.ac.uk

2 School of Mathematics, CORMSIS Research Group, University of
Southampton
Southampton, SO17 1BJ, UK
C.N.Potts@soton.ac.uk

Abstract
This paper introduces a modified shifting bottleneck approach to solve train scheduling and
rescheduling problems. The problem is formulated as a job shop scheduling model and a mixed
integer linear programming model is also presented. The shifting bottleneck procedure is a well-
established heuristic method for obtaining solutions to the job shop and other machine scheduling
problems. We modify the classical shifting bottleneck approach to make it suitable for the types
of job shop problem that arises in train scheduling. The method decomposes the problem into
several single machine problems. Different variations of the method are considered with regard to
solving the single machine problems. We compare and report the performance of the algorithms
for a case study based on part of the UK railway network.

1998 ACM Subject Classification G.1.6 Optimization, Integer programming

Keywords and phrases Train Scheduling and Rescheduling, Job Shop Scheduling, Shifting Bot-
tleneck Procedure

Digital Object Identifier 10.4230/OASIcs.ATMOS.2012.120

1 Introduction

Meeting the ever-increasing demand for additional rail capacity is a key issue for many train
companies. There are two ways of providing the additional capacity for passengers and
freight users. One way is to construct new sections of track and another is through the
release of capacity on the current rail network. Whereas first option is very costly, the latter
is linked to train scheduling which reduces the loss of capacity of the network through better
scheduling decisions. The applications of operational research methodologies in combination
with advances in technology can provide great incentives for the rail industry.

After the pioneering publication of Szpigel [17], formulating the train scheduling problem
as a job shop scheduling problem offered a promising new research direction. However,
there have been several job shop scheduling approaches such as mathematical programming
techniques by Szpigel [17] and Sahin [16], constraint programming approaches by Oliveira
and Smith [12] and Rodriguez [14], and the alternative graph formulation by D’Ariano et

∗ This work was partially funded and supported by School of Management, former LASS Faculty of the
University of Southampton and the LANCS Initiative.

© Banafsheh Khosravi, Julia A. Bennell, and Chris N. Potts;
licensed under Creative Commons License ND

12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’12).
Editors: Daniel Delling, Leo Liberti; pp. 120–131

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.ATMOS.2012.120
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

B. Khosravi, J.A. Bennell, and C.N. Potts 121

al. [6], Corman et al. [5] and Liu and Kozan [9]. There are two main lines of research with
regard to the complexity of the railway infrastructure. In the first category, Szpigel [17],
Sahin [16] and Oliveira and Smith [12] each address a single line railway with single and
multiple track segments. More realistic networks are considered in the second category of
studies. Rodriguez [14] schedules trains in a terminal station, whereas D’Ariano et al. [6]
and Corman et al. [5] provide solutions for a dispatching area of a railway network with
passengers and freight. Further, Liu and Kozan [9] investigate a case study of a railway
network for the transport of coal.

A decomposition of the railway planning process into strategic, tactical and operational
levels is proposed by Huisman et al. [8], Caprara et al. [4] and Lusby et al. [10] as dealing
with the whole problem is hard and complicated. Train scheduling and rescheduling are the
subtasks of the planning process in tactical and operational levels, respectively. For a general
overview of operations research models and methods in railway transportation, see Huisman
et al. [8], Caprara et al. [4], Lusby et al. [10] and Cacchiani and Toth [2].

This paper aims to refine existing models for train scheduling and rescheduling problems
with the goal of obtaining a more generic model that includes important additional constraints.
The model is customised to the UK railway network and is evaluated through a case study.
The train scheduling and rescheduling problems are addressed in Section 2. Section 3 contains
the development of our proposed model. In Section 4, we adapt the shifting bottleneck
solution approach for the particular job shop problems that arise in train scheduling. The
performance of the proposed methods on a real-world case study based on London and South
East area of the UK that is a dense and complex network of interconnected lines is reported
in Section 5. Finally, Section 6 presents some conclusions and suggestions for future work.

2 Problem definition

Depending on the level of detail about track topology and train dynamics, the train scheduling
and rescheduling problems can be classified as microscopic or macroscopic problems [3]. This
paper investigates the train scheduling and rescheduling problems at the micro level including
detailed information about the tracks and train movements. Our experimental evaluation is
based on a bottleneck area in the South East of the UK where the network has a complicated
structure including several junctions and stations.

The movement of a train on the network is controlled for safety reasons by signals
which divide the network to track sections called blocks. Given predetermined routes from a
given origin to a given destination, a schedule determines starting times of trains entering
each block and the order of trains on each block. Each train needs a minimum specified
running time to travel on a block. If there is a scheduled stop at a station, the train needs a
minimum dwell time for the passengers or freight to board/load and alight/unload. Also,
safety considerations impose a headway, which is the minimum time between two consecutive
trains travelling on the same block. Various signalling systems are used in different countries.
In this study, we consider four-aspect signalling which is common for the main lines of the
UK network, as shown in Figure 1: red for stop (danger), yellow for approach (caution),
double yellow for advance approach (preliminary caution) and green for clear. Each aspect
gives information for 4 blocks ahead, thus enabling the train driver to adjust the speed
and to keep sufficient separation between trains to allow safe braking. According to the
safety principles, only one train can travel on a block at a time and a conflict occurs when
more than one train is assigned to a block. Another issue is the deadlock that arises when
certain trains are currently positioned in a way that none can move further without causing

ATMOS’12

122 Train Scheduling and Rescheduling in the UK

Block section

T1 T2

Green Double Yellow Yellow Red

Figure 1 4-aspect signalling system.

a collision. A deadlock happens usually in complicated networks with bidirectional travels.
Thus, being conflict-free and deadlock-free are essential characteristics of a feasible schedule.
The above-mentioned operational and safety issues are treated as constraints in our problem.

It is also important to take into account the possibility of delay propagation in a railway
network which is due to the high interdependency of the trains. Thus, the objective of our
problem is to minimize delay propagation. In summary, the aim of train scheduling is to
make the best usage of the existing capacity by allocating trains to blocks. In this study,
timetable components including scheduled running time, dwell time and headway and their
buffer times or margins are assumed to be fixed and we try to minimize the delay by selecting
efficient timings and ordering of trains on blocks. Train scheduling can be performed at a
tactical level, which can take up to a year. When trains are operated according to a plan,
disruptions can cause deviations to that plan due to various causes such as train delays,
accidents, track maintenance, no-shows for crew, weather conditions, etc. Train rescheduling
responds to disruptions in an operational level, where a new schedule is required in a matter
of minutes or seconds. The same scheduling technique can be implemented for real-time
traffic management if the solution method is fast enough.

3 Problem formulation

In this study, we make use of the similarity between train scheduling problem and the
well-known job shop scheduling problem. Job shop scheduling assigns jobs to machines in a
way that a machine can process only one job at a time. Likewise, a block can be occupied
by only one train at a time according to the line blocking which is a safety principle for
train movement. Thus, a train traversing a block is analogous to a job being processed on a
machine, and is referred to as an operation.

The following notation is used for parameters and decision variables in the mathematical
programming formulation for the train scheduling problem.

I: set of jobs/trains
i,j: indices for jobs (i = 1, . . . , I and j = 1, . . . , I)
ri: non-negative release time of job i/scheduled departure time of train i

from its origin
di: non-negative due date of job i/scheduled arrival time of train i at its

destination
wi: non-negative importance weight of job i/train i

(mi1, . . . , mi,li): sequence of machines to be visited by job i/sequence of blocks to be
traversed by train i

(i, m): job, machine indices/train, block indices, for m = mi1, . . . , mi,li

O: set of operations defined by indices (i, m), for i ∈ I, m = mi1, . . . , mi,li

B. Khosravi, J.A. Bennell, and C.N. Potts 123

pim: operation time for job i on machine m/running time for train i on
block m

si(m): the index of its immediate successor operation (index of its third suc-
cessor operation) for two-aspect signalling (four-aspect signalling) of
(i, m)

Si(m): a set containing index (i, m) for two-aspect signalling, and additionally
containing the indices of its immediate and second successor operation
for four-aspect signalling

hijm: required time delay (headway) between the start of operations (i, m)
and (j, m) when job i precedes job j on machine m

xijm:

{
1, if job i precedes job j on machine m

0, otherwise
tim: starting time of job i on machine m

Ti: tardiness of job i

To minimize delay propagation of trains with different priorities, the objective is to
minimize total weighted tardiness. The tardiness of a job is calculated from the due date
of the job, which is equivalent to the pre-defined time that a train should reach its final
destination and therefore leave the network. The release time of a job is similarly defined
as the pre-defined time that the train should leave its origin and thus enter the network.
Weights can be determined from train priorities. Thus, the train scheduling problem can be
formulated as a job shop scheduling problem with additional constraints, and a corresponding
mixed integer linear programming (MILP) model is specified below.

Minimize z =
∑
i∈I

wiTi (1)

subject to
Ti ≥ ti,mi,li

+ pi,mi,li
− di i ∈ I (2)

ti,mi,1 ≥ ri i ∈ I (3)
ti,mk

− ti,mk−1 ≥ pi,mk−1 i ∈ I, k = 2, . . . , li (4)
tjm − tim + B(1− xijm) ≥ max{pim, hijm} (i, m), (j, m) ∈ O (5)
tim − tjm + B(1− xjim) ≥ max{pjm, hjim} (i, m), (j, m) ∈ O (6)

tjm − tisi(m) + B(1− xijm) ≥
∑

(i,k)∈Si(m)

pik (i, m), (j, m) ∈ O (7)

tim − tjsj(m) + B(1− xjim) ≥
∑

(j,k)∈Sj(m)

pjk (i, m), (j, m) ∈ O (8)

xijm + xjim = 1 (i, m), (j, m) ∈ O (9)
xijm ∈ {0, 1} (i, m), (j, m) ∈ O (10)

In this formulation, the total weighted tardiness objective function is defined in (1). The
tardiness of a job is defined in (2) by considering its starting time on the last machine of its
sequence, its processing time on that machine and the due date of the job; this is equivalent
to defining a train’s delay. Ensuring that the starting time of a job on the first machine of its
sequence is no earlier than its release time is achieved through (3), which means a train can
start only after it is ready on the first block. Constraints (4) are called the set of conjunctive

ATMOS’12

124 Train Scheduling and Rescheduling in the UK

constraints to ensure the processing order of a job on consecutive machines. It determines
the running and dwell time constraints for trains. Modified disjunctive constraints (5) and
(6) specify the ordering of different jobs on the same machine, and they are adapted to define
the minimum headway between consecutive trains. Alternative constraints (7) and (8) force
a job to remain on a machine after completing its process until the next machine becomes
available. This pair of constraints can represent the signalling system of the network.

Modelling a job shop scheduling problem with a disjunctive graph is introduced firstly by
Roy and Sussman [15] and has thereafter been extensively used in solving job shop scheduling
problems. In this study, we also make use of a disjunctive graph G = (N, A, B, C) to
formulate the train scheduling problem. Despite of the fact that the original graph considers
makespan as the objective function, we employ a modified disjunctive graph of Pinedo and
Singer [13] which minimizes total weighted tardiness. Figure 2 shows an example of 3 jobs
and 4 machines. Set N contains a node for each operation (i, m), a dummy source U and
m dummy sinks Vi for each job i. A is the set of conjunctive arcs that connects the pair
of consecutive operations on the same job in order to take into account running and dwell
time constraints. Set B is the set of disjunctive arcs that are represented by two arcs in
opposite directions for every pair of operations (i, m) and (j, m). To represent headway for
both following and opposite trains, the length of a disjunctive arc is simply modified as
max{pjm, hijm} to consider the higher value between the running time and the headway.

2, 4

1, 2 1, 3

U

1, 4

2, 1

1, 1

5

2, 2 2, 3

3, 3 3, 2 3, 1 3, 4

V 1

V 2

V 3

i, j : Job (Train) i, Machine (Block) n

: Conjunctive arc (Running Time)

: Pair of disjunctive arcs (Headway)

: Pair of alternative arcs (Signalling)

0

5 1 4 8

2 6 5

0

5

4

3 7 9

Figure 2 Modified disjunctive graph.

Another limitation of the disjunctive graph to be addressed here is that it cannot model
the buffer capacity between consecutive machines properly. This is an important issue in
many real-life scheduling problems. In our problem, a job needs to stay on a machine after
its processing time until the next machine becomes free. So set C includes the pairs of
alternative arcs (i, si(m)) and (j, m) which are added according to the alternative graph
of Mascis and Pacciaiarelli [11]. As shown in Figure 2, these arcs are slightly adapted to
have alternative arcs of the length

∑
(i,k)∈Si(m) pik to keep following trains moving on green

signals with a fixed speed under four-aspect signalling.

4 Solution method

The train scheduling problem is known to be NP-hard (see [7] and [18]) and a practical size
problem can easily result in a huge job shop problem with numerous nodes and arcs. As
we cannot solve the proposed MILP model optimally in a reasonable amount of time, it is

B. Khosravi, J.A. Bennell, and C.N. Potts 125

preferable to employ local search methods for which computational time is more predictable.
The shifting bottleneck (SB) procedure of Adams et al. [1] is a well-known heuristic for

solving a classical job shop scheduling problem that is formulated as a disjunctive graph.
The success in applying the SB procedure on benchmark instances in job shop scheduling
literature has led to a number of studies that employ the SB approach. It can be also used
as a framework for other heuristics such as tabu search, simulated annealing and genetic
algorithms. Although there is no theoretical performance guarantee for SB, its empirical
performance has a good track record.

The SB procedure is a deterministic decomposition approach to solve multiple machine
problems by selecting each machine in turn and using the solution of the single machine
problem to define the processing order of jobs on that machine. According to Pinedo and
Singer [13], the solution method includes three main steps of sub-problem formulation,
sub-problem optimization and bottleneck selection (Figure 3). To find a feasible solution, we
need an acyclic order of operations by selecting exactly one arc of each pair of disjunctive
and alternative arcs. Mascis and Pacciarelli [11] provide some key properties and feasibility
analysis of a blocking job shop problem. In this paper, a modified SB procedure is proposed
for the train scheduling and rescheduling problems. It is inspired by Pinedo and Singer [13]
but modified for train scheduling to include additional constraints.

Yes

No

Sub-problem

Formulation

Sub-problem

Optimization

All Machines

Scheduled?

Bottleneck

Selection Start End

Figure 3 Shifting Bottleneck (SB) flowchart, adapted from Pinedo and Singer [13].

In general, the proposed SB differs from the conventional SB in solving the single machine
problem and finding the bottleneck. While the original SB considers an exact method to
solve the single machine problem of minimizing the maximum lateness of jobs having release
dates on a single machine (problem 1|rj |Lmax), the new SB employs a heuristic to solve the
single machine problem of minimizing the total weighted tardiness of jobs having release
dates on a single machine (problem 1|rj |

∑
wjTj). Bottleneck selection is based on maximum

lateness calculations in original SB, whereas the proposed SB makes use of total weighted
tardiness evaluations. The proposed SB procedure uses the following notation.

j, k: job indices
(j, m) job, machine indices for the operation that processes job j on machine

m

rjm: local release date for operation (j, m)
pjm: processing time of operation (j, m) of job j

dk
jm: local due date of operation (j, m) with respect to the due date of job k

L((j, m), Vk): the longest path from operation (j, m) to Vk, the sink corresponding to
job k

Cjm: completion time of job j on machine m

Ck: completion time of job k

T k
jm: tardiness of operation (j, m) with respect to the due date of job k

In the following, we introduce three main steps of the new SB algorithm. In the first

ATMOS’12

126 Train Scheduling and Rescheduling in the UK

algorithm, we develop a heuristic based on a well-known priority rule for 1|rj |
∑

wjTj which
is called the apparent tardiness cost (ATC) rule. The ATC is a dynamic rule that calculates
a ranking index for each job to be sequenced next on a machine. Under this rule, the highest
ranking job is selected among the remaining jobs to be processed next. Here, the single
machine heuristic embeds an adaptation of the ATC rule developed by Pinedo and Singer [13].
Because of the ATC index, we refer to our first SB algorithm as SB-ATC.

SB-ATC algorithm
Generate an instance of 1|rj |

∑
wjTj and for each operation calculate

rjm = L(U, (j, m)), (11)

dk
jm =

{
max{Ck, dk} − L((j, m), Vk) + pjm if L((j, m), Vk) exists,
∞ otherwise.

(12)

Select the operation (j, m) with the highest index

Ijm(t) =
n∑

k=1

wk

pjm

(
−

(dk
jm − pjm + (rjm − t))+

Kp̄

)
, (13)

where t is the time that the machine becomes available, p̄ is the average processing time of
jobs assigned to machine m, and K is a scaling parameter whose value can be determined
through computational tests.
Choose a machine m with its corresponding sequence of operations that minimizes

n∑
k=1

wk

(
max

(j,m)∈Nm

T k
jm

)
, T k

jm = max{Cjm − dk
jm, 0}. (14)

where Nm is the set of nodes corresponding to the operations processed on machine m.

The second SB algorithm is based on an active schedule generation (ASG) heuristic to
solve the single machine problems. The so-called SB-ASG selects the job with the smallest
release date among potential candidates with rjm < ECT, where ECT is the smallest possible
completion time of the job to be scheduled next. The third SB algorithm is developed on
the basis of the Schrage scheduling heuristic and is therefore named SB-SCH. In SB-SCH,
among potential candidates with rjm ≤ EST, where EST is the smallest possible starting
time of the job to be scheduled next, it selects the job with d∗jm = minkdk

jm.
Within the SB solution process, arcs are added gradually to the problem through sub-

problem optimization step. We need to ensure that the disjunctive and alternative arcs to be
added do not lead to infeasible solutions. Assume that machine m is selected in the bottleneck
selection step. All jobs on that machine are sequenced by using one of the mentioned single
machine heuristics. The disjunctive arcs can be added based on the sequence of the jobs
on machine m. Consequently, we add an alternative arc from (i, si(m)) to (j, m) if there is
a disjunctive arc from (i, m) to (j, m). The next step is to use the static implication rules
of D’Ariano et al. [6] to add implied alternative arcs for the following trains running on
common blocks. Further, we fix the implied arcs among the jobs on a machine for all trains
on common blocks. Through this process, the main characteristics of a timetable to be
conflict-free and deadlock-free are guaranteed.

B. Khosravi, J.A. Bennell, and C.N. Potts 127

A First Come First Served (FCFS) algorithm is also implemented, which is a simple
dispatching rule. It is close to the dispatcher’s behaviour in a real-time decision-making
environment. Our proposed SB algorithms are tested against FCFS in terms of the solution
quality.

5 Computational results

In this section, we discuss a real-world implementation of the proposed SB algorithms. The
experiments are based on the London Bridge area in the South East of the UK, chosen
because it is a dense and complicated network of interconnected lines for passengers in and
out of London, East Sussex and the Channel Tunnel. Figure 4 shows the configuration of
the network. It is a critical corridor with known capacity and performance issues, which
are made more complex by the addition of a new high speed line. The partial network we
consider is about 15 km long including busy stations like London Charing Cross, London
Waterloo, London Cannon Street, New Cross and Deptford, and a total of 28 platforms.
The network includes 135 blocks with unidirectional and bidirectional traffic. Passenger
trains start their journey from either Charing Cross or Cannon street and travel through 75
blocks in order to leave the network, or they enter the network and travel through 76 blocks
terminating at one of the mentioned stations.

Charing Cross

D

C

A

B

Waterloo East

London Bridge

Cannon Street

Metropolitan Junction

Borough Market

Junction

New Cross

Deptford North Kent East

Junction

Blue Anchor

Junction

Spa Road

Junction

6

5

4

3

2

1

1

2

3

4

5

6

A

B

C

D

1 2 3 4 5 6 7

Figure 4 London Bridge diagram.

Our experimental data focus on the off-peak services because there is an on-going strong
growth in off-peak period commuters. The timetable cycles every 30 minutes for the passenger
trains and includes 27 trains. The train timetables, running times and track diagrams are
provided by the primary train operator for this region of the UK. Using this data we simulate
real-life traffic conditions in one cycle under different types of disruptions in the network by
perturbing the known running times on certain blocks. Disruptions are classified into three
types as follows. A minor disruption is where no individual delay is more than 15 minutes.
A general disruption is where multiple services are running with delays between 15 to 30
minutes. A major disruption is where the majority of train services are delayed by over 30
minutes. All algorithms are developed in MS Visual C++ 2010 and run on a PC with a dual
core, 3.00GHz and 4GB RAM. Computational experiments compare the total delay for the
schedule arising from the FCFS dispatching rule and the SB algorithms.

ATMOS’12

128 Train Scheduling and Rescheduling in the UK

In the first set of experiments, we generate 18 problem instances across three types of
disruptions on single and multiple blocks. Note that we need the running times of at least two
blocks to be perturbed to create a major disruption. Random perturbations are generated on
the most common blocks and/or bidirectional blocks which tend to be the most critical ones.
An instance is classified as a minor, general or major disruption based on its FCFS output.
If FCFS results in a deadlock, we put the instance in the same class as the most similar
instance, in terms of perturbation, with no deadlock. We denote each type of disruption with
a code. M and MM show minor disruptions on a single block and multiple blocks respectively.
Similarly, G and GG represent general disruptions on a single block and multiple blocks.
Major disruptions on two and multiple blocks are indicated by A and AA.

Table 1 summarizes the results of our first set of experiments comprising a single run
for each of 18 generated instances. In the first and second columns of the table, we define
the disruption type and the instance code. The third, fourth and fifth columns indicate
which block(s) and train(s) are affected and the size of the perturbation, respectively. The
remaining columns display the results of the FCFS, SB-ATC, SB-ASG and SB-SCH delays
in minutes. The best result(s) for an instance among all algorithms are shown in bold. If we
consider the minimum value among three types of SB algorithms, they clearly outperform
FCFS as FCFS ends up with either a worse result or a deadlock in 16 out of 18 instances.
SB results are as good as FCFS in G3 and they are slightly worse than FCFS only in MM1.
As we expected, FCFS algorithm results in a deadlock in many instances as the network is
complicated with bidirectional travels. So FCFS schedules trains in a way that they cannot
move further without causing a collision, whereas feasibility is guaranteed by SB algorithms
no matter what type of disruption occurs. There is no special trend among the results of
three types of SB algorithms and none of them leads to better results for all instances.

As deadlocks arise in many instances solved by FCFS algorithm, we generate many more
instances and only retain the cases where FCFS does not result in deadlock. Table 2 provides
the results for these new instances and for the no-deadlock instances in Table 1. It also
provides the delay for the original timetable where there is no disruption. As before, each
row shows a single run of the instance and the best result(s) for each instance are displayed
in bold. As expected, the minimum delay among all SB algorithms is lower than FCFS in
10 out of 13 instances. Only in the second instance of general disruption, SB algorithms
perform as well as FCFS. In the last instance of minor disruption and the first instance
of general disruption, FCFS has slightly better results. Comparing the results of three SB
variants, it appears that SB-SCH is the weakest as it is either as good as or worse than the
other SB variants. No strong conclusion can be made about the performance of SB-ATC and
SB-ASG. The reason for the varied performance is not clear, but it seems that the search
space is difficult to navigate and applying different dispatching decisions at certain critical
points constrains the search space leading to sometimes better and sometimes worse results.

In general, our experiments show that SB procedure is a promising approach for solving
disruptions with less delay compared to FCFS and avoids deadlock. However, more detailed
analysis is needed to understand the impact of the dispatch rule. SB also suffers from
long computational times, that are not practical for real-time decision. For complex cases
run times are up to 26 minutes, whereas FCFS computation time is less than a minute.
Computational times for all three versions of SB are similar. However, there is scope for
developing a more efficient implementation of SB.

B. Khosravi, J.A. Bennell, and C.N. Potts 129

Table 1 Performance of SB algorithms vs FCFS for 3 types of disruption.

Instance
Affected Affected

Increase
Delay (mins)

block(s) train(s) FCFS SB-ATC SB-ASG SB-SCH

Minor M1 120 22, 23 5 63.50 52.08 62.50 73.00

disruption on M2 4 4, 6, 18, 20 4 102.33 98.67 87.42 114.08

a single block M3 24 2, 3, 5 5 157.17 136.427 62.50 155.92

Minor MM1 15/24 15, 16/2, 5 4.5/4.5 97.83 120.42 105.58 105.58

disruption on MM2 52/71 10, 24/8, 13 4/4 deadlock 124.58 92.67 92.67
multiple blocks MM3 20/58 2, 3/13, 22 4.5/4.5 deadlock 184.42 171.17 171.17

General G1 58 9, 12, 25 5 deadlock 291.67 293.58 230.75
disruption on G2 71 11, 13, 14 10 deadlock 170.33 184.50 204.92

a single block G3 132 22, 24, 25 6 124.92 147.83 124.92 124.92

General GG1 20/120 3, 6/23, 25 10/10 315.75 169.33 283.42 283.42

disruption on GG2 15/47 2, 15, 16/1, 4, 7 5/5 190.50 227.42 189.25 189.25
multiple blocks GG3 56/120 12, 13, 26/22, 24, 27 10/10 deadlock 321.58 466.25 466.25

Major A1 52/47 8-11, 22-25/1-7 30/30 deadlock 1103.42 1342.17 1621.67

disruption on A2 4/59/ 4-7, 18-21/8-14 30/30 deadlock 3216.08 3919.25 3269.25

two blocks A3 58/94 8-14, 22-27/15-21 30/30 deadlock 5753.58 4477.67 4477.67

AA1

14 2, 3, 16, 17 25

deadlock 2478.25 2657.00 2657.00
56 12-14, 26, 27 25

71 8-14 25

120 22-27 25

Major

AA2

4 4-7,18-21 25

deadlock 5472.25 5647.00 5323.67
disruption on 15 1-3,15-17 25

multiple blocks 58 8-14,22-27 25

94 15-21 25

AA3

24 1-7 25

deadlock 3504.58 3475.00 3475.00
47 1-7 25

94 15-21 25

132 22-27 25

Table 2 Performance of SB algorithms vs FCFS for deadlock-free instances.

Delay (mins)
FCFS SB-ATC SB-ASG SB-SCH

Timetable 32.17 27.67 30.92 30.92

Minor disruption

63.50 52.08 62.50 73.00
102.33 98.67 87.42 114.08
157.17 136.42 155.92 155.92
97.83 120.42 105.58 105.58

General disruption

96.00 119.67 99.92 99.92
124.92 147.83 124.92 124.92
315.75 169.33 283.42 283.42
190.50 227.42 189.25 189.25

Major disruption

5977.80 6463.38 5368.97 6161.47
3557.42 3288.50 3288.00 3289.50
3527.58 3422.00 3390.83 3390.83
3504.58 3475.00 3475.00 3475.00

ATMOS’12

130 Train Scheduling and Rescheduling in the UK

6 Conclusions and future work

In this paper, the train scheduling and rescheduling problems are modelled as a job shop
scheduling problem with additional constraints. The problem is formulated as a MILP using
a modified disjunctive graph. We describe a new optimization framework based on the
SB procedure to solve the problem. Three variants of the SB algorithm are suggested and
compared with the most commonly used FCFS dispatching rule. Our experiments focus
on a section of the UK rail network that is dense, complicated and congested. It provides
a problem instance that is among the most computationally difficult job shop problems
where the graph is extremely large. It is clear that simply finding a feasible solution is
nontrivial, since the FCFS algorithm frequently results in a deadlock. Hence, the proposed
optimization algorithm, which found feasible solutions to all instances, is very promising to
model and solve this large and complex problem with all the practical constraints. Further
research to improve the solution time and quality of the algorithm includes investigating
more efficient heuristics that can be embedded in the current framework and exploiting
potential computational speedups.

Acknowledgements We thank the School of Management, the former LASS Faculty of the
University of Southampton and the LANCS Initiative for partially funding and supporting
this project. We are also grateful to Southeastern, the train operating company, for providing
data.

References
1 J. Adams, E. Balas, D. Zawack. The shifting bottleneck procedure for job shop scheduling.

Management Science, 34(3):391-401, 1988.
2 V. Cacchiani, P. Toth. Nominal and robust train timetabling problems. European Journal

of Operational Research, 219(3):727–737, 2012.
3 G. Caimi. Algorithmic decision support for train scheduling in a large and highly utilised

railway network. PhD thesis, Swiss Federal Institute of Technology Zurich, 2009.
4 A. Caprara, L. Kroon, M. Monaci, M. Peeters, P. Toth, Passenger Railway Optimization,

in: C. Barnhart, G. Laporte (eds.), Transportation, Handbooks in Operations Research
and Management Science 14, Elsevier, 129–187, 2007.

5 F. Corman, A. D’Ariano, D. Pacciarelli, M. Pranzo. A tabu search algorithm for rerouting
trains during rail operations. Transportation Research Part B, 44(1):175–192, 2010.

6 A. D’Ariano, D. Pacciarelli , M. Pranzo. A branch and bound algorithm for scheduling
trains in a railway network. European Journal of Operational Research, 183(2):643–657,
2007.

7 M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to Theory of NP-
Completeness. Freeman, San Franscisco, 1979.

8 D. Huisman, L. Kroon, R. Lentink, M. Vromans. Operations Research in passenger railway
transportation. Statistica Neerlandica 59(4):467–497, 2005.

9 S.Q. Liu, E. Kozan. Scheduling trains as a blocking parallel-machine shop scheduling prob-
lem. Computers and Operations Research 36(10):2840-2852, 2009.

10 R. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and
methods. OR Spectrum, 33(4):843-883, 2011.

11 A. Mascis, D. Pacciarelli. Job shop scheduling with blocking and no-wait constraints.
European Journal of Operational Research 143(3):498-517, 2002.

12 E. Oliveira, B.M. Smith. A job-shop scheduling model for the single-track railway scheduling
problem. Technical Report No. 21, School of Computing, University of Leeds, UK, 2000.

B. Khosravi, J.A. Bennell, and C.N. Potts 131

13 M. Pinedo, M. Singer. A shifting bottleneck heuristic for minimizing the total weighted
tardiness in a job shop. Naval Research Logistics 46(1):1–17, 1999.

14 J. Rodriguez. A constraint programming model for real-time trains scheduling at junctions.
Transportation Research Part B 41(2):231–245, 2007.

15 B. Roy, R. Sussman. Les problèmes d’ordonnancement avec contraintes disjonctives. Tech-
nical Report No. 9, SEMA, Paris, 1964.

16 I. Sahin. Railway traffic control and train scheduling based on inter-train conflict manage-
ment. Transportation Research Part B 33(7):511–534, 1999.

17 B. Szpigel. Optimal train scheduling on a single track railway. In M. Ross (Ed.). Operational
Research ’72, Amsterdam, The Netherlands, 343–352, 1973.

18 J. Ullman. NP-complete scheduling problems. Journal of Computer and System Science,
10(3):384–393, 1975.

ATMOS’12

	Introduction
	Problem definition
	Problem formulation
	Solution method
	Computational results
	Conclusions and future work

