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Abstract
This paper considers a Train Shunting problem which occurs in cargo train organizations: We
have a locomotive travelling along a track segment and a collection of n cars, where each car has
a source and a target. Whenever the train passes the source of a car, it needs to be added to
the train, and on the target, the respective car needs to be removed. Any such operation at the
end of the train incurs low shunting cost, but adding or removing truly in the interior requires
a more complex shunting operation and thus yields high cost. The objective is to schedule the
adding and removal of cars as to minimize the total cost. This problem can also be seen as a
relaxed version of the well-known List Update problem, which may be of independent interest.

We derive polynomial time algorithms for Train Shunting by reducing this problem to
finding independent sets in bipartite graphs. This allows us to treat several variants of the
problem in a generic way. Specifically, we obtain an algorithm with running time O

(
n5/2) for

the uniform case, where all low costs and all high costs are identical, respectively. Furthermore,
for the non-uniform case we have running time of O

(
n3). Both versions translate to a symmetric

variant, where it is also allowed to add and remove cars at the front of the train at low cost. In
addition, we formulate a dynamic program with running time O

(
n4), which exploits the special

structure of the graph. Although the running time is worse, it allows us to solve many extensions,
e.g., prize-collection, economies of scale, and dependencies between consecutive stations.
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1 Introduction

This paper considers a Train Shunting problem where we are given a set of n cars and a set
of stations, and each car has a source station and a later target station. Moreover, we have a
locomotive which visits the stations in a predefined order, and once the locomotive passes
the source of a car, it needs to be added to the current train configuration. On the other
hand, once its target is passed, it needs to be removed. Any such action is called a shunting
operation. Adding or removing a car at the end of the train is called an outer shunting
operation and incurs low cost, but adding or removing truly in the interior requires a more
complex inner shunting operation and thus yields high cost. The objective is to schedule the
adding and removal of cars as to minimize the total shunting cost. This problem actually
originated from a discussion at the Deutsche Bahn AG. Thus, even though it is simple and
stated cleanly mathematically, it has a concrete practical application. We will explain later
that we can also think of Train Shunting as a relaxed version of the well-known List
Update problem.
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Contributions. We derive polynomial time algorithms for Train Shunting by reducing
this problem to finding an independent set in bipartite graphs. Our approach, described
in Section 2, works as follows: We first observe that any two cars exclude each other from
using a cheap outer shunting operation if they overlap, a term which will be explained later.
The key observation is then that these overlap dependencies can be captured in a bipartite
constraint graph, and our main theorems states that any maximal (with respect to inclusion)
independent set in this graph corresponds to a set of cars that can be served with cheap
outer shunting operations, and vice versa. The proofs show how to convert any maximal
independent set into a solution for Train Shunting algorithmically in O

(
n2) running

time. It is well-known that the weighted and unweighted Independent Set problem is
polynomially solvable in the case of bipartite graphs.

This allows us to treat several variants of the problem in a generic way, see Section 3.
Specifically, we obtain an algorithm with running time O

(
n5/2) for the uniform case, where

all low costs and all high costs are identical, respectively. Furthermore, for the non-uniform
case we have running time of O

(
n3). Both versions translate to a symmetric variant, where

it is also allowed to add and remove cars at the front of the train at low cost. In addition, in
Section 4, we formulate a dynamic program with running time O

(
n4), which exploits the

special structure of the graph. Although the running time is worse, it allows us to solve many
extensions, for instance, economies of scale, dependencies between consecutive stations, and
price-collection. Specifically, in the economies of scale variant, we provide a discount if many
inner shunting operations are performed at the same station. Dependencies between stations,
for example, occur if we want to avoid that two consecutive stations need to perform inner
shunting operations. Finally, in the price-collection variant, we get paid for transporting
cars, and the goal is find the best tradeoff between profit and shunting operation cost.

Related work. Shunting problems are usually considered in the context of a single
hump-yard or shunting-yard which serves as a central facility to rearrange trains. Specifically,
a standard hump-yard has a single incoming track where the trains arrive and leave and
several classification tracks. When a car wants to change its current classification track, it
always needs to be pulled first to the central incoming track via a pull-out operation, and
then pushed back to the destination classification track via a roll-in operation. For a more
detailed description, we refer to the survey of Gatto et al. [8]. This is the most basic variant
of this problem, but there are many variants depending on the allowed shunting operations or
topologies [12]. For instance, the case of two incoming tracks, also called a marshalling-yard.
Di Stefano and Koci [5] use a graph coloring approach to deal with this topology, including
overnight operations. This is also the paper the most related to ours, but their constraint
graph still differs significantly and they do not provide customized algorithms as our quite
flexible dynamic program. For an NP-hard version of the problem, Beygang, Dahms, and
Krumke [2] gave lower bounds on the optimal objective value and derived approximation
algorithms for offline and online variants. However, all these variants consider hub-and-
spoke-systems where a central facility is used to perform all shunting operations [18, 3]. A
multistage variant was considered by Jacob et al. [14], where an encoding of classification
schedules was introduced, which allows characterizing train classifcation methods as classes of
schedules and yields simpler and more precise analysis of well-known classification methods.

By contrast, our problem considers shunting from a more global perspective since the
evolution of a train is treated from its origin to its destination. Already in 2006, a similar
perspective was taken in a seminal operations research paper by Kroon et al. [16], in which
the construction of the dutch timetable is explained. A novel property of this timetable
is that it features robustness in spite of growing passenger and cargo demands. One key
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challenge to achieving this was to be able to treat train scheduling problems in a global
manner. The robustness of timetables continues to be an active area of research, e.g., by
Cicerone et al. [4].

Relations to list update. In the List Update problem, we are given a linked list,
which supports the operations put and get. A call of Put(i, x) stores a data item x at
position i in the list, yielding access cost of i. A call of Get(x) returns and removes x (if
present) from the list, at access cost equal to the position of x. Recall that this classical
List Update problem was introduced in a seminal paper by Sleator and Tarjan [21]. It
was shown by Ambühl et al. [1] that the offline List Update problem is NP-hard. Being a
fundamental problem in computer science, many variants have been proposed for the List
Update problem: For example, Martinez and Roura [17] and Munro [19] defined the MRM
model with an alternative cost model. There, it is allowed that the ordering of the elements
preceeding the one which is accessed can be changed free of charge. Golynski and López-Ortiz
[10] were able to give a polynomial time algorithm for the MRM list update model.

The Relaxed List Update problem, which we introduce here, features the following
cost model: An access at the head of the list encounters low cost c ≥ 0. Otherwise, we are
charged a high cost of c′ > c. That is, the access is either cheap, if it is at the head of the
list, or expensive, if it is not. Observe that each sequence of put/get operations translates
directly into an instance of Train Shunting with uniform low cost c and high cost c′ > c.
This model is more crude than the classical one, but it has the desireable property that the
corresponding offline problem can be solved in low order polynomial time as we show in this
paper.

Preliminaries. We denote the set of cars by J = {1, 2, . . . , n} and the set of stations
by I = {1, 2, . . . } which are passed by the locomotive in this order. For each car j ∈ J , we
associate two events, the source sj and the target tj , which induces the set S = {s1, . . . , sn}
of sources and the set T = {t1, . . . , tn} of targets. Moreover, for each event e ∈ S ∪ T , there
is an associated station i(e) where this events takes place such that i(sj) < i(tj) for each car
j. A solution for the problem is a schedule which defines the change of the train configuration
at each event e, from which we can derive the exact positions where to add cars over time.
If a car j is added to the exact end of the train, then only an outer shunting operation
with low cost cj ≥ 0 is required, but otherwise, if j is to be added to some other position,
and hence the train needs to be split, an inner shunting operation with high cost c′j > cj is
necessary. Similarly, removing a car from the end of the train results in an outer shunting
operation with low cost cj , but removing it from any other position requires high cost c′j . Let
wj := c′j − cj denote the additional cost of an inner shunting operation. The goal is hence
to find a schedule that minimizes the additional cost due to inner shunting operations. We
refer to the case where all c′j and cj are identical as Uniform Train Shunting, and we
may then assume that c′j = 1, cj = 0, and hence wj = 1.

2 Train Shunting and Bipartite Independent Sets

In this section, we give a construction reducing Train Shunting to finding independent sets
in bipartite graphs. To this end, let us assume for the moment that we have a strict ordering
< of the events S ∪ T which defines the temporal order in which these events are executed.
Clearly, this strict ordering needs to be consistent with the natural ordering of the stations
such that e < e′ implies i(e) ≤ i(e′) for any pair of events e, e′. We will expose in Lemma 5
an algorithm how to find an optimal such ordering. Using this, if sj < sj′ < tj < tj′ , then
we say that the cars j, j′ are overlapping, and otherwise, we say that they are independent.

ATMOS’12
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Now that we are given the ordering of the shunting events, it turns out that only the
overlapping pairs of cars j, j′ are problematic: Either the addition of car j′ or the removal of
car j can not be a (cheap) outer shunting operation. Therefore, we have to decide which car
encounters an outer and which an inner shunting operation. Motivated by this observation,
we define the following bipartite graph G = (S ∪ T,E) with vertices S ∪ T and edges E,
which is called the constraint graph of the Train Shunting problem and can trivially be
constructed in O

(
n2) time. For any two overlapping cars j, j′, we add the edge {sj′ , tj} to

the set E of edges of the graph G.
For a graph G = (V,E) with vertices V and edges E, a subset U ⊆ V is called an

independent set in G, if u, v ∈ U imply {u, v} 6∈ E. An independent set U is called maximal
if it is maximal with respect to inclusion. It is called maximum, if it is maximal with respect
to total weight.

Now we formally define the solution of Train Shunting as follows: Any sequence C
over elements of J is called a configuration, and the left-most element in C is called the end.
Using this, a solution C defines a configuration C(e) for each event e such that j ∈ C(e) for
sj ≤ e < tj and j 6∈ C(e) for e < sj and e ≥ tj .

The following two theorems establish an equivalence between solutions for Train Shunt-
ing and independent sets in bipartite graphs.

I Theorem 1. Let C be any solution of the Train Shunting problem and let U be the
events having outer shunting operations. Then U is an independent set in G.

Proof. Let sj′ , tj ∈ U and assume {sj′ , tj} ∈ E. Then there is an overlapping pair of cars
j, j′, i. e., with sj < sj′ < tj < tj′ . In the solution C, both events sj′ and tj have low cost
since they are both members of U . When the event tj occurs, i.e., the removal of car j, the
car is at the end. However, at event sj′ , the car j′ is added at the end, while car j is still in
the configuration. Thus, car j can not be at the end at event tj , which is a contradiction. J

I Theorem 2. Let U be a maximal independent set in G. Then there is a solution C for
Train Shunting such that exactly the events U have outer shunting operations.

The proof of the theorem follows immediately from Lemma 3 and Lemma 4 and is
organized as follows: The graph G and the independent set U induce an acyclic digraph H.
This digraph yields an ordering π of J . Finally, π yields a solution C, such that exactly the
events in the independent set U yield an outer shunting operation.

Let U be any independent set in G. We construct H = H(U) = (W,A) as follows:
Associate a vertex in H with every car, i.e., W = J . For an event e, let j = j(e) be the
associated car, i.e., e = sj or e = tj . Let j be any car and consider the events e′ with
sj < e′ < tj and associated car j′ = j(e′). If e′ = sj′ and sj′ ∈ U , add the edge (j, j′) to H,
but if e′ = tj′ and tj′ ∈ U , add the edge (j, j′) to H. The graph H can be constructed in
O
(
n2) time.

I Lemma 3. Let U be any independent set in G. Then the induced digraph H is acyclic and
can be constructed in O

(
n2) time.

Proof. Assume, for sake of contradiction, that H contains a directed cycle C, say. First
observe that any car j with sj , tj 6∈ U , by construction of H, does not have any incoming
edges (·, j) in H. Thus, such a car can not occur in a cycle. Hence we may assume that each
car j in a cycle satisfies sj ∈ U or tj ∈ U (or both).

Now let C = (j1, . . . , jk) be any directed cycle in H. We may assume that car j1 has the
smallest source. Since the edge (jk, j1) must exist in H we must have s1 < sk < t1 < tk and
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t1 ∈ U . This implies sk 6∈ U since the graph G contains the edge {s1, tk} as the cars 1 and
k overlap. Therefore tk ∈ U . The graph H must also contain the edge (jk−1, jk). Hence
we must have sk−1 < tk < tk−1 by construction. Thus we have s1 < sk−1 < t1 < tk−1 or
sk < sk−1 < tk < tk−1. As t1, tk ∈ U we can not have sk−1 ∈ U since the car k − 1 overlaps
with car 1 or k. Hence tk−1 ∈ U . We continue this reasoning and deduce tk < tk−1 < · · · < t2,
tk, . . . , t2 ∈ U , and sk, . . . , s2 6∈ U . Since the edge (j1, j2) must exist in H we must have
s1 < s2 < t1 < tk < t2 and s2 ∈ U , which is a contradiction. J

I Lemma 4. Let U be any maximal independent set in G and H be the induced acyclic
digraph. Then H induces a solution C for Train Shunting such that exactly the events U
yield an outer shunting operation and which can be constructed in O

(
n2) time.

Proof. First we construct an ordering π on J . Recall from Lemma 3 that the digraph H
is acyclic, and moreover recall that a vertex without outgoing edges is called a sink. Every
directed acyclic graph has a sink. Initially, π is the empty sequence. Let j be a sink in H,
append j to π, and remove j from H. Continue analogously removing sinks until H is empty.
This takes running time of O

(
n2).

Let I = (e1, . . . , e2n) be the sequence of events with e1 < e2 < . . . < e2n. For the sequence
Ik = (e1, . . . , ek), the set of active cars Ak is the set of cars j such that sj ∈ Ik but tj 6∈ Ik.
For any set J ′ ⊆ J define by π(J ′) the subsequence of π induced by J ′. We define the
following family of configurations C: C(ek) = π(Ak) for k = 1, . . . , 2n.

Now we have to show that exactly the events in U incur an outer shunting in C. Let
sj ∈ U be the source of some car j. Let A be the set of active cars at event sj , i.e., the cars
j′ with sj′ < sj < tj′ . By construction, the graph H contains the edge (j′, j) and hence
j precedes j′ in π. In particular, at the event sj , the sequence π(A) begins with the car
j and the car incurs an outer shunting. Analogously, if tj ∈ U . Now let sj 6∈ U . Since
U is a maximal independent set, the vertex sj in G is incident with an edge {sj , tj′} and
tj′ ∈ U . We hence have sj′ < sj < tj′ < tj . By construction, H contains the edge (j, j′) and
j′ precedes j in π. In particular, at the event sj , the car j′ is a member of the active set A
of cars and hence π(A) does not begin with car j. Hence the car j incurs an inner shunting
in the configuration at event sj . Analogously, if tj 6∈ U . J

Having established the correspondence between independent sets and solutions for Train
Shunting, we are in the position to remove the assumption that we have an explicit ordering
< over the events. Assume that there are events e, e′ with associated stations i(e) = i(e′).
In this case we are free to choose the ordering of the events, provided that this ordering is
consistent. There are two ways to break the tie: Either e < e′ or e′ < e. However, the two
orderings may yield different optimal objective values and it is questionable which one to
choose. The following result gives the answer.

I Lemma 5. An optimal consistent ordering can be constructed using the following rule:
Whenever we need to break a tie for two events, break the tie such that the two corresponding
cars become independent. This ordering can be computed in O(n2) time.

Proof. Observe that the two constraint graphs of two orderings that break any fixed tie
have the property that one is a subgraph of the other. Hence any independent set in the
supergraph is also one in the subgraph. Further, it is easy to see that the claimed ordering
yields the smallest number of edges in a constraint graph which is consistent with the input
instance, hence proving the claim. J

ATMOS’12
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3 Generic Algorithms

Theorems 1 and 2 give rise to a polyomial time algorithm Generic, which solves Train
Shunting optimally: Construct the constraint graph G, find a maximum independent set U
in G, construct the graph H, and deduce the sequence π, which yields an optimal solution C.

I Corollary 6. Generic solves Train Shunting optimally and can be implemented to
run in time O

(
n2 + τ(n)

)
, where τ(n) denotes a polynomial time for finding a maximum

independent set.

Proof. The optimality of the algorithm follows from Theorems 1 and 2. For the running time,
we have already argued that all the steps, except for the construction of the independent set U ,
can be done in O

(
n2) time. For general graphs, it is NP-complete to decide on the existence

of an independent set of a certain size or weight, see Garey and Johnson [7]. However, it
is well known that, for bipartite graphs, maximal independent sets with minimal weight
can be constructed in polynomial time, e.g., with the Ellipsoid method, see Grötschel,
Lóvász, and Schrijver [11]. This is due to the fact that the constraint matrix in the canonical
integer linear program is the incidence matrix of a bipartite graph. Such matrices are totally
unimodular and it is well known that the extreme point solutions of the linear programming
relaxation are integral. Thus the Ellipsoid algorithm already yields that Generic has
polynomial running time. J

Depending on the weight structure of the constraint graph, we can obtain low order
polynomial running times by using combinatorial algorithms.

3.1 Uniform Cost
Recall that in Train Shunting with uniform cost, which is identical to Relaxed List
Update, we may assume that wj = 1. Thus, the reduction derived in Section 2 gives an
unweighted bipartite graph G, and hence the goal is to simply find an independent set of
maximum size.

I Corollary 7. Generic solves Uniform Train Shunting optimally and can be imple-
mented to run in time O

(
n5/2).

Proof. The problem can be reduced to finding a minimum cut in the following auxiliary
network G′ = (S ∪ T ∪ {u, v}, A) with the following set A of arcs: For each edge {s, t} ∈ E
with s ∈ S and t ∈ T introduce (s, t) and add (u, s) for all s ∈ S and (t, v) for all t ∈ T .
All capacities are equal to one. Now, a minimum u− v-cut (X,Y ) with u ∈ X and v ∈ Y
in G′ corresponds to a maximum independent set U = (S ∩ Y ) ∪ (T ∩X) in the original
graph. In the present special case, the algorithm Even-Tarjan [6] finds a solution in time
O
(
n5/2). J

Alternatively, there is a similar reduction to Bipartite Matching, which also solves the
problem in time O

(
n5/2) with the Hopcroft-Karp [13] algorithm. For further details on

the well-known equivalence between Independent Set, Matching, and Vertex Cover
in case of bipartite graphs, see standard textbooks like, e.g., [15].

3.2 Non-Uniform Cost
Here we treat the general Train Shunting problem with non-uniform additional cost wj

for inner shunting operations.
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I Corollary 8. Generic solves Train Shunting optimally and can be implemented to run
in time O

(
n3).

Proof. Here, the reduction used in Corollary 7 is modified with respect to capacities: The
capacity of any arc (s, t) for s ∈ S and t ∈ T is unbounded, any arc (u, s) for s ∈ S has
capacity wj for the car j with sj = s, and any arc (t, v) for t ∈ T has capacity wj for the car
j with tj = t. These are the weights defined in the constraint graph defined above. For this
case, e.g., the algorithm Goldberg-Tarjan [9] solves the problem in time O

(
n3). J

3.3 Symmetric Train Shunting
In the Symmetric Train Shunting problem, the low cost for an outer shunting apply
at the front or end of the train. This variant reduces to the ordinary Train Shunting
problem as follows:

I Corollary 9. The Generic algorithm can be modified to solve (Uniform) Symmetric
Train Shunting with the same respective asymptotic running time as in the ordinary
variant.

Proof. Let G = (S ∪ T,E) be the constraint graph for (Uniform) Train Shunting.
Introduce a new graph G′′ as follows. Let G′ = (S′ ∪ T ′, E′) be a copy of G. Now define
G′′ = ((S ∪T ′)∪ (T ∪S′), E ∪E′ ∪F ), with the following set F = {{s, s′} | s ∈ S}∪ {{t, t′} |
t ∈ T}. That is, the left side of G′′ consists of the vertices S∪T ′, while the right side consists
of the vertices T ∪ S′. Observe that the edges in F only connect vertices on different sides.
Hence G′′ is bipartite and we are interested in a maximum independent set therein.

The vertices of G′ correspond to the events that occur at the front of the train, while
the vertices of G, as usual, correspond to the events that occur at the end. The edges
F ensure that no event occurs at the same time at the beginning and at the end of the
train. Observe that the construction of deriving a solution of (Uniform) Train Shunting
from an independent set in G′′ transfers analogously to (Uniform) Symmetric Train
Shunting.

As we have only at most tripled the set of vertices and edges, the asymptotic running
times remain the same. J

4 Dynamic Programming

In this section, we give a dynamic programming approach to solve Train Shunting. For
the sake of exposition, we only explain the dynamic program in detail for Uniform Train
Shunting with wj = 1, general Train Shunting and several extensions are then sketched
in the contained subsections.

Recall the strict temporal ordering < of the events from Lemma 5 which extends the
ordering induced by the stations. Because ties are here broken in favor of generating
independent car pairs, it follows for each overlapping pair of cars j, j′ that even i(sj) <
i(sj′) < i(tj) < i(tj′). We then say that j left-overlaps with j′, and analogously, we say that
j′ right-overlaps with j. Moreover, the reduction of Uniform Train Shunting to finding
a maximum independent set in Section 2 can be interpreted such that the goal is to mark
as many events as possible subject to the constraint that, for any overlapping pair of cars
j, j′ with i(sj) < i(sj′) < i(tj) < i(tj′), at most one of the events sj′ and tj is marked. Thus,
marking an event corresponds to adding this event to the independent set, and therefore,
marking the source and target event of a car means that we use a cheap outer shunting

ATMOS’12
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Figure 1 Subinstance.

operation to add and remove it to the train, respectively. Finally, note that we can also think
of a car j as an interval [sj , tj ] with left endpoint sj and right endpoint tj . We will use this
interpretation in the figures throughout this section.

We will now outline the dynamic program. To this end, consider a dynamic programming
array Π with entries of the form Π(i1, i2, i3), where the i1 ≤ i2 ≤ i3 are stations from the set
I. Since we may assume that I = {1, 2, . . . , 2n}, the array Π has thus polynomial size O(n3).
The goal is to fill Π such that each entry Π(i1, i2, i3) gives the maximum number of events
which can be marked in the subinstance consisting of the cars j with

(1) i2 ≤ i(sj) < i(tj) ≤ i3, in which case we call j an internal car, or
(2) i1 ≤ i(sj) < i2 ≤ i(tj) ≤ i3, in which case we call j an external car,
where we are only allowed to mark target events of external cars. An example subinstance is
schematically depicted in Figure 1, where jext is an external car and jint is an internal car.

To see how to fill Π, consider a fixed entry Π(i1, i2, i3). Note that it always holds that the
latest target event of some car is marked, since there is no other car which might right-overlap
with this car. Therefore, since there is hence always some car whose target event is marked,
we may distinguish the following cases:

Case 1. The only cars j whose target events tj are marked are the ones with i(tj) = i3.
In this case, Π(i1, i2, i3) = |A(i1, i2, i3)| + |R(i1, i2, i3)|, where A(i1, i2, i3) denotes the
set of internal cars and R(i1, i2, i3) denotes the set of internal or external cars j with
i(tj) = i3. We add A(i1, i2, i3) since we may assume that all source events of internal
cars are marked.

Case 2. There is an external car j whose target event tj is marked and i(tj) < i3. In
this case, pick the external car j with marked target event tj and latest target station
i(tj) < i3, where ties are broken arbitrarily. We collect several facts:

(1) There is no internal car j′ whose source event is marked which right-overlaps with j.
(2) If there is an internal car j′ which right-overlaps with j and whose target event tj is not

marked, then there is another internal car j′′ with i(sj′′) ≥ i(tj) which right-overlaps
with j′ whose source event is marked. First, there must be such an interval j′′, since
we would otherwise mark tj . Moreover, if i(sj′′) < i(tj), and hence j′′ right-overlaps
with j, then it is not possible that tj is marked.

(3) By the selection of j, there is no external car j′ with marked target event tj′ and
i(tj′) > i(tj).

This shows that we get the decomposition Π(i1, i2, i3) = Π(i1, i2, i(tj)) + Π(i2, i(tj), i3),
as schematically depicted in Figure 2, where the dot on the target event of car j indicates
that this event is marked.

Case 3. There is no external car whose target event is marked, but an internal car j with
i(tj) < i3, see Figure 3. In this case, pick the internal car j with marked target event tj ,
i(tj) < i3, and earliest source station i(sj), where ties are broken arbitrarily. Note that
the facts (1) and (2) from the last case also hold in this case. We moreover obtain the
following fact:
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Figure 2 Marked external car.

Figure 3 Marked internal car.

It holds for each internal car j′ with i(sj′) < i(sj) that its target event is not marked,
but its source event is marked. The first fact follows from the selection of j. To see the
second fact, assume that its source event is not marked. In this case, there must be a
car which left-overlaps with j′ whose target event is marked. However, this would be a
better selection for j, leading to a contradiction as well.
This gives the decompositon Π(i1, i2, i3) = Π(i(sj), i(sj), i(tj)) + Π(i(sj), i(tj), i3) +
|L(i2, i(sj), i3)|, where L(i2, i(sj), i3) denotes the set of internal cars j′ with i2 ≤ i(sj′) <
i(sj).

Summarizing these cases gives the following recurrence relation:

Π(i1, i2, i3) = max
{
|A(i1, i2, i3)|+ |R(i1, i2, i3)|,

max
j external

{Π(i1, i2, i(tj)) + Π(i2, i(tj), i3)},

max
j internal

{Π(i(sj), i(sj), i(tj)) + Π(i(sj), i(tj), i3) + |L(i2, i(sj), i3)|}
}

Hence, applying this recurrence relation takes O (n) time, which shows that Π can be
filled in O

(
n4) time if we compute all values |A(i1, i2, i3)|, |R(i1, i2, i3)|, and |L(i2, i(sj), i3)|

beforehand. However, this can be done in time O(n3). We conclude with the following
theorem.

I Theorem 10. The described dynamic programming scheme solves Uniform Train Shunt-
ing in O

(
n4) time.

4.1 Non-Uniform Cost
The dynamic programming scheme can be easily extended to general Train Shunting with
arbitrary wj . Specifically, we only need to replace the term |A(i1, i2, i3)| by

∑
j∈A(i1,i2,i3) wj ,

|R(i1, i2, i3)| by
∑

j∈R(i1,i2,i3) wj , and |L(i2, i(sj), i3)| by
∑

j∈L(i2,i(sj),i3) wj in the recurrence
relation. Note that the asymptotic running time of the dynamic program is not affected by
this change.

4.2 Economies of Scale
It is natural to assume that there are economies of scale when performing shunting operations.
For instance, if we do an inner shunting operation for some car j at some station, then
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doing an additional inner shunting operation for another car j′ 6= j at the same station
should not matter much more. To this end, consider a monotone increasing concave function
x 7→Wi(x) which indicates the cost savings when doing x outer shunting operations at station
i. Using this, we need to replace the term |A(i1, i2, i3)| by

∑i3
i=i2

Wi(|Ai(i1, i2, i3)|) where
Ai(i1, i2, i3) := {j ∈ A(i1, i2, i3)|i(sj) = i}, the term |R(i1, i2, i3)| by Wi3(|R(i1, i2, i3)|),
and the term |L(i2, i(sj), i3)| by

∑i(sj)
i=i2

Wi(Li(i2, i(sj), i3)) where Li(i2, i(sj), i3) := |{j′ ∈
L(i2, i(sj), i3)|i(sj′) = i}|. This allows us to treat economies of scale in the recurrence
relation. Also this extension does not increase the asymptotic running time of the dynamic
program.

4.3 Station-Dependencies
There might be constraints regarding the sequence of shunting operations. For instance, in
order to evenly distribute delays, it might be convenient to avoid expensive inner shunting
operations at two consecutive stations. To incorporate this into the dynamic programming
array, for each entry Π(i1, i2, i3), we need to distinguish the cases that there is a shunting
operation at station i2−1 or not. We can do this by extending such an entry as Π(i1, i2, i3, x),
where x is a boolean variable that indicates whether there is a shunting operation at station
i2 − 1, and if x is true, then Π(i1, i2, i3, x) gives the maximal number of events we can mark
without marking any events with associated station i2, and if x is false, then there is no
such constraint. This case distinction can be easily incorporated into the recurrence relation.
Since this only doubles the size of Π, the running time remains asymptotically the same.
However, more complicated constraints regarding the sequence of shunting operations can be
added in a similar way.

4.4 Prize-Collection
Consider the scenario that each delivered car j gives us some integral profit pj . In this
case, we need to find a trade-off in between profit and shunting cost. For the case that
the profits pj are encoded as unaries, and hence pj = O(n), this price-collection scenario
can be incorporated into the dynamic programming array by adding one additional price
bound. That is, the entries then have the form Π(i1, i2, i3, p) for some integer p, and this
entry indicates the minimum shunting cost for the case that the sum of the collected profits
is at least p. If the profits are bounded by O (n), then this increases the size of the array to
O
(
n5). Moreover, since each recurrence relation can then be implemented in O(n2) time,

the total running time is O
(
n7).
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