
Multi-Dimensional Commodity Covering for Tariff
Selection in Transportation∗

Felix G. König1, Jannik Matuschke2, and Alexander Richter2

1 TomTom International BV
An den Treptowers 1, 12435 Berlin, Germany.
felix.koenig@tomtom.com

2 Technische Universität Berlin, Institut für Mathematik
Straße des 17. Juni 136, 10623 Berlin, Germany.
{matuschke,arichter}@math.tu-berlin.de

Abstract
In this paper, we study a multi-dimensional commodity covering problem, which we encountered
as a subproblem in optimizing large scale transportation networks in logistics. The problem
asks for a selection of containers for transporting a given set of commodities, each commodity
having different extensions of properties such as weight or volume. Each container can be selected
multiple times and is specified by a fixed charge and capacities in the relevant properties. The
task is to find a cost minimal collection of containers and a feasible assignment of the demand
to all selected containers.

From theoretical point of view, by exploring similarities to the well known SetCover prob-
lem, we derive NP-hardness and see that the non-approximability result known for set cover
also carries over to our problem. For practical applications we need very fast heuristics to be
integrated into a meta-heuristic framework that—depending on the context—either provide fea-
sible near optimal solutions or only estimate the cost value of an optimal solution. We develop
and analyze a flexible family of greedy algorithms that meet these challenges. In order to find
best-performing configurations for different requirements of the meta-heuristic framework, we
provide an extensive computational study on random and real world instance sets obtained from
our project partner 4flow AG. We outline a trade-off between running times and solution quality
and conclude that the proposed methods achieve the accuracy and efficiency necessary for serv-
ing as a key ingredient in more complex meta-heuristics enabling the optimization of large-scale
networks.
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1 Introduction

One of the most important fields of application of combinatorial optimization is the subject
of transportation logistics. Besides location and routing decisions, the correct choice of
transportation modes and corresponding tariffs plays a crucial role in this context, as real-
world transporation tariffs can be of quite complex nature, often depending on the specific
features of the freight being transported.
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In this paper, we consider the multi-dimensional commodity covering problem (MDCC),
an extension of the classical SetCover problem, which occurs as an important subproblem
in a transportation model recently developed within a joint research project with supply chain
management consulting company 4flow AG. In this model, commodities are defined by their
extensions w.r.t. various properties, such as weight or volume, and have to be transported
through a network. On each transport link in the network, a collection of different containers
is available for transporting these commodities. The concept of containers models complex
tariff structures and each container type varies in price and capacities for the respective
properties. Compared to the global objective of optimizing the routes of flow in the network,
MDCC takes a local perspective, optimizing transport costs on each individual link: Given
a vector of demand for each commodity to be transported on a particular link, find a
cost-minimal selection of containers and an assignment of the demand, such that all demand
can be transported along the link without violating the capacity of any container.

From a theoretical point of view, MDCC is closely related to classical covering problems.
We will see later that corresponding non-approximability results for these problems carry
over to MDCC. From a practical point of view, analogies to minimum knapsack and multi-
dimensional knapsack problems contributed to the terminology and design of the algorithms
presented. In our algorithmic context, meta-heuristics concerned with optimizing the global
flow pattern in the network are employing MDCC in two different scenarios: First, given
a flow pattern in the network, a good selection of containers has to be found on every
flow-carrying link. Second, while scanning for cost efficient routes to forward flow along, the
meta-heuristics need good estimates on the cost incurred by sending a particular demand
along a link. These latter scanning steps are performed very frequently (easily more than a
million times during the optimization of a single network) and therefore need to be carried
out even faster—however, note that a feasible solution does not need to be computed in
this case. We will address both scenarios with different variants of greedy algorithms that
provide an efficient balance of accuracy and speed.

Contribution and structure of the paper In the remainder of Section 1, we give a formal
definition of MDCC and provide an overview of related work. In Section 2, we show that
MDCC cannot be approximated better than by a factor logarithmic in the number of
properties. In Section 3, we introduce several efficient heuristics for MDCC based on a
unified greedy framework. The variants are tailored for fulfilling different requirements on
solution quality and speed. These methods are evaluated in Section 4 within a computational
study conducted both on an extensive set of instances arising from computations on real-world
transportation networks, as well as an additional set of randomly generated instances. The
results show that our algorithms enable the efficient evaluation of complex cost functions,
which can be used to capture real world tariff systems more precisely in network flow based
transportation models while maintaining the compuational tractability of such models.

1.1 Problem formulation

An instance of the multi-dimensinal commodity covering problem (MDCC) is given by a
set of properties P , commodities K and container types J . Each commodity i ∈ K has a
demand di that has to be transported along the link. Its properties are defined by a vector
αi ∈ QP+, i.e., one unit of commodity i ∈ K requires a capacity of αip for property j ∈ P .
Each container j ∈ J is defined by its capacities βpj ∈ Q+ w.r.t. each property p ∈ P and a
cost cj ∈ Q+ that is incurred for each copy of container j in use.
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The goal is to find a minimum cost selection of container copies together with an
assignment of the total demand to those containers such that the capacity of each container
suffices to carry the shipment it has been assigned. More formally, for each conainer type
j ∈ J , we need to determine the number of containers yj ∈ Z+ to be used, and the amount
xij ∈ Q+ of each commodity i ∈ K to be packed into containers of type j. The solution is
feasible, if all demand d ∈ QK+ is completely assigned, i.e.,∑

j∈J
xij = di ∀i ∈ K (1)

and all capacity constraints∑
i∈K

αipxij ≤ yjβpj ∀j ∈ J, p ∈ P (2)

of each container type are satisfied. Thus, we are looking for an optimal solution to the
following mixed integer linear program (MIP).

min c(y) :=
∑
j∈J

cjyj

s.t. x, y fulfill (1) & (2)
xij ∈ QK×J+ , yj ∈ ZJ+

I Notation. We call a vector x ∈ QK with amounts of commodities a commodity vector.
Similarly, a vector κ ∈ QP with amounts for each property is called property vector.

For x ∈ QK we define the aggregated properties by κp(x) :=
∑
i∈K αpixi for all p ∈ P .

I Remark. We can assume that κp(d) > 0 for all properties p ∈ P since otherwise we could
delete such a property from the problem instance. We also assume w.l.o.g. βpj ≤ κp(d), since
no container needs to have more capacities than demanded. Furthermore, note that due to
the fractional assignment of commodities there are two degrees of freedom w.r.t. scaling:

For some single property p ∈ P , scaling at the same time all αpi and βpj by some factor
µ > 0 yields an equivalent MDCC instance.
For some single commodity i ∈ K, scaling at the same time di by some factor ν > 0 and
all αpi by 1/ν yields an equivalent MDCC instance.

1.2 Related work
The special case of MDCC where each commodity has only one non-zero property is known
as covering integer programming. In this case, the assignment of commodities to containers
can be completely removed from the problem formulation by aggregating Equalities (1) and
Inequalities (2) for each property:∑

j∈J

∑
i∈K

αpixij ≤
∑
j∈J

yjβpj =⇒
(1)

κp(d) =
∑
i∈K

αpidi ≤
∑
j∈J

yjβpj (3)

It then suffices to cover the aggregated properties of the demand with container capacities.
The most prominent special case of this setting is the well-known SetCover problem:

Given a ground set S and a set family S ⊆ 2S with costs c : S→ Q+, find a minimum cost
subset of F ⊆ S such that

⋃
F∈F F = S. In the context of MDCC, this corresponds to the

case where additionally all input data is restricted to be in {0, 1}. We establish a formal
reduction of SetCover to MDCC in Section 2. Chvatal [2] analyzed a greedy algorithm
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for SetCover that achieves an approximation ratio of H(D) where D is the dilation of the
instance, i.e., the size of the largest set in S, and H(n) denotes the nth harmonic number,
i.e., H(n) :=

∑n
k=1 1/k. Feige [5] showed that this approximation ratio is essentially best

possible from a theoretical point of view, as the existence of an o(ln(|S|))-approximation
algorithm for SetCover implies P = NP.

For general covering integer programs, Dobson [4] devises a combinatorial algorithm that
achieves an approximation factor of maxj∈J

{
log
(∑

p∈P βpj

)
+ 1 +H(nj))

}
, where nj is the

number of nonzero capacities in container j. In [11] and [12], Srinivasan proposes a different
algorithm based on randomized rounding involving the width of the problem defined as
W := minp∈P, j ∈J{κp(d)/βpj : βpj > 0} and an adapted definition of the dilation D as D :=
maxj∈J nj . The author derives a (1+O(max{ln(D+1)/W,

√
ln(D + 1)/W}))-approximation

algorithm and also gives “pessimistic estimators” that allow for derandomization of the
rounding scheme. Exact algorithms based on dynamic programming are known [6] but suffer
from a running time growing exponentially in |P |. Yet more different bounds for variations
of the problem and for further assumptions on input data have been attained in the last
decades, a recent overview is given for example in [8]. In the case of only one property
(|P | = 1) the problem is referred to as a minimum knapsack problem and a greedy algorithm
with performance ratio of 3/2, which can be extended to a (not fully) polynomial time
approximation scheme [3]. Also a primal-dual algorithm with performance ratio 2 has been
recently explored [1]. Note that all these results only apply to the case where each commodity
has only one non-zero property, while for the more general problem studied in this paper, to
the best of our knowledge, no results are known up to this point.

2 (Non-)approximability of MDCC

In this section, we derive NP-hardness and non-approximability for MDCC by reduction
from SetCover. However, we will also show that under certain conditions on the input data
the known results for covering problems can be used to obtain an approximation algorithm
for MDCC with a factor depending logarithmically on the number of properties and on a
particular variance measure for the instance.

2.1 Hardness of MDCC
Given a SetCover instance (S,S), we can construct a corresponding MDCC instance
(K,P, J) such that for any solution for the former instance there is a solution for the latter
one with same cost value and vice versa. Indeed, we can model each ground element by
introducing a commodity that has only one nonzero associated property, i.e., we chose
K = P = S. Furthermore, we can model sets Sj ∈ S by introducing containers j that
have only nonzero capacities for those properties p ∈ P that are associated with those
ground elements contained in Sj . This way, selecting a container j ∈ J and assigning some
commodity i ∈ K to it corresponds to selecting a set Sj ∈ S, that covers ground element
ei ∈ S.

I Theorem 1. There is a constant c > 0 such there is no c ln(|P |)-approximation algorithm
for MDCC unless P = NP.

Proof. Observe that the construction described above is cost preserving, and thus any
f(|P |)-approximation algorithm for MDCC for some function f immediately implies an
f(|S|)-approximation algorithm for SetCover. As shown in [5], there is a constant c > 0
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such that there is no c ln(|S|) approximation for set cover unless P = NP. Accordingly, for
the same c, there also is no c ln(|P |)-approximation for MDCC unless P = NP. J

Approximation with bounds on input data

In order to achieve an approximation guarantee for the MDCC, we again consider the
aggregation of the capacity constraints (3) from Section 1.2. We obtain the following covering
integer program as relaxation of the problem, which we denote by A-MDCC:

min
{
c(y) : y ∈ ZJ+,

∑
j∈J

βpjyj ≥ κp(d) ∀ p ∈ P
}
.

For the special case of each commodity having only one nonzero property discussed Section 1.2,
the aggregation results in a more compact but equivalent formulation of the problem. However,
in the general case, this is no longer true. In fact, it is easy to observe that the relaxation
might allow for feasible solutions even if the original problem is infeasible. Yet we will show
that for a certain class of instances, it is possible to construct a feasible solution of MDCC
from a feasible solution of A-MDCC. To this end, we definde the capacity variance δ of an
instance of MDCC by

δ := max
{
κq(d)βpj
κp(d)βqj

: p, q ∈ P, j ∈ J
}
.

Note that δ ∈ [1,∞] and the capacity variance is only finite if βpj > 0 for all p ∈ P, j ∈ J . In
this case, we can show that the containers selected in a solution of A-MDCC suffice to cover
at least an 1

δ -fraction of the demand of the original MDCC instance. Combining this result
with an (1 + O(ln |P |))-appoximation algorithm for A-MDCC obtained from [12, 11], we
derive an dδe(1 +O(ln |P |))-approximation to MDCC instances with finite capacity variance.

I Lemma 2. For an instance of MDCC with finite capacity variance, let y be a solution to
the corresponding A-MDCC instance. Then there is an x ∈ QK×J+ such that κp(xj) ≤ βpjyj
for all j ∈ J, p ∈ P and

∑
j∈J xij ≥

1
δdi for all i ∈ K.

I Theorem 3. There is an dδe(1+O(ln |P |))-approximation algorithm for MDCC restricted
to instances with finite capacity variance.

A detailed proof of Lemma 2 and Theorem 3 can be found in the extended version of this
paper [9].

3 A heuristic greedy framework

In this section we present a framework of greedy algorithms to heuristically produce near-
optimal solutions for instances of MDCC within very short running-time. Algorithmic
requirements are twofold: Due to the integration into a meta-heuristic framework our
algorithms have to solve up to 2 million MDCC instances or at least estimate their cost
within one meta-heuristic run, which requires them to be extremely fast. Furthermore, our
project partner favors algorithmic variants that run without any third party licensed software,
such as MIP- or LP-solvers. We emphasize that some of our methods are specifically designed
to cope well with the given practice instances: In those instances all properties and capacities
are strictly positive, they are always feasible and the number of properties is small. Though
some of the following algorithms also work with zero-valued properties or capacities and
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feasibility tests could be easily incorporated, we omit the explicit treatment of these issues
for the sake of readability.

The general outline follows a natural greedy approach that shares similarities with the
concepts applied to integer covering problems as presented for example in [4]. We denote with
d̄ the remaining commodity demand to be covered. The generic greedy algorithm (formally
denoted as Algorithm 1 below) repeatedly selects an “efficient” container j ∈ J to cover
portions of, or the whole remaining demand d̄. It uses generic methods Score and Fill for
which we will devise different variants: Score(j,d̄) returns a value that reflects a measure
of efficiency of container j with respect to the remaining demand d̄, i.e., the amount of
demand covered by the container compared against its cost. Fill(j,d̄) returns a vector ∆ of
commodities 0 ≤ ∆ ≤ d̄ that uses container j at maximal capacity and can then be assigned
to it. These two methods represent the computational bottleneck: Both performance and
efficiency of the generic greedy algorithm depend on the detailed implementation of these
methods. Note that for a given Fill implementation, a corresponding Score method can be
defined as the amount of aggregated properties of covered commodities per container cost:

Score(j,d̄) := 1
cj
·
∑
p∈P

κp(Fill(j,d̄)) .

However, this makes the task of scoring a container as computationally expensive as the task
of filling a container and we will discuss other possibilities in the following paragraphs.

Algorithm 1 repeats until d̄ reduces to zero and all demand is covered. However, at some
point in the execution there might be containers large enough to cover d̄ as well as containers
that cover only fractions of d̄. In such situations both outcomes are considered: we branch
a separate complete solution with a large container selected, if it improves upon the best
known solution (lines 5 to 8), and continue considering the incomplete partial solution with
a smaller container selected, if its cost does not exceed the best known cost. To speed up the
algorithm we can assign the computed mix of commodities ∆ multiple times to copies of
the same container, as long as there is enough remaining demand d̄ to assign ∆ completely
(line 11). This is convenient if the Score function depends on the computed filling but for
heuristic Score functions this might imply that some of the container copies are selected
although there was another container with higher score. To simplify notation we associate a
multiset Y over J with a possible solution vector y ∈ ZJ+ that contains yj copies of container
j ∈ J and denote with c(Y ) the respective selection cost c(y). In the following paragraphs
we introduce and discuss different Score and Fill methods including a variant where Score
does not depend on Fill.

3.1 LP-based filling of containers
The most versatile approach for designing a Fill method is to use linear programming. The
objective function for the linear program (LP) is then to minimize the sum of slack in all
capacity constraints. We introduce slack variables sp for each property p ∈ P , and obtain the
following LP-formulation for a fixed container j ∈ J and a given remaining demand vector d̄:

min
∑
p∈P

sp

s.t.
∑
i∈K

αpi∆i + sp = βpj ∀ p ∈ P (4)

0 ≤ ∆i ≤ d̄i ∀ i ∈ K, sp ≥ 0 ∀ p ∈ P

ATMOS’12
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Algorithm 1: Generic Greedy Algorithm (GGA)
Input: MDCC instance (K,P, J) with initial demand d
Output: assignment commodity vectors x′j ∈ QK+ , j ∈ J, multiset Y ′ over J

1 d̄← d; // remaining uncovered demand
2 (xj)j∈J ← 0; Y ← ∅ ; // current partial solution
3 (x′j)j∈J ← 0; Y ′ ← ∅ ; // current best complete solution
4 while there is uncovered demand d̄ do

// consider separate complete solution
5 if there exists jF = argmin

j∈J:κ(d̄)≤βj

cj then

6 if Y ′ = ∅ or c(Y ∪ jF ) < c(Y ′) then // found new best solution?
7 replace Y ′ with Y ∪ jF and (x′j)j∈J with (xj)j∈J ;
8 x′jF

← x′jF
+ d̄; // update new best solution

9 jB ← argmax
j∈J

Score(j, d̄) ; // pick most efficient container

10 ∆ ← Fill(jB , d̄); // compute mix of commodities to assign

11 n ←
⌊
mini∈K:∆i 6=0

d̄i

∆i

⌋
; // compute multiplicity of assignment

12 Y ← Y ∪i=1···n {jB}; // add container copies
13 xjB

← xjB
+ n ·∆ ; // update assigned commodities

14 d̄← d̄− n ·∆ ; // compute remaining uncovered demand
15 if Y ′ 6= ∅ and c(Y ) ≥ c(Y ′) then
16 return x′j , Y

′; // complete solution dominates partial solution

This method is the most versatile because it easily copes with properties or capacities of
value 0 and infeasible instances can be detected whenever there is remaining demand and no
container produces a nonzero filling. Furthermore, the minimization of slack leads to efficient
utilization of containers. However, a drawback of the method lies in the computational effort,
since a distinct LP for each container has to be solved in every iteration of Algorithm 1.

3.2 Greedy filling method
In order to achieve good container utilization without solving LPs, we devise a two-phase
greedy method. Both phases successively select and add commodities to a given container j
so as to approximate the capacity vector βj of the container with the aggregated properties
κ(∆) of the assigned commodity vector ∆. While Phase 1 can deal with zero-entries in
property and capacity vectors and can be used to detect infeasible instances, Phase 2 can
only be applied to instances with all nonzero properties and capacities.

The first phase adds commodities that minimize the residual capacity until one of the
capacity constraints becomes tight or the demand of every commodity is depleted. Assuming
that some commodity demands have already been added to ∆ let β̄j be the vector of residual
capacities of container j w.r.t. ∆. For any given vector of commodities δ ∈ QK+ , we denote
with linFrac the maximal fraction of δ that can be feasibly and uniformly assigned to a
container with residual capacities β̄j , defined by:

linFrac(δ, β̄j) := min
p∈P :κp(δ)6=0

β̄pj/κp(δ) .

Now the algorithm successively chooses a commodity i that minimizes the Euclidian norm of



F.G. König, J. Matuschke, and A. Richter 65

the vector of slacks after maximal feasible assignment of this commodity, i.e.,

i = argmin
i′∈K

‖β̄j −min{linFrac(d̄i
′
, β̄j) , 1} · κ(d̄i

′
)‖

where d̄i = (0, . . . , d̄i, . . . , 0), and adds this amount of commodity i to the current vector ∆.
Phase 1 might incur an unnecessary slack in some capacities due to the greedy choice of

commodities. To improve on this, Phase 2 minimizes slack by focusing on a good mix of
assigned commodities: It adjusts the current ∆ so as to approximate the ray induced by the
capacity vector βj ∈ QP with a conic combination of property vectors αi of the available
commodities. More formally, we decompose the property space QP = V (βj)+V (βj)⊥ into the
linear subspace V (βj) spanned by the capacity vector βj and its orthogonal complement and
consider for each commodity i the unique decomposition of its property vector αi = vi + ui
with vi ∈ V (βj) and ui ∈ V (βj)⊥. The current commodity mix ∆ ∈ QK+ induces the
property vector

∑
i∈K ∆iαi =

∑
i∈K ∆ivi +

∑
i∈K ∆iui ∈ QP+. Our goal of approximating

the ray spanned by βj corresponds to minimizing the orthogonal deviation ‖
∑

∆iui‖. For
commodity ` ∈ K, we define λ` := 〈

∑
∆iui, u`〉/‖u`‖2. Note that λ`u` corresponds to

the projection of
∑

∆iui on V (u`). If λ` < 0, we augment ∆ by min{−λ`, d̄`} units of
commodity `, which leads to a decrease of the orthogonal deviation. We iteratively augment
∆ in this way until no additional improvement can be achieved by any commodity. Note
that the resulting vector ∆ might violate container capacities. We therefore scale ∆ down to
feasibility.

3.3 Fraction based scoring
From practical point of view, another computational bottleneck concerning running time is
the Score method, because Score has to be computed for every container in each iteration of
Algorithm 1. As mentioned above, a Score method can be defined depending on any of the
previous Fill methods, making Score as computationally expensive as Fill. Instead one can
define a less accurate but significantly faster method by Score(j,d̄) := (1/cj)linFrac(d̄,βj).
Note that this scoring only makes sense if all container capacities are strictly positive and
recall that linFrac(d̄,βj) is the fraction of the remaining demand d̄ that can be uniformly
assigned to the container. This fraction can be small compared to the maximum assignable
value of a single commodity. We will outline the tradeoff between running time and solution
quality due to a less accurate Score in Section 4.

3.4 Theoretical bound on running time
In order to obtain a theoretical bound on the running time of the heuristic, we again restrict
to instances with finite capacity variance and observe that every of the presented Fill
methods either returns a filling with at least one tight capacity constraint or all remaining
demand d̄ is used. This observation can be used to bound the total number of chosen
containers and to show pseudo-polynomial running time (see [9] for a formal proof).

I Theorem 4. The generic greedy algorithm (Algorithm 1) has pseudo-polynomial running
time for instances finite capacity variance.

Note that this theoretical worst-case bound does not yield any information on the practical
running time of the greedy algorithm on real world instances. In fact, our computational
results in Section 4 reveal this practical running time to be extremely low.

ATMOS’12
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3.5 Cost estimators
In some applications of MDCC it is not important to compute an assignment of commodities
to containers, but merely an estimate on the incurred cost. Examples include shortest path
type algorithms where nodes are to be labeled with the cost of forwarding a given amount flow
to them. Hence, it is useful to investigate whether an algorithm for MDCC can be accelerated
when setting the actual choice of containers aside and only focusing on (approximate) cost.
Again, both presented estimators rely on all strictly positive properties and capacities, as
present in practice instances.

Covering relaxation (CR) We again consider relaxation A-MDCC from Section 2 to obtain
a very fast cost estimation. Recall its formulation:

min
{
c(y) : y ∈ ZJ+,

∑
j∈J

βpjyj ≥ κp(d) ∀ p ∈ P
}
.

We can heuristically solve this problem very efficiently by adjusting Algorithm 1 to directly
operate on a property vector κ̄ ∈ QP+ of residual uncovered properties instead of on the
residual commodity demand vector d̄, i.e., we reduce κ̄ by βj for each selected container
copy of type j. An appropriate scoring function with respect to κ̄ can be defined by
Score(j, κ̄) := 1/cj · minp∈P

{
βpj/κ̄ : κ̄p > 0

}
. As mentioned before, a solution to A-

MDCC does not necessarily yield a feasible solution for MDCC. However, for many real-
world instances, applying the adjusted variant of Algorithm 1 to CR proves to be a reasonable
estimate (see Section 4).

One dimensional covering restriction (CR1D) Like the covering relaxation, the one dimen-
sional covering restriction eliminates the computational effort arising from flow assignment
to containers. Differently from the above, however, we restrict a container’s filling to the
maximal uniformly assignable fraction of the total demand d. More formally, each container
j ∈ J is assigned a weight wj := min(1, linFrac(d, βj)) and the resulting one dimensional
covering problem, also known as minimum knapsack problem, can be written as:

min
y∈ZJ

+

{∑
j∈J

cjyj |
∑
j∈J

yjwj ≥ 1
}
.

We observe that by the definition of wj , a feasible solution to the above formulation always
yields a feasible solution to MDCC. To quickly obtain a heuristic solution, we can apply
a greedy algorithm given in [3] that is very similar to Algorithm 1 and has performance
guarantee two. Also, we benefit from significant speedups: At first, all containers can be
presorted in order of non-increasing score values defined as cj/wj and therefore need to be
considered exactly once in this order. Second, we omit any calls to Score or Fill methods.
While there also is an approximation scheme for the covering restriction [3], we emphasize
that running time is our major interest here, and therefore restrict to the basic version of
the greedy algorithm.

4 Computational study

We now evaluate the efficiency and solution quality attained by the algorithms presented in
the preceding section within a computational study on both, instances arising from real-world
logistics networks as well as randomly generated instances.
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4.1 Test instances
As mentioned in the introduction, the real world instances of MDCC considered in this
article arise as subproblems in a fixed charge multi-commodity network flow model for tactical
logistics optimization. Our project partner 4flow AG provided an extensive library comprised
by 145 networks aggregated from four recent and on-going customer projects in three different
industries (automotive, chemical, retail). Given a fixed flow pattern in such a network, an
optimal tariff selection for each link that carries flow has to be found and each such link
contributes an individual MDCC subproblem. Naturally, meta-heuristics consider a vast
amount of different intermediate flow patterns in their solving process, but we could observe
that the final, i.e., locally optimal flow patterns already introduce a representative subset of
those instances. We therefore restrict our study to MDCC instances arising from final flow
patterns obtained by various meta heuristics.

We observed that many of those instances are very easy to solve in the sense that they
allow for an optimal solution with only a single container. Note that for those instances an
optimal solution is always considered (and hence found) in line 5 of Algorithm 1. In order to
prevent numerous easy instances from dominating the outcome of the study we removed these
instances from the test set. The resulting instance sets are called Auto1, Auto2, Chemical
and Retail with 581, 647, 2867 and 4600 MDCC instances respectively. Though the number
of commodities present in the networks varies between 50 and 500, in extracted MDCC
instances only 10 commodities are found in averages. The number of different container
types varies from 6 to 38. In each instance two properties—mass and volume—are present.

We also generated three sets of random instances following some of the steps outlined in
[10] to test the performance of our algorithms on instances with more than two properties
and different other modifications. The main differences in performance are visible when
considering different numbers of properties. We therefore aggregate all instance sets with the
same number of properties and obtain sets “RandP2”, “RandP4” and “RandP8” with 2, 4
and 8 properties respectively, each containing 960 instances (see [9] for more details).

4.2 Tested configurations
We tested three promising configurations of the greedy framework, denoted by 1P/LP, 1P/2P,
and Fr/2P, as well as the two cost estimators CR and CR1D from Section 3.5. From previous
tests we could infer that using either LP-Based filling from Section 3.1 or the two-phase
greedy Fill method described in Section 3.2 for the scoring task exceeds acceptable running
times. Thus, Configurations 1P/LP and 1P/2P employ only the first phase of the greedy filling
algorithm to compute Score from the resulting filling. 1P/LP then computes a feasible filling
using the LP-based method, while 1P/2P uses the two-phase greedy method for this task. The
third configuration, Fr/2P, uses the fraction based scoring method together with two-phase
greedy filling. We compare the solutions computed by our solvers to the corresponding
near-optimal solutions obtained by solving the MIP formulation of MDCC and report the
gap in percent. Note that for the CR configuration, it is possible to underestimate the optimal
cost value. Whenever this happens, we compute the negative gap to the CPLEX solution cost
and consider its absolute value for averaging.

Algorithms have been implemented in C++ and compiled with gcc 4.6.2 on SuSE 12.1
Linux with kernel 3.1.0-1.2. Computations have been performed on a desktop machine with an
Intel Core Duo CPU (3.00GHz, 64 bit) and 4GB of memory (note that our implementations
make use of only one thread). We measure the running time as CPU user time and the
given values denote seconds. Since solving time for each individual instance lies within a few
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Table 1 Optimality gaps and computation times of solvers and estimators on practice instances.

1P/LP 1P/2P Fr/2P CR CR1D
Instance Set Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time

Auto1 2.144 1.96 3.153 0.73 17.900 0.18 18.695 0.02 28.442 <0.01
Auto2 0.222 1.67 0.228 0.49 0.334 0.13 0.548 0.01 0.801 0.01
Chemical 0.053 6.56 0.053 0.56 0.053 0.43 0.053 0.03 0.053 0.03
Retail 0.074 9.17 0.074 1.72 0.074 1.11 0.074 0.04 0.074 0.05

Table 2 Optimality gaps and computation times of solvers and estimators on random instances.

1P/LP 1P/2P Fr/2P CR CR1D
Instance Set Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time Av-Gap Time

RandP2 1.801 63.59 4.176 50.25 3.736 5.56 3.731 0.13 7.341 0.03
RandP4 5.501 70.07 11.140 100.19 9.950 11.28 5.191 0.20 21.016 0.03
RandP8 8.128 102.77 33.751 159.67 33.509 14.83 8.273 0.36 46.291 0.03

hundredths of a second, we measure only the accumulated running time needed to solve a
whole instance set to avoid that inaccuracies distort the outcome. Furthermore, to rule out
possible errors due to system fluctuations we run every test ten times and report the average
time needed. The MIP formulation as well as the filling LP from Section 3.1 are solved with
CPLEX 12.1 [7]. Since proving optimality of MIPs is very time consuming for some of the
given instances, we impose a time limit of 10 seconds per instance which turned out to be
sufficient to achieve optimality gaps close to zero (see [9] for more details).

4.3 Results
Table 1 shows the averages over all gaps achieved by the respective solver for practice instance
sets. We can observe that the 1P/LP configuration achieves best solution quality with an
average gap of less than three percent on any set but has an up to 10 times longer running
time compared to the similar 1P/2P configuration. The latter one performs equally on
practice instances except for the Auto1 set. Fr/2P can yet improve on this running time by
up to 50% but looses significantly in solution quality on Auto1 instances. When looking
closer on Auto1 instances we found a larger variance in the densities of the commodities as
well as the highest average number of container types. While 1P/LP and 1P/2P cope well
with this more challenging setting and still produce reasonably small gaps, the estimators
and Fr/2P are less robust. We also note that all solver configurations perform equally well
on Chemical and Retail instances and the differences on the Auto2 set are marginal. The
two estimators CR and CR1D perform well on Chemical and Retail instances with results close
to the optimum cost value, while they achieve speed up factors of roughly ten compared to
the fastest heuristic solver. Deviations are marginally larger on Auto2 instances, however
they become obvious with average deviation of up to 30% on Auto1.

On the random instance sets (cf. Table 2), again solver 1P/LP achieves best solution
quality and is even faster than 1P/2P for sets with more than two properties. One reason
might be that Phase 2 of the greedy filling employed in 1P/2P considers all commodities
before it chooses one to be added to the current filling and that the average number of
commodities is much larger on random instances than on practice instances. Surprisingly
the roughly ten times faster Fr/2P solver achieves even slightly better solution quality than
1P/2P. We conclude that on random instances the more sophisticated scoring method used
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for 1P/2P does not pay off compared to heuristic scoring of Fr/2P. But in general, the impact
of less accurate heuristic filling on solution quality compared to the accurate LP based filling
grows with the number of properties. Estimators are significantly faster and achieve speed up
factors between 10 and 100 compared to the fastest heuristic Fr/2P. Despite this enormous
savings in running time, CR still achieves reasonably good cost estimates.

5 Conclusions and outlook

MDCC is a generalized covering problem that serves as a key component in a larger
transportation logistics model. We have studied this problem from theoretical and practical
perspective and developed different algorithmic approaches, whose quality we validated on a
broad set of practice as well as random instances.

By exploring connections to other covering problems, we established both a lower bound
on the achievable approximation factor of this problem, as well as an approximation algorithm
whose factor depends on the numerical structure of the input. In order to solve the problem
in practice, we developed a framework of greedy algorithms that is configurable for various
needs of the meta heuristic solvers it serves as a sub-routine:

If accurate solutions are desired, the configuration 1P/LP has the best performance on
most instance sets but relatively slow running time.
If good solution quality is sufficient, the configurations 1P/2P and Fr/2P run significantly
faster and produce good solutions on most instance sets.
If only estimates of the optimal solution values are needed, CR produces such estimates
with acceptable deviation of cost in very fast running times.

The MDCC in conjunction with our heuristic toolbox enables the design of transportation
models that capture complex tariff structures and at the same time remain accessible to
established optimization procedures.

Outlook While the reduction from SetCover in Section 2 resulted in a high number
of properties, this number is usually low in practical applications. Future research will
investigate the possibility of better—possibly constant factor—approximations for the special
case of a fixed property dimension. In order to capture more complex cost functions such as
graded linear tariffs, we propose two extensions to the model: shipping commodities may
incur an additional linear cost depending on the container they are assigned to, and the
number of copies of a particular container type might be bounded. While we hope that the
algorithms presented in this work are sufficiently robust to be adaptable to this generalized
setting, further experiments are needed to verify this claim.
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