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Abstract
We construct theories of Cook-Nguyen style two-sort bounded arithmetic whose provably total
functions are exactly those in LOGCFL and LOGDCFL. Axiomatizations of both theories are
based on the proof tree size characterizations of these classes. We also show that our theory for
LOGCFL proves a certain formulation of the pumping lemma for context-free languages.
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1 Introduction

The complexity classes LOGCFL and LOGDCFL are subclasses of P which gain a large
popularity in the complexity theory community during the last two decades. The class
LOGCFL consists of predicates logspace reducible to context free languages and LOGDCFL
is defined in the same manner as LOGCFL but with deterministic context free languages.

LOGCFL lies between NL and AC1 and LOGDCFL contains L but we do not know
whether any of these inclusions is proper or not. Furthermore, we do not know the relationship
between NL and LOGDCFL.

One of the main feature of LOGCFL is that it has several natural alternative characteriz-
ations such as NAuxPDA [9], alternating Turing machines [8] and semi-unbounded fan-in
circuits [10]. Also LOGCFL has natural complete problems such as word problems for finite
groupoids and acyclic conjunctive queries [4]. Moreover, it is worth noting that LOGCFL is
closed under many operations including the closure under complementation [2].

On the contrary, much less is known about the class LOGDCFL. In particular, no natural
complete problem is found so far.

In this paper we construct theories of bounded arithmetic for LOGCFL and LOGDCFL
using their proof tree size characterizations. To author’s knowledge, no such theory for
LOGDCFL has been proposed so far. For LOGCFL, the author [6] defined a theory V -QSAC
which axiomatize the concept of SAC1 circuits. However, the theory has an augmented
language which represents generalized quantifier expressing that a SAC1 circuit has an
accepting tree on an input.

Our approach is very similar to the one developed by Cook and Nguyen [3], namely
augmenting the theory V 0 by axioms expressing the concept of a given complexity class.

The concepts we use for constructing theories for LOGCFL and LOGDCFL are somewhat
similar. That is, both concepts are based on circuits having polynomial proof tree size.

For LOGDCFL, McKenzie et.al. [7] proved that the class is identical to the class of
predicates decidable by polynomial size Multiplex-Select circuits with polynomial proof tree
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size. For LOGCFL, a similar and simpler characterization is known by Venkateswaran [10]
as the class of polynomial size Boolean circuits having polynomial proof tree size.

Although these two characterizations have a similar nature, we encounter with a slightly
different circumstance when axiomatizing them. Since LOGDCFL is a deterministic class,
there exists a unique witness, namely a proof tree for an accepting input to a circuit, whereas,
there may exist more than one polynomial size proof trees for a general circuit which witnesses
LOGCFL predicates. Such a difference causes a difficulty in the witnessing argument of the
corresponding theories. However, we show that a slight modification of the argument of Cook
and Nguyen implies witnessing theorems for both theories.

We also show that our theory Vlcfl for LOGCFL is finitely axiomatizable by formalizing
LOGCFL complete problems.

Cook proposed a research program called Bounded Reverse Mathematics whose aim is
to decide how much computational concepts are needed to prove mathematical theorems.
This is achieved by deciding which theorems of mathematics are provable in a given bounded
arithmetic theory (See [3] for an exposition). For this direction, we show that Vlcfl proves
a form of the pumping lemma for context-free languages.

The essential part of formalizing the standard proof of the pumping lemma in Vlcfl
is to translate parse trees into proof trees of Boolean circuits so that we can argue about
context-free languages in terms of circuits.

By carefully examining the textbook style proof of the pumping lemma, it turns out
that proof also uses combinatorial arguments including the pigeonhole principle and PATH
problem which is NL complete. Moreover, the inductive argument in the proof can be
expressed as a number induction for LOGCFL decidable predicate.

2 Preliminaries

Throughout the paper we deal with two-sort theories and complexity classes. So first we
briefly review their basic notions.

Two-sort logic uses two types of variables; number variables denoted by lower case letters
x, y, z · · · represent natural numbers while string variables denoted by upper case letters
X,Y, Z · · · represent binary strings.

2.1 Two-sort complexity classes

A two-sort function is a function with two sort of arguments x̄ and X̄. A function F (x̄, X̄)
is a string function if its range is in strings. A function f(x̄, X̄) is a number function if its
range is in numbers. As usual, we denote strings functions by uppercase letters and number
functions by lower case letter. Predicates are identified with 0-1 valued number functions.

In the two-sort formalization, number variables play subsidiary roles, so in defining
complexity classes, their measures are with respect to the length of string parameters.

LetR(x1, . . . , xk, X1, . . . , Xn) be a two-sort relation. As in [3], number variables x1, . . . , xk
are presented in unary and string variables X1, . . . , Xn are in binary form.

We define two sort complexity classes LOGCFL and LOGDCFL as follows:

I Definition 1. LOGCFL is the class of predicates which are logspace reducible to some
context-free languages. LOGDCFL is the class of predicates which are logspace reducible to
some deterministic context-free languages.

CSL’12



442 Axiomatizing proof tree concepts in Bounded Arithmetic

2.2 Two-sort theories
The language L2 of two sort theories contains the symbols Z(x), x+ y, x · y, |X|, x = y and
x ∈ Y . We also write x ∈ Y as Y (x). We use two sort of quantifiers; number quantifiers (∀x)
and (∃x) and string quantifiers (∀X) and (∃X). Bounded number quantifiers are of the form
(∀x < t) and (∃x < t). String bounded quantifiers are of the form

(∀X < t)ϕ(X) ≡ (∀X)(|X| < t→ ϕ(X)), and (∃X < t)ϕ(X) ≡ (∃X)(|X| < t ∧ ϕ(X)).

An L2 formula is called bounded if all its quantifiers are either bounded number quantifiers
or bounded string quantifiers. The class ΣB

0 consists of L2 formulae whose quantifiers
are bounded quantifiers only. The class ΣB

1 consists of L2 formulae whose quantifiers are
bounded quantifiers, positive occurrences of existential bounded string quantifiers, and
negative occurrences of universal bounded string quantifiers.

Our base theory is the following theory:

I Definition 2. The L2 theory V 0 consists of the following axioms:
BASIC2 : finite number of defining axioms for symbols in L2,
extensionality axiom : X = Y ↔ (|X| = |Y | ∧ (∀i < |X|)(X(i)↔ Y (i)),
ΣB

0 -COMP : (∃X)(∀y < t)(X(y)↔ ϕ(y)), where ϕ ∈ ΣB
0 does not contain X as a free

variable.

I Definition 3. A function F (x̄, X̄) is ΣB
1 definable in a L2-theory T if there exists a ΣB

1
formula ϕ(x̄, X̄, Y ) such that

T ` (∀x̄)(∀X̄)(∃!Y )ϕ(x̄, X̄, Y ), and
Y = F (x̄, X̄)↔ ϕ(x̄, X̄, Y ) holds in the standard model.

I Theorem 4. A function is ΣB1 definable in V 0 if and only if it is computable in AC0.

The following property is also well-known and useful:

I Theorem 5. Let F be a ΣB1 definable function of V 0 and V 0(F ) be the theory V 0 extended
by the function symbol for F together with its defining axioms. Then V 0(F ) is an conservative
extension of V 0.

So we can use any ΣB1 definable function in V 0 without increasing its strength. In particular,
the following functions are ΣB1 definable in V 0 which will be used in elsewhere in this paper:

The number pairing function : 〈x, y〉 = (x+y+1)(x+y)
2 .

The number µ-operator :

µz<yϕ(x) =
{

the least x < y with ϕ(x) if exists,
0 otherwise.

The value of X at y : (X)y = µy<aX(〈y, z〉) for |X| < 〈a, b〉.
The row function : Z [x](i)↔ (i < |Z| ∧ Z(x, i)).

The main tool of this paper is the method for constructing theories for subclasses of P
using complete problems which is developed by Cook and Nguyen. Details of this method
can be found in [3], so we briefly overview the argument.

Suppose a function F has a ΣB0 graph as

Y = F (X)↔ (|Y | ≤ t ∧ δF (X < Y ))

for some L2 term t and ΣB0 formula δF . Suppose further that V 0 proves the uniqueness of
the value of F . Let C be the class of relations which are AC0 reducible to F . In this case,
we define a theory for C as follows:
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I Definition 6. The L2-theory VC is axiomatized by the axioms of V 0 and the following
axiom:

(∃Y ≤ b)(∀i < b)δF (X [i], Y [i]).

Below we define theories with defining axiom for the function F as above and the equivalence
to the theory VC is ensured by showing that the aggregate function is ΣB1 definable within
the theory.

I Definition 7 (Aggregate Function). Suppose that F (x̄, X̄) is such that for some L2 term t

|F (x̄, X̄)| ≤ t(x̄, X̄).

Then F ∗(b, Z̄, X̄) is a function such that

|F ∗(b, Z̄, X̄)| ≤ 〈b, t(|Z̄|, X̄)〉

and

F ∗(b, Z̄, X̄)(w)↔ (∃i < b)(∃v < t)(w = 〈i, v〉 ∧ F ∗(b, (Z1)i, . . . , (Zk)i, X [i]
1 , . . . , X

[i]
n )(v).

Finally, a direct connection between VC and FC is established:

I Theorem 8 (Cook-Nguyen). A function is ΣB1 definable in VC if and only if it is in FC.

We also use universal conservative extension V̂C of VC which is defined as follows: let
V 0 be the theory V 0 extended by function symbols for all AC0 functions together with their
defining axioms. Let δ′F (X,Y ) be the quantifier free defining axiom for F which is equivalent
to δF (X,Y ) in V 0 and define the function

Y = F ′(X)↔ (|Y | ≤ t ∧ δ′F (X,Y )). (∗)

I Definition 9. V̂C is the universal theory over language of V 0 plus F ′ whose axioms are
those for V 0 and (∗).

Remark. Our theories defined below are slightly different from VC in that we add axiom
scheme rather than a single axiom. Nevertheless, the witnessing and definability works by
an almost similar argument.

3 A theory for LOGDCFL

We will define the theory Vldcfl by formalizing the concept of polynomial proof tree of
polynomial size multiplex-select circuits.

A multiplex select circuit is a circuit whose only gates are multiplex select gates. Inputs
to a multiplex select gate are grouped into a bundle of k ∈ O(logn) steering bits and 2k
equal size bundles of l ∈ O(logn) data bits. The gate outputs the value of the data input
bundle di if the value of the steering input bundle is the binary expression of i. For detailed
definition, see [7].

A proof tree of a circuit C on input X is a tree PT (C,X) define inductively as follows:
if C consists of a single gate then PT (C,X) consists of its steering input bundle and the
data bundle selected by the steering input on X.
if C consists of more than two gates and g is the output gate of C then PT (C,X) is
defined as the tree rooted at g with subtrees PT (Cs, X) and PT (Cd, X) where Cs is the
subcircuit with output at the steering input of g and Cd is the subcircuit with output at
the data input selected by s on X.

CSL’12



444 Axiomatizing proof tree concepts in Bounded Arithmetic

Note that the computation of multiplex select circuits are deterministic in the sense that
there exists an unique proof tree for each input.

McKenzie et.al. [7] showed that multiplex select circuits characterize the class LOGDCFL.

I Theorem 10 (McKenzie et.al.). A predicate is in LOGDCFL if and only if it is decidable
by AC0-uniform poly-size family of multiplex select circuits with polynomial proof tree size.

We code a multiplex select gate by a triple 〈g, c, k〉 where g is the index of its steering
input, k is the number of data inputs, and c+ j is the index of j-th data input for j ≤ k.

As usual, a circuit is coded by a two-dimensional array but with semantics which differs
from that of Boolean circuits. Recall that a non-input gate in a multiplex-select circuit has
two types of inputs; one steering input and 2l data inputs where l is the length of the steering
input bundle. So we define AC0 functions which specifies these inputs.

Let E be a two-dimensional array with |E| = 〈n, n〉. A gate x < n with no input is
regarded as an input data bundle with the data x. Otherwise, x is a non-input gate and we
define its steering input s(x,E) and the first data input c(x,E) as follows:

s(x,E) = µy < xE(x, y),

c(x,E) =
{
µy < x(E(x, y) ∧ s(x,E)) < y if it exists,
s(x,E) otherwise.

We omit the parameter E if it is clear from the context.
The output of a multiplex select gate is given by the following rule:

for a gate x, if it receives an input j from its steering input s(x) then it outputs the
input from the data input of index min(c(x) + j, x− 1).

We use the notion of degrees of gates in a multiplex-select circuit which is defined as:

I Definition 11. Let E be a circuit such that |E| = 〈n, n〉 and x < n. We define the degree
deg(x,E) recursively as

deg(x,E) =


1 if x is an input gate,
deg(s(x)) + deg(min(c(x) + j, x− 1))

if x is an non-input and s(x) outputs j.

It is not difficult to see that a circuit family has polynomial size proof trees if and only if it
has polynomial degrees.

We define an axiom expressing the concept of multiplex-select circuits with polynomial
degrees. The idea is to code the computation of a given circuit by a string Z such that a

if degree(x) is bounded by a given polynomial p(n) then (Z)x = 〈vx,deg(x)〉 where vx is
the output of x, and
otherwise (Z)x = 〈n, p(n)〉.

Formally, define the L2 formula MSCDeg(n, x,E, Z) as the conjunction of the following
formulae:

x is an input gate: (∀y < x)¬E(x, y)→ (Z)x = 〈x, 1〉,
x is a non-input gate having a degree less than p(n):

(∃y < x)E(x, y)→ (Z)s(x)
1 + (Z)min(c(x)+(Z)s(x)

0 ,x−1)
1 < p(n)− 1∧

(Z)x = 〈(Z)min(c(x)+(Z)s(x)
0 ,x−1)

0 , (Z)s(x)
1 + (Z)min(c(x)+(Z)s(x)

0 ,x−1)
1 〉,
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x is an non-input gate having a degree greater than p(n)− 1:

(∃y < x)E(x, y)→ (Z)s(x)
1 + (Z)min(c(x)+(Z)s(x)

0 ,x−1)
1 ≥ p(n) ∧ (Z)x = 〈n, p(n)〉.

For a L2-term p(n) we define the formula

MSCDeg-COMPp : (∀n)(∀E < 〈n, n〉)(∃Z〈n, 〈n, p(n)〉〉)(∀x < n)MSCDeg(n, x,E, Z).

I Definition 12. The L2-theory Vldcfl is V 0 extended by MSCDeg-COMPp for each
p ∈ L2}.

Remark. We have made several simplifications in the formalization of multiplex-select
circuits which is still general enough to capture the original ones in the sense that we can
effectively compute a code E(C,X) from the original circuit code C and an input X. Firstly,
we can convert an O(log |X|) input bit bundle into a number representing a gate index using
AC0 function. The original definition allows each bundle to be extended by constant bits
which also can be computed in AC0.

Finally, the restriction of date inputs bit to consecutive ones as c(x), . . . c(x) + j can
express the original circuit as follows. Let d be the i-th data input to x. We introduce a
"copy" gate Cd of d having a single bit steering input and a single data input from d. Then
we let the gate position of Cd to be c(x) + i.

I Theorem 13. A function is ΣB
1 definable in Vldcfl if and only if it is LOGDCFL-

computable.

To prove Theorem 13, we use the formalization as in Cook-Nguyen’s Book [3]. First we
show the uniqueness of proof trees.

I Lemma 14. Vldcfl proves the following:

(∀Z0, Z1 < n)[((∀x < n)MSCDegp(n, x,E, Z0) ∧ (∀x < n)MSCDegp(n, x,E, Z1))
→ Z0 = Z1].

(Proof). Since MSCDegp is a ΣB0 formula, this follows from an ΣB0 -IND instance which is
available in V 0. The most essential part is to show that the aggregate function forMSCDegp
is ΣB1 -definable in Vldcfl.

I Lemma 15. The aggregate function for MSCDeg-COMPp defined by the formula

(∀n)(∀E < 〈〈n, n〉, b〉)(∃Y )(∀i < b)(∀x < n)MSCDegp(n, x,E[i], Y [i])

is ΣB1 -definable in Vldcfl.

The proof is more or less identical to that for V P (Lemma VIII 1.10 in [3]).
Now, Theorem 13 follows from the following:

I Lemma 16. The FAC0 closure of functions Fp with defining axiom

Y = Fp(n,E)⇔ |Y | ≤ tp ∧ (∀x < n)MSCDegp(n, x,E, Y )

for p ∈ L2, denoted by FAC0(DegP ), is identical to Flogdcfl.

CSL’12
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(Proof). To show that FAC0(DegP ) ⊆ Flogdcfl we remark that Fp ∈ Flogdcfl for all
p ∈ L2.

For the converse inclusion, it suffices to show that any bit in F ∈ Flogdcfl can be
computed using some Fp together with AC0 operations.

Using the technique developed by Cook and Nguyen [3], we can prove Theorem 13 from
Lemmata 14, 15 and 16.

Since LOGDCFL contains L, we expect that the same inclusion holds for corresponding
theories. The theory VL is axiomatized by V 0 together with the following axiom:

PATH ≡ Unique(a,E)→ (∃P ≤ 〈a, a〉)δPATH(a,E, P ),

where

Unique(a,E) ≡ (∀x < a)(∃!y < a)E(x, y),
δPATH(a,E, P ) ≡ (P )0 = 0 ∧ (∀v < a)(E((P )v, (P )v+1) ∧ (P )v+1 < a).

I Theorem 17. Vldcfl contains VL.

(Proof). It suffices to show that Vldcfl proves PATH. Let E satisfy Unique(a,E). For
each x < a, we denote the unique y such that E(x, y) by d(x). We first design a multiplex
select gate such that if the steering input is x then it outputs d(x). This gate is easily
constructed by setting its data inputs as d(0), . . . , d(a− 1). Then we connect copies of this
gate in a sequential manner, that is the first gate receives its steering input from x, the
second gate from the first gate, and so on. Furthermore, all gates receive data inputs from
d(0), . . . , d(a− 1).

Suppose a node b < n is reachable from a by a path of length k ≤ n. Then it is easy to
see that there exists a gate in this circuit with label 〈b, 2k + 1〉.

The above argument can be formalized in Vldcfl, that is, for p(n) ≤ 2n+ 1, we have

(∃Z)(∀x < n)MSCDegp(n, x,E′, Z)

where E′ is the code for the above circuit. Furthermore, the witness P in PATH can be
constructed from Z using ΣB0 -COMP.

4 A theory for LOGCFL

We now turn to show that the axiomatization of proof tree size concept also captures the
class LOGCFL. First we recall the following circuit characterization of the class:

I Theorem 18 (Venkateswaran [10]). LOGCFL is the class of predicates which are computable
by polynomial size circuits with polynomial proof trees. This equivalence is true even if we
restrict circuits to semi-unbounded fan-in.

(Proof). The former statement is due to [10]. So we prove the latter part.
It is readily seen that a circuit can be transformed to an equivalent semi-unbounded

fan-in circuit with polynomial increase in size by the transformation of unbounded fan-in
AND gates by a fan-in two subcircuits of O(logn) depth. It remains to show that the degree
of the resulting circuit also has polynomial increase. For this, it suffices to show that the
replacement of unbounded fan-in AND-gates by subcircuits yields polynomial increase in the
degree,that is the number of nodes in a proof tree.

Let g be an AND-gate in the original circuit having inputs from h0, . . . , hk−1 and g′ be
the gate on the top of the subcircuit which is a substitute for g. It is not difficult to see that
deg(g′) = deg(g) + k. More strictly, this is proved by induction on the depth of gates.



S. Kuroda 447

The advantage of the semi-unbounded fan-in restriction is that we do not need vector
summation to compute degrees. Thus we can axiomatize our theory based on V 0 rather than
VTC0.

Now we define an axiom expressing polynomial degrees in a similar manner as VP of
Cook-Nguyen [3]. First we will give an intuitive idea: Let E be a two-dimensional array
coding a circuit. The input-output relation of E differs from that for multiplex select circuits.

Let G(x) be an unary predicate determining the type of a gate x so that x is an AND
gate if G(x) and an OR gate otherwise. If G(x) holds then x receives inputs from two gates
defined by

c0(x) = µy < xE(x, y),
c1(x) = µy < x(E(x, y) ∧ c0(x) < y).

If ¬G(x) then x receives inputs from all y < x such that E(x, y).
The computation of a circuit given by E and G as above is coded by a string Z such that

(Z)0 = p(n), (Z)1 = 1,

(Z)x =
{

deg(x) if x outputs 1 and deg(x) < p(n),
p(n) otherwise

for x ≥ 2.
Putting these altogether, we formally define

MCVDegp(n,E,G,Z)⇔
(Z)0 = p(n) ∧ (Z)1 = 1∧
(∀x < n)(x ≥ 2→
(G(x) ∧ (((Z)c0(x) + (Z)c1(x) < p(n)− 1 ∧ (Z)x = (Z)c0(x) + (Z)c1(x) + 1)∨
((Z)c0(x) + (Z)c1(x) ≥ p(n)− 1 ∧ (Z)x = p(n)))∨
(¬G(x) ∧ ((∃y < x)((Z)y < p(n)− 1 ∧ E(x, y) ∧ (Z)x = (Z)y + 1)∨
((∀y < x)(E(x, y)→ (Z)y ≥ p(n)− 1 ∧ (Z)x = p(n)))).

where p ∈ L2.

I Definition 19. We define the L2-theory Vlcfl as

V 0 + {(∀n)(∀E < 〈n, n〉)(∀G < n)(∃Z < 〈n, p(n)〉MCVDegp(n,E,G,Z) : p ∈ L2}.

It is possible to define our theory using SAC1 circuits which can be formalized by a
single axiom. Nevertheless, we choose the above axiomatization as it is easier to formalize
other computational concepts within the theory. First we show that our theories preserve
the inclusion relation of corresponding complexity classes:

I Theorem 20. Vlcfl proves CONN , thus it contains VNL.

(Proof). We argue in Vlcfl. Let E < 〈n, n〉 be given. We need to show that

(∃Y < 〈a, a〉)(δCONN (a,E, Y ) ∧ Y (a, 1)).

To this end, we construct a graph C < 〈〈a, a〉, 〈a, a〉〉 such that

C(0, x, 1, y)↔ x = 0 ∧ E(0, y)

and
C(n, x,m, y)↔ m = n+ 1 ∧ E(x, y)

CSL’12
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hold. That is, C has layers such that each column contains copies of all nodes in E. The
edge relation of C is given so that the node x in i-th layer has an edge to the node y in
(i+ 1)-st layer if E(x, y) holds for i > 0. Furthermore, on 0-th layer, only the node 0 has an
edge to the node y in the first layer if E(0, y).

Now we show that a small modification of C yields a circuit deciding the axiom CONN
for VNL. In the new circuit C ′, we have the first column containing 0 and 1, say 〈0, 0〉 and
〈1, 0〉, and the number of columns of C are incremented by 1 in C ′. Thus the gate 〈i, j〉 in C
corresponds to 〈i, j + 1〉 in C ′. Thus we define

C ′(n, x,m, y)↔ (n = 0 ∧ x = 1 ∧m = 1 ∧ y = 0) ∨ (C(n− 1, x,m− 1, y) ∧ n > 0 ∧m > 0).

Furthermore, we let G be such that (∀n)(∀x)G(n, x), that is, all gates in C ′ are AND gates.
Now let p(n) = n. Then we have (∃Z)MCVDegp(n,C ′, G, Z) and we have an AC0

function F such that

MCVDegp(n,C ′, G, Z)→ δCONN (n,E, F (Z)).

Also note that a proof tree of a gate 〈i, x〉 is a path from 〈0, 1〉 to 〈i, x〉. Thus we are done.

I Theorem 21. Vlcfl contains Vldcfl.

(Proof). It suffices to show that Vlcfl proves MSCDeg-COMPp for any p ∈ L2. This is
achieved by giving circuits simulating multiplex-select circuits which have polynomial size
and polynomial proof size. Let g be an MS-gate with the steering input s and data inputs
d0, . . . , dl. The Boolean circuit Cg simulating g can be obtained by building the following
subcircuits:

Cisel outputs 1 if the steering input s selects the data input di, and
Cjout outputs the bits of the j-th output bit of g.

Then Cg is defined as ∨
1≤i≤l

(Cisel ∧ Ciout).

The subcircuit Cisel is defined as
∧

1≤j≤l lj where

li =
{
sj if the j-th bit of i is 1
¬sj otherwise.

Then Cjout is computed by the circuit ∨
1≤i≤l

(Cisel ∧ d
j
i ).

It is not difficult to see that the above construction can be described by ΣB0 relation. So
we have the ΣB

0 description of the translation of the whole MS-circuit C by an equivalent
Boolean circuit.

Although the above construction does not yields semi-unbounded fan-in circuits, it can
be converted into an equivalent SAC1 circuit.

It is also true that Vlcfl is contained in the theory for AC1 which is axiomatized by
V 0 and the axiom

(∃Y ≤ 〈|n|+ 1, n〉δLMCV (n, |n|, E,G, I, Y )
where

δLMCV (n, d,E,G, I, Y ) ≡ (∀x < n)(∀z < d)((Y (0, x)↔ I(x))∧
(Y (z + 1, x)↔ (G(z + 1, x) ∧ (∀u < n)(E(z, u, x)→ Y (z, u)))∨

(¬G(z + 1, x) ∧ (∃u < n)(E(z, u, x) ∧ Y (z, u)))).
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I Theorem 22. Vlcfl is contained in VAC1.

Actually, we prove a stronger theorem stating that any polynomial size circuit family
with polynomial proof tree size has an equivalent SAC1 circuits.

I Theorem 23. Let p, q ∈ L2. VTC0 proves that for any circuit C with size p and proof
tree size q there exists a semi-unbounded circuit C ′ such that for any input X,

C accepts Xin proof tree size q ⇔ C ′ accepts X.

(Proof). We use the idea similar to realizable pairs of Ruzzo [8]. Let g be a gate of C and Γ
be a set of nodes in C. W define Cg,Γ to be a directed acyclic subgraph of C whose root
is g and sinks are Γ. We say that Cg,Γ is realizable within size p and proof tree size q if
size(Cg,Γ) ≤ p and g has proof tree size ≤ q provided that all nonleaves of Γ are assigned
the value 1.

It suffices to construct a semi-unbounded fan-in circuit deciding whether Cg,Γ is realizable
with size p and proof tree size q since C = Cg0,∅ is realizable if and only if C accepts the
input where g0 is the output gate of C. So we construct a recursive procedure realize(C, p, q)
which works as follows:

In each recursive step, realize(C, p, q) splits C into two parts C0 and C1 each hav-
ing approximately half size of C and recursively check whether realize(C0, p/2, i) and
realize(C1, p/2, j) where i+ j = q. This procedure is given as follows:

procedure realize(C,p,q);
begin
if C consists of a single gate g then if g has the value 1 and p, q ≥ 1
then ACCEPT else REJECT
else
guess i with 0 < i < q and a gate s in C;
C0 := subcircuit of C rooted at s; C1 := C \ C0 with s replaced by 1;
check in parallel
realize(C0, p/2, i) AND realize(C1, p/2, q − i)
end

We will show that this algorithm can be converted into logarithmic depth semi-unbounded
fan-in circuits.

First we remark that checking whether size(C) < p can be done by an NC1 circuit using
threshold circuits.

Since the number of the nestings of recursive calls is logarithmic in p, the total number
of subcircuits C0s and C1s created along the execution of the procedure is bounded by
polynomial. Thus the number of gates used in checking circuit sizes is polynomially bounded.

Now each recursive steps can be expressed by an AND of size(C) < p and the OR of the
following subroutines:

the base case with a single node g,
realize(C0, q/2, i) AND realize(C1, p/2, q − i) for 0 < i < q and all nodes in C.

The fan-in of this OR gate is O(p · q) which is polynomial. Furthermore, all AND gates
required is bounded fan-in.

By recalling that the number of the nestings of recursive calls is log p = O(logn), we
conclude that the procedure realize can be transformed into an SAC1 circuit family.
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It is not hard, though tedious, to show that the above construction can be demonstrated
by ΣB0 relation. To check the correctness of the construction, we need counting argument for
the evaluation of circuit sizes. So the whole argument can be formalized in VTC0.

I Corollary 24. Vlcfl and V -QSAC proves the same L2 sentences.

Now we show that Vlcfl corresponds to LOGCFL.

I Theorem 25. A function is ΣB1 definable in Vlcfl if and only if it is in Flogcfl.

Note that the witness Z for MCVDegp axiom is not always optimal in a sense that the
degree of the output of Z is larger than p(n) while there is another witness Z ′ whose output
degree is less than or equal to p(n). Nevertheless, we can avoid such undesirable cases by
considering SAC1 circuits.

I Theorem 26 (Definability for Vlcfl). If a function of polynomial growth is bitwise
computable in LOGCFL then it is ΣB1 definable in Vlcfl.

(Proof Sketch). In [6], it is shown that V -QSAC proves that SAC1 is closed under comple-
mentation. By Corollary 24, this is also provable in Vlcfl.

Moreover, any SAC1 circuit C is a polynomial size circuit having polynomial proof tree
size such that for any input X and any Z witnessing MCV P axiom for C, C outputs true if
and only if the degree of the output gate is less than p(|X|) for a given proof tree bound p.

Let F (X) be a LOGCFL function with polynomial growth. To show that Vlcfl ΣB
1

defines F , it suffices to show that circuits can be combined into a multi output circuit. This
can be done using circuits and their complementary circuits which is also an SAC1 circuit
provably in Vlcfl.

For witnessing we use the argument using the conservative universal extension V̂lcfl of
Vlcfl.

I Theorem 27 (Witnessing for Vlcfl). If a function is ΣB1 definable in Vlcfl then it is of
polynomial growth and bitwise computable in LOGCFL.

(Proof). We define the universal conservative extension V̂lcfl by introducing for each p ∈ L2
a function symbol Fp such that

Fp(n,E,G) = Z ↔MCVDegp(n,E,G,Z).

Using Herbrand-style argument, we can show that provably total functions of V̂lcfl are
in the AC0 closure of {Fp : p ∈ L2}. As LOGCFL is closed under AC0 operations, it suffices
to show that Fp is witnessed by a LOGCFL algorithm. In order to compute Fp we modify
NAuxPDA machine simulating polynomial size circuits with polynomial proof trees as in [7].
The machine makes an depth-first search through a circuit and at each step, it computes the
degree of the currently visiting gate using the work tape. This can be done in logarithmic
space by expressing degrees in binary. Therefore, this gives an NAuxPDA computing Fp.

5 Finite axiomatizability

In this section we show that the theory Vlcfl is finitely axiomatizable. The idea is to
formalize LOGCFL complete problems such as acyclic conjunctive query problem (Gottlob
et.al. [4]) or word problem for finite groupoids (Bedard et.al. [1]).
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First we modify the theory Vlcfl so that it can argue about circuit families which have
ΣB0 direct connection languages. For an L2-formula ϕ(x, y) we define the string

Eϕ(n)(x, y)⇔ x < n ∧ y < n ∧ ϕ(x, y).

Similarly for an L2-formula ψ(x) we define the string

Gψ(n)(x)⇔ x < n ∧ ψ(x).

Then we define the theory

Vlcfl′ ≡ V 0 + {(∀n)(∃Z < 〈n, p(n)〉MCVDegp(n,Eϕ(n), Gψ(n), Z) : ϕ,ψ ∈ ΣB0 , p ∈ L2}.

It is not difficult to see that

I Lemma 28. Vlcfl′ = Vlcfl.

Using Vlcfl′ we have

I Theorem 29. Vlcfl′ and hence Vlcfl is finitely axiomatizable.

(Proof Sketch). We can formalize the acyclic conjunctive query problem in L2 and define the
direct connection language ϕ and ψ of the polynomial size circuit family deciding it in proof
tree size p(n). Then in Vlcfl′ we can show that any circuit family with polynomial proof
tree size can be reduced to it. Thus Vlcfl′ is finitely axiomatizable.
Remark. Although it is likely that the same argument holds for Vldcfl, we do not know
whether there exists a complete problem for LOGDCFL.

6 Provability of the pumping lemma for CFLs

We now turn to the problem of the provability of the pumping lemma. Intuitively, the
pumping lemma states that a sufficiently long word in a context-free language can be iterately
“pumped up” to another word in the language. More precisely,

I Theorem 30 (The pumping lemma for CFLs). Let G = (N,T, P, S) be a context-free
grammar in Chomsky normal form. Suppose W ∈ L(G) is such that |W | ≥ 2m−1 + 1
where m = |N |. Then there exist W1, . . . ,W5 such that W = W1 · · ·W5, |W2W4| ≥ 1,
|W2W3W4| ≤ 2m and W1W

i
2W3W

i
4W5 ∈ L(G) for all i ∈ ω.

In order to formalize Theorem 32, we need expressions which refer to the exponentiation
like y ≥ 2x. Recall that the relation y = 2x is ∆0 definable in I∆0 although the function is
not total in the theory. Likewise, in L2 we can define the exponentiation relation using a ΣB0
formula. In particular, the assumption |W | ≥ 2s−1 + 1 in Definition 31 below is expressible
in the language of Vlcfl.

Next we show how to code context-free grammars. Let G = (N,T, P, S) be a CFG in
Chomsky normal form. Since N and T are finite sets, We code it as T = {0, . . . n − 1},
N = {n, . . . , n+ s}, S = n. Recall that rules of context-free grammars in Chomsky normal
form are either of the form a→ bc or a→ l for a, b, c ∈ N and l ∈ T . We let P ⊆ N×(T∪N2)
so that

P (a, x)⇔ a→ x is a rule in P.

We also write a→P x instead of P (a, x).
A parse tree T of height l is a layered binary tree such that each row T [i] is obtained from

T [i−1] by applying rules in P to nonterminal symbols simultaneously. Each symbol T [i][k]
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is of the form 〈n, k′〉 denoting that u ≤ n+ s is a symbol assigned to the slot and k′ is the
index of its parent in T [i−1], where X[y] is the value of X at y (denoted by (X)y in [3]).

More precisely, T is a parse tree if the following conditions hold:
T [0] consists of a single nonterminal symbol a with n ≤ a ≤ n+ s and for all i > 0 and k,
T [i][k] = 〈u, k′〉 for some u ≤ n+ s and k′.
If T [i][k] = 〈u, k′〉 with u ≥ n then T [i][k + j] = 〈v, k′〉 for v ≥ n and exactly one
j ∈ {−1, 1} such that w →P uv for w = (T [i−1][k′])0. Moreover, either one of the
following holds:

there exists a unique k′′ such that T [i+1][k′′] = 〈v, k〉, v < n and u→P v,
there exists a unique k′′ such that T [i+1][k′′] = 〈v, k〉, T [i+1][k′′ + 1] = 〈v′, k〉, n ≥
v, v′ ≥ n+ s and u→P vv

′.
If T [i][k] = 〈u, k′〉 with u < n then there exists a unique k′′ such that T [i+1][k′′] = 〈v, k〉
whenever i ≤ l where l is the number of rows in T . In addition, one of (T [i−1][k′])0 = u

or (T [i−1][k′])0 → u holds.
For any i and k < k′ if T [i+1][c] and T [i+1][c] are children of T [i][k] and T [i][k′] then
c < c′.
(T [l][k]))0 < n for all k.

Based on the above codings, it is easy, though tedious, to see that there exists a ΣB
0

formula
Parse(a, l, n, s.P, T,X) ≡
T is a parse tree of length l starting from a which generates X.

I Definition 31. We define PL(n, s, P ) to be the following formula:

(∀X)(∃T )Parse(s, l, n, n, T, P,X) ∧ |X| ≥ 2s−1 + 1
→ (∃X1, X2, X3, X4, X5)(X = X1X2X3X4X5 ∧ |X2X4| ≥ 1 ∧ |X2X3X4| ≤ 2s∧
(∀i)(∃l′)(∃T ′)Parse(a, l′, n, n, P, T ′, X1X

i
2X3X

i
4X5)).

As previously stated, this is provable in Vlcfl, namely,

I Theorem 32. Vlcfl proves (∀n)(∀s)(∀P )PL(n, s, P ).

The main idea of the proof is to simulate CFGs by circuits so that the transformation of
parse trees as in the standard proof of the pumping lemma as in [5] can be interpreted in
terms of proof tree. Let (E,G) be a code of a circuit as in the axiom MSCDegp but with n
input gates whose values are unspecified and X be a string with |X| = n. Then we define
(E,G) with input X by (EX , GX). Our main tool is the following:

I Lemma 33. There exists an AC0 function F (m,n, s, P ) = (a,E,G) which is ΣB1 definable
in V 0 and an L2-term r(n, s, P,X) such that (E,G) is a code of a semi-unbounded fan-in
circuit with m unspecified input gates and Vlcfl proves

(∀X)[(∃T )Parse(s, l, n, n, P, T,X)
↔ (∃Z)(MCV Pr(a,EX , GX , Z) ∧ Z[a] < r(|X|, n, s, P ))].

Moreover, there exists an AC0 function T (Z) such that V 0 proves the following:

(∀X)[(MCV Pr(a,EX , GX , Z) ∧ Z[a] < r(|X|, n, s, P ))→ Parse(s, l, n, n, T (Z), P,X)].

(Proof Sketch). As in Example 1 in page 220 of Ruzzo [8], we construct a circuit checking
whether an input string belongs to a given context-free language.
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We construct a circuit which simulates a given CFG G = (n, s, P ) on input X. The idea
is to introduce a gate which checks whether a⇒∗ xi · · ·xj for each nonterminal symbol a
and a substring xi · · ·xj of X.

In particular, the output gate is an OR gate checking whether n ⇒∗ x1 · · ·xn (Recall
that the start symbol is coded by n). This is done by introducing an AND gate for each rule
n→ ab and a partition x1 · · ·xi/xi+1 · · ·xn. This AND gate gives an output to the output
OR gate and receives inputs from gates checking a⇒∗ x1 · · ·xi and b⇒∗ xi+1 · · ·xn.

Gates which check whether a ⇒∗ xi · · ·xj are defined similarly. Furthermore, at the
input level, we connect subcircuits deciding that a given binary string is a code of a terminal
symbol.

It is easy to see that the edge relation of this circuit is AC0 computable. Also it can be
seen that it has polynomial size and polynomial proof size and semi-unbounded fan-in.

We also remark that the above construction of the circuit ensures that its proof tree
corresponds to a parse tree of n⇒∗ X, so it is easy to construct an AC0 function transforming
a proof tree into a parse tree.

(Proof of Theorem 32) It suffices to show that the transformation of parse trees in the
standard proof of the pumping lemma can be paraphrased in terms of proof trees in the
circuit F (n, s, P,X) of Lemma 33.

First we note that by Lemma 33, it follows that the predicate (∃T )Parse(s, l, n, n, T, P,X)
is equivalent to an open formula in the universal conservative extension V̂lcfl. So in the
following we argue in V̂lcfl.

Let X ∈ L(G) be such that |X| ≥ 2s−1 + 1. First we claim that there exists a partition
X1, . . . , X5 of X as in the proof of the pumping lemma.

By assumption, (∃T )Parse(s, l, n, n, P, T,X) holds for some l. So by Lemma 33 we have

(∃Z)(MCV Pr(a,Ex, Gx, Z) ∧ Z[a] < r(m,n, s, P ).

Since the circuit (EX , GX) is semi-unbounded fan-in, we can extract a proof tree from X

which is binary branching.
Claim. There exists a path R from the output to some input in R which is longer than s.

(Proof of Claim). The construction of the circuit (EX , GX) ensures that any proof tree
contains all bits of X. So by a combinatorial argument formalized in Vlcfl we have the
claim.

From the above claim and the pigeonhole principle for l(R)→ s where l(R) is the length
of the path R, we can choose two occurrences of some nonterminal symbol c.

In order to choose the position of such occurrences, we slightly modify the construction
of the circuit in Lemma 33 so that the OR gate checking a⇒∗ xi · · ·xj is assigned a label a.
Note that this modification is also AC0 computable.

Let X ′ and X ′′ be substrings of X generated by the first and the second occurrences of c
respectively. We can execute these substrings using the PATH axiom. Moreover, the subtree
starting from a given node is also computable by PATH.

Let X1, X2, X3, X4, X5 be such that X = X1X
′X5, X ′ = X2X

′′X4 and X3 = X ′′. Define

pump(X, i) = pump(X1, X2, X3, X4, X5, i) = X1X
i
2X3X

i
4X5.

It is easy to see that pump is ΣB1 definable in V 0.
Now we show that V̂lcfl proves the following which we denote by (∀i)PT (i,X):

(∀i < |X|m)(∃Z)(MCV Pp(apump(X,i), Epump(X,i), Gpump(X,i), Z)
∧Z[r(n, |s|, P, pump(i,X))] < p(|pump(i,X)|)).
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Let T ′ and T ′′ be the parse tree of X ′ and X ′′ respectively. From a parse tree Ti of pump(X, i)
we can construct a parse tree Ti+1 of pump(X, i+ 1) by replacing the parse tree of T ′′ by T ′.
Again we note that this operation is AC0 computable. So we have

(∀i)(PT (i,X)→ PT (i+ 1, X)).

It is easy to see that PT (0, X). Recall that PT (i,X) is equivalent to a ΣB0 formula ϕ(i,X) in
the extended language and V̂lcfl proves ΣB0 induction. So we conclude that (∀i)PT (i,X).
Thus again by Lemma 33 we have

(∀i < |X|m)(∃T )Parse(|s|, l, n, |s|, P, T,X).

which proves the theorem.

7 Concluding Remarks

It is an interesting problem to determine the lower bound on the provability of the pumping
lemma for context-free languages. For our theories one might conjecture that Vldcfl does
not prove the theorem (∀n)(∀s)(∀P )PL(n, s, P ).

As we have pointed out in the proof of Theorem 32, we need several combinatorial tools
which lie within the theory for NL in order to execute the proof of the pumping lemma. Also
it is essential in the proof that context free languages are definable in the theory.

Based on these observations, we come to the problem of whether Vldcfl+PATH proves
(∀n)(∀s)(∀P )PL(n, s, P ). Note that if it is not the case then Vldcfl+PATH cannot define
(nondeterministic) context-free languages which gives a strong evidence implying that both
NL and LOGDCFL is strictly contained in LOGCFL.
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