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Abstract
In this paper we extend the Finite Rank Theorem for connection matrices of graph parameters
definable in Monadic Second Order Logic with modular counting CMSOL of B. Godlin, T. Kotek
and J.A. Makowsky, [16, 30], and demonstrate its vast applicability in simplifying known and
new non-definability results of graph properties and finding new non-definability results for graph
parameters. We also prove a Feferman-Vaught Theorem for the logic CFOL, First Order Logic
with the modular counting quantifiers.
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1 Introduction

Difficulties in proving non-definability

Proving that a graph property P is not definable in first order logic FOL can be a challenging
task, especially on graphs with an additional linear order on the vertices. Proving that
a graph property such as 3-colorability, which is definable in monadic second order logic
MSOL, is not definable in fixed point logic on ordered graphs amounts to solving the famous
P 6= NP problem.

In the case of FOL and MSOL properties the basic tools for proving non-definability
are the various Ehrenfeucht-Fraïssé games also called pebble games. However, proving the
existence of winning strategies for these games can be exasperating. Two additional tools can
be used to make the construction of such winning strategies easier and more transparent: the
composition of winning strategies and the use of locality properties such as Hanf locality and
Gaifman locality. These techniques are by now well understood, even if not always simple
to apply, and are described in monographs such as [11, 24]. However these techniques are
not easily applicable for stronger logics, such as CMSOL, monadic second order logic with
modular counting. Furthermore, the pebble game method or the locality method may be
difficult to use when dealing with ordered structures or when proving non-definability for the
case where the definition may use an order relation on the universe in an order-invariant way.
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The notion of definability was extended in [2, 3] to integer valued graph parameters, and
in [9, 27, 29, 22, 23] to real or complex valued graph parameters and graph polynomials. In
[27] and [22] graph polynomials definable in MSOL respectively SOL were introduced. The
techniques of pebble games and locality do not lend themselves easily, or are not useful at
all, for proving non-definability in these cases.

Connection matrices

Connection matrices were introduced in [15, 26] by M. Freedman, L. Lovász and A. Schrijver
where they were used to characterize graph homomorphism functions. Let f be a real or
complex valued graph parameter. A k-connection matrixM(tk, f) is an infinite matrix, where
the rows and columns are indexed by finite k-labeled graphs Gi and the entry M(tk, f)i,j
is given by the value of f(Gi tk Gj). Here tk denotes the k-sum operation on Gi and Gj ,
i.e. the operation of taking the disjoint union of Gi and Gj and identifying vertices with the
corresponding k-many labels.

In [16] connection matrices were used to show that certain graph parameters and polyno-
mials are not MSOL-definable. The main result of [16] is the Finite Rank Theorem, which
states that the connection matrices of CMSOL-definable graph polynomials have finite rank.
Connection matrices and the Finite Rank Theorem were generalized in [30] to matrices
M(2, f) where 2 is a binary operation on labeled graphs subject to a smoothness condition
depending on the logic one wants to deal with. However, very few applications of the Finite
Rank Theorem were given.

Properties not definable in CFOL and CMSOL

The purpose of this paper lies in the demonstration that the Finite Rank Theorem is a
truly manageable tool for proving non-definability which leaves no room for hand-waving
arguments. To make our point we discuss graph properties (not)-definable in CFOL and
CMSOL, i.e., First Order Logic, respectively Monadic Second Order Logic with modular
counting quantifiers Dm,ixφ(x) which say that the number of elements satisfying φ equals i
modulo m. We also discuss the corresponding (non)-definability questions in CMSOL for
graph parameters and graph polynomials. Although one can derive pebble games for these
two logics, see e.g. [21, 32], using them to prove non-definability may be very awkward.

Instead we use a Feferman-Vaught-type Theorem for CFOL for disjoint unions and
Cartesian products, Theorem 3.3, which seems to be new for the case of products. The
corresponding theorem for disjoint unions, Theorem 3.2(i), for CMSOL was proven by B.
Courcelle [7, 8, 27].

The proof of the Finite Rank Theorem for these logics follows from the Feferman-Vaught-
type theorems. The details will be spelled out in Section 3.

With the help of the Finite Rank Theorem we give new and uniform proofs for the
following:
(i) Using connection matrices for various generalizations of the Cartesian product ×Φ we

prove non-definability of the following properties in CFOL with the vocabulary of graphs
〈V,E,<〉 with linear order:

Forests, bipartite graphs, chordal graphs, perfect graphs, interval graphs, block graphs
(every biconnected component, i.e., every block, is a clique), parity graphs (any two
induced paths joining the same pair of vertices have the same parity);
Trees, connected graphs;
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Planar graphs, cactus graphs (graphs in which any two cycles have at most one vertex
in common) and pseudo-forests (graphs in which every connected component has at
most one cycle).

The case of connected graphs was also shown undefinable in CFOL by. J. Nurmonen in
[32] using his version of the pebble games for CFOL.

(ii) Using connection matrices for various generalizations of the disjoint union tΦ we prove
non-definability of the following properties in CMSOL with the vocabulary of graphs
〈V,E,<〉 with linear order:

Hamiltonicity (via cycles or paths), graphs having a perfect matching, cage graphs
(regular graphs with as few vertices as possible for their girth), well-covered graphs
(where every minimal vertex cover has the same size as any other minimal vertex
cover). Here tΦ is the join operation ./.
The class of graphs which have a spanning tree of degree at most 3. Here tΦ is a
modified join operation.

(iii) Using connection matrices for various generalizations of the disjoint union tΦ we
prove non-definability of the following properties in CMSOL with the vocabulary of
hypergraphs 〈V,E;R,<〉 with linear order:

Regular graphs and bi-degree graphs.
Graphs with average degree at most |V |2 .
Aperiodic digraphs (where the greatest common divisor of the lengths of all cycles in
the graph is 1).
Asymmetric (also called rigid) graphs (i.e. graphs which have no non-trivial auto-
morphisms).

Graph parameters and graph polynomials not definable in CMSOL
A graph parameter is CMSOL-definable if it is the evaluation of a CMSOL-definable graph
polynomial. The precise definition of definability of graph polynomials is given in Section
6. Most prominent graph polynomials turned out to be definable in CMSOL, sometimes
using a linear order on the vertices in an order-invariant way, among them the various Tutte
polynomials, interlace polynomials, matching polynomials, and many more, cf. [28]. This led
the second author to express his belief in [28] that all “naturally occurring graph polynomials”
are CMSOL-definable. However, in [16] it was shown, using connection matrices, that the
graph polynomial counting harmonious colorings is not CMSOL-definable. A vertex coloring
is harmonious if each pair of colors appears at most once at the two end points of an edge,
cf. [12, 20]. That this is indeed a graph polynomial was shown in [23]. However, the main
thrust of [16] consists in showing that certain graph parameters are not evaluations of the
standard prominent graph polynomials.

In Section 7, we use connection matrices to show that many “naturally occurring graph
polynomials” are not CMSOL-definable. All these examples count various colorings and are
graph polynomials by [23]. The corresponding notion of coloring is studied extensively in the
literature.

To illustrate this we show that the following graph polynomials are not CMSOL-definable:
χrainbow(G, k) is the number of path-rainbow connected k-colorings, which are functions
c : E(G)→ [k] such that between any two vertices u, v ∈ V (G) there exists a path where
all the edges have different colors.
For every fixed t ∈ N, χmcc(t)(G, k) is the number of vertex k-colorings f : V (G)→ [k]
for which no color induces a subgraph with a connected component of size larger than t.

CSL’12
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χconvex(G, k) is the number of convex colorings, which are vertex k-colorings
f : V (G)→ [k] such that every color induces a connected subgraph of G.

Path-rainbow connected colorings were introduced in [6] and their complexity was studied
in [5]. mcc(t)-colorings were studied in [1], [25] and [14]. Note χmcc(1)(G, k) is the chromatic
polynomial. Convex colorings were studied for their complexity e.g. in [31] and [17]. From
[23] we get that χrainbow(G, k), χmcc(t)(G, k), and χconvex(G, k) are graph polynomials with
k as the variable.

In Section 7 more examples of graph polynomials and graph parameters not definable in
CMSOL are given.

Outline of the paper
We assume the reader is familiar with the basics of finite model theory [11, 24] and graph
theory [4, 10].

In Section 2 we illustrate the use of connection matrices in the case of regular languages.
This serves as a “warm-up” exercise. In Section 3 we introduce the general framework for
connection matrices of graph properties, i.e., boolean graph parameters, and of properties of
general τ -structures. In Section 4 we spell out the advantages and limitations of the method
of connection matrices in proving non-definability. In Section 5 we illustrate the use of
connection matrices and the Finite Rank Theorem for proving non-definability of properties.
In Section 6 we recall the framework of definable graph polynomials and τ -polynomials and
the corresponding definable numeric parameters, and in Section 7 we show how to prove
non-definability of these.

2 Connection Matrices for Regular Languages

Our first motivating examples deal with regular languages and the operation of concatenation
◦. By the well-known Büchi-Elgot-Trakhtenbrot Theorem, see [11, 24], a language L ⊆ Σ∗ is
regular if and only if the class SL of ordered structures representing the words of L is definable
in MSOL (or equivalently in CMSOL or ∃MSOL, the existential fragment of MSOL). The
connection matrix M(◦, L) with columns and rows indexed by all words of Σ∗ is defined by
M(◦, L)u,v = 1 iff u ◦ v ∈ L.

The Myhill-Nerode Theorem and the Pumping Lemma for regular languages, see [19, 18],
can be used to derive the following properties of M(◦, L):

I Proposition 2.1. Let L ⊆ Σ∗ be a regular language.
(i) There is a finite partition {U1, . . . , Uk} of Σ∗ such that the sub-matrices obtained from

restricting M(◦, L) to M(◦, L)[Ui,Uj ] have constant entries.
(ii) In particular, the infinite matrix M(◦, L) has finite rank over any field F .
(iii) M(◦, L) has an infinite sub-matrix of rank at most 1.

Now we can also look at counting functions and numeric parameters of words, such as the
length `(w) of a word w or the number of words sL(w) in a language L which are (connected)
sub-words of a given word w. The corresponding connection matrices M(◦, `) and M(◦, sL)
defined by M(◦, `)u,v = `(u ◦ v) and M(◦, sL)u,v = sL(u ◦ v) respectively do not satisfy (i)
and (iii) above, but still have finite rank. On the other hand the function mL(w) which gives
the maximal size of a word in L which occurs as a connected sub-word in w gives rise to
connection matrix M(◦, sL) of infinite rank. Here u◦v = u ◦ a ◦ v where a 6∈ Σ and therefore
mL(u◦v) = max{mL(u),mL(v)}.
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We can use these connection matrices to show that L1 = {0n ◦ 1n : n ∈ N} is not regular,
by noting that the sub-matrix M(◦, L1) with columns indexed by 0n and rows indexed by 1n
has 0 everywhere but in the diagonal, hence has infinite rank, contradicting (ii) of Proposition
2.1.

The numeric parameters on words `, sL are MSOL-definable as follows: `(w) =
∑
u<inw

1,
where u <in w means that u is a proper possibly empty initial segment of w. Similarly,
sL(w) =

∑
u<sww

1, where u <sw w denotes the relation u is a connected sub-word of w. We
shall give a general definition of MSOL-definable numeric parameter in Section 6. But we
state here already

I Proposition 2.2. The connection matrices M(◦, f) and M(◦, f) have finite rank, provided
f is MSOL-definable.

I Corollary 2.3. The function mL(w) is not MSOL-definable.

3 Connection Matrices for Properties: The Framework

Let τ be a purely relational finite vocabulary which may include constant symbols and may
include a distinguished binary relation symbol for a linear order. A τ -property is a class
of finite τ -structures closed under τ -isomorphisms. If the context is clear we just speak of
properties and isomorphisms. We denote by SOL(τ) the set of SOL formulas over τ . A
sentence is a formula without free variables.

Let L be a subset of SOL. L is a fragment of SOL if the following conditions hold:
(i) For every finite relational vocabulary τ the set of L(τ) formulas contains all the atomic

τ -formulas and is closed under boolean operations and renaming of relation and constant
symbols.

(ii) L is equipped with a notion of quantifier rank and we denote by Lq(τ) the set of formulas
of quantifier rank at most q. The quantifier rank is sub-additive under substitution of
sub-formulas,

(iii) The set of formulas of Lq(τ) with a fixed set of free variables is, up to logical equivalence,
finite.

(iv) Furthermore, if φ(x) is a formula of Lq(τ) with x a free variable of L, then there is a
formula ψ logically equivalent to ∃xφ(x) in Lq′(τ) with q′ ≥ q + 1.
Typical fragments are FOL and MSOL. CMSOL and the fixed point logics IFPL and

FPL and their corresponding finite variable subsets correspond to fragments of SOL if we
replace the counting or fixed-point operators by their SOL-definitions.

For two τ -structures A and B we define the equivalence relation of Lq(τ)- non-
distinguishability, and we write A ≡Lq B, if they satisfy the same sentences from Lq(τ).

Let s : N → N be a function. A binary operation 2 between τ -structures is called
(s,L)-smooth, if for all q ∈ N whenever A1 ≡Lq+s(q) B1 and A2 ≡Lq+s(q) B2 then

A12A2 ≡Lq B12B2.

If s(q) is identically 0 we omit it.
For two τ -structures A and B, we denote by A tB the disjoint union, which is a τ -

structure; A trich B the rich disjoint union which is the disjoint union augmented with two
unary predicates for the universes A and B respectively; A×B the Cartesian product, which
is a τ -structure; and for graphs G,H by G ./ H the join of two graphs, see [10].

A L-transduction of τ -structures into σ-structures is given by defining a σ-structure inside
a given τ -structure. The universe of the new structure may be a definable subset of an

CSL’12
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m-fold Cartesian product of the old structure. If m = 1 we speak of scalar and otherwise of
vectorized transductions. For every k-ary relation symbol R ∈ σ we need a τ -formula in k ·m
free individual variables to define it. We denote by Φ a sequence of τ -formulas which defines
a transduction. We denote by Φ? the map sending τ -structures into σ-structures induced
by Φ. We denote by Φ] the map sending σ-formulas into τ -formulas induced by Φ. For a
σ-formula Φ](θ) is the backward translation of θ into a τ -formula. Φ is quantifier-free if all
its formulas are from FOL0(τ). We skip the details, and refer the reader to [24, 27].

A fragment L is closed under scalar transductions, if for Φ such that all the formulas of
Φ are in L(τ), Φ scalar, and θ ∈ L(σ), the backward substitution Φ](θ) is also in L(τ). A
fragment of SOL is called tame if it is closed under scalar transductions. FOL, MSOL and
CMSOL are all tame fragments. So are their finite variable versions.

FOL and SOL are also closed under vectorized transductions, but the monadic fragments
MSOL and CMSOL are not.

We shall frequently use the following:

I Proposition 3.1. Let Φ define a L-transduction from τ -structures to σ-structures where
each formula is of quantifier rank at most q. Let θ be a L(σ)r-formula. Then

Φ?(A) |= θ iff A |= Φ](θ)

and Φ](θ) is in L(τ)q+r.

I Proposition 3.2 (Smooth operations).
(i) The rich disjoint union trich of τ -structures and therefore also the disjoint union are

FOL-smooth, MSOL-smooth and CMSOL-smooth. They are not SOL-smooth.
(ii) The Cartesian product × of τ -structures is FOL-smooth, but not MSOL-smooth
(iii) Let Φ be a quantifier-free scalar transduction of τ -structures into τ -structures and let 2

be an L-smooth operation. Then the operation 2Φ(A,B) = Φ?(A2B) L-smooth. If Φ
has quantifier rank at most k, it is (k,L)-smooth.

Sketch of proof. (i) is shown for FOL and MSOL using the usual pebble games. For CMSOL
one can use Courcelle’s version of the Feferman-Vaught Theorem for CMSOL, cf. [7, 8, 27].
(ii) is again shown using the pebble game for FOL. (iii) follows from Proposition 3.1. The
negative statements are well-known, but also follow from the developments in the sequel. J

I Theorem 3.3 (Feferman-Vaught Theorem for CFOL).
(i) The rich disjoint union trich of τ -structures, and therefore the disjoint union, too, is

CFOL-smooth.
(ii) The Cartesian product × of τ -structures is CFOL-smooth.

Sketch of proof. The proof does not use pebble games, but Feferman-Vaught-type reduction
sequences. (i) can be proven using the same reduction sequences which are used in [7, 8]. (ii)
is proven using modifications of the reduction sequences as given in detail in [27, Theorem
1.6]. J

To the best of our knowledge, (ii) of Theorem 3.3 has not been stated in the literature before.

I Remark. We call this a Feferman-Vaught Theorem, because our proof actually computes
the reduction sequences explicitly. However, this is not needed here, so we refer the reader
to [27] for the definition of reduction sequences. One might also try to prove the theorem
using the pebble games defined in [32], but at least for the case of the Cartesian product,
the proof would be rather complicated and less transparent.
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I Theorem 3.4 (Finite Rank Theorem for tame L, [16, 30]).
Let L be a tame fragment of SOL. Let 2 be a binary operation between τ -structures which
is L-smooth. Let P be a τ -property which is definable by a L-formula ψ and M(2, ψ) be
the connection matrix defined by

M(2, ψ)A,B = 1 iff A2B |= ψ and 0 otherwise .

Then
(i) There is a finite partition {U1, . . . , Uk} of the (finite) τ -structures such that the sub-

matrices obtained from restricting M(2, ψ) to M(2, ψ)[Ui,Uj ] have constant entries.
(ii) In particular, the infinite matrix M(2, ψ) has finite rank over any field F .
(iii) M(2, ψ) has an infinite sub-matrix of rank at most 1.

Sketch of proof. (i) follows from the definition of a tame fragment and of smoothness and
the fact that there are only finitely many formulas (up to logical equivalence) in L(τ)q. (ii)
and (iii) follow from (i). J

4 Merits and Limitations of Connection Matrices

Merits

The advantages of the Finite Rank Theorem for tame L in proving that a property is not
definable in L are the following:
(i) It suffices to prove that certain binary operations on graphs (τ -structures) are L-smooth

operations.
(ii) Once the L-smoothness of a binary operation has been established, proofs of non-

definability become surprisingly simple and transparent. One of the most striking
examples is the fact that asymmetric (rigid) graphs are not definable in CMSOL, cf.
Corollary 5.7.

(iii) Many properties can be proven to be non-definable using the same or similar sub-matrices,
i.e., matrices with the same row and column indices. This is well illustrated in the
examples of Section 5.

Limitations

The classical method of proving non-definability in FOL using pebble games is complete in
the sense that a property is FOL(τ)q-definable iff the class of its models is closed under game
equivalence of length q. Using pebble games one proves easily that the class of structures
without any relations of even cardinality, EVEN, is not FOL-definable. This cannot be
proven using connection matrices in the following sense:

I Proposition 4.1. Let Φ be a quantifier-free transduction between τ -structures and let 2Φ
be the binary operation on τ -structures:

2Φ(A,B) = Φ?(A trich B)

Then the connection matrix M(2Φ,EVEN) satisfies the properties (i)-(iii) of Theorem 3.4.

CSL’12



418 Connection matrices

5 Proving Non-definability of Properties

Non-definability on CFOL
We will prove non-definability in CFOL using Theorem 3.3 for Cartesian products combined
with FOL transductions. It is useful to consider a slight generalization of the Cartesian
product as follows. We add two constant symbols start and end to our graphs. In G1×G2 the
symbol start is interpreted as the pair of vertices (v1

start, v
2
start) from G1 and G2 respectively

such that vistart is the interpretation of starti (i.e. start in Gi) for i = 1, 2.
The transduction Φsym(x, y) = ED(x, y) ∨ ED(y, x) transforms a digraph D = (VD, ED)

into an undirected graph whose edge relation is the symmetric closure of the edge relation of
the digraph.

The following transduction ΦF transforms the Cartesian product of two directed graphs
Gi = (V1, E1, v

i
start, v

i
end) with the two constants starti and endi, i = 1, 2 into a certain

digraph. It is convenient to describe ΦF as a tranduction of the two input graphs G1 and G2:

ΦF ((v1, v2) , (u1, u2)) = (E1(v1, u1) ∧ E2(v2, u2)) ∨
((v1, v2) , (u1, u2)) = ((start1, start2) , (end1, end2))

Consider the transduction obtained from ΦF by applying Φsym when the input graphs
are directed paths P ini

of length ni. The input graphs look like this:

The result of the application of the transduction is given in Figure 1. The result of the

n1 = n2 n1 6= n2

Figure 1 The result of applying ΦF and then Φsym on the two directed paths. There is a cycle
iff the two directed paths are of the same length.

transduction has a cycle iff n1 = n2. The length of this cycle is n1. Hence, the connection
sub-matrix with rows and columns labeled by directed paths of odd (even) length has ones
on the main diagonal and zeros everywhere else, so it has infinite rank. Thus we have shown:

I Theorem 5.1. The graphs without cycles of odd (even) length are not CFOL-definable
even in the presence of a linear order.

I Corollary 5.2. Not definable in CFOL with order are:
(i) Forests, bipartite graphs, chordal graphs, perfect graphs
(ii) interval graphs (cycles are not interval graphs)
(iii) Block graphs (every biconnected component is a clique)
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(iv) Parity graphs (any two induced paths joining the same pair of vertices have the same
parity)
The transduction

ΦT ((v1, v2) , (u1, u2)) = (E1(v1, u1) ∧ E2(v2, u2)) ∨
(v1 = u1 = start1 ∧ E(v2, u2)) ∨
(v1 = u1 = end1 ∧ E(v2, u2)) ,

combined with Φsym transforms the two directed paths into the structures in Figure 2.

n1 > n2 n1 = n2 n1 < n2

Figure 2 The result of applying ΦT and then Φsym on two directed paths. We get a tree iff the
two directed paths are of equal length.

So, the result of the transduction is a tree iff n1 = n2. It is connected iff n1 ≤ n2. Hence,
both the connection matrices with directed paths as row and column labels of the property
of being a tree and of connectivity have infinite rank.
I Theorem 5.3. The properties of being a tree or a connected graph are not CFOL-definable
even in the presence of linear order.

For our next connection matrix we use the 2-sum of the following two 2-graphs:
(i) the 2-graph (G, a, b) obtained from K5 by choosing two vertices a and b and removing

the edge between them
(ii) the symmetric closure of the Cartesian product of the two digraphs P 1

n1
and P 2

n2
:

We denote this transduction by ΦP , see Figure 3.
So, the result of this construction has a clique of size 5 as a minor iff n1 = n2. It can

never have a K3,3 as a minor.
I Theorem 5.4. The class of planar graphs is not CFOL-definable on ordered graphs.

If we modify the above construction by takingK3 instead ofK5 and making (start1, start2)
and (end1, end2) adjacent, we get
I Corollary 5.5. The following classes of graphs are not CFOL-definable on ordered
graphs.
(i) Cactus graphs, i.e. graphs in which any two cycles have at most one vertex in common.
(ii) Pseudo-forests, i.e. graphs in which every connected component has at most one cycle.
The case of connected graphs was also shown non-definable in CFOL by. J. Nurmonen in
[32] using his version of the pebble games for CFOL.

CSL’12
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n1 = n2 n1 6= n2

Figure 3 The result of ΦP on two directed paths. The graph obtained here is planar iff the two
directed paths are of equal length.

Non-definability in CMSOL

Considering the connection matrix where the rows and columns are labeled by the graphs on
n vertices but without edges En, the graph Ei 1 Ej = Ki,j is
(i) Hamiltonian iff i = j;
(ii) has a perfect matching iff i = j;
(iii) is a cage graph (a regular graph with as few vertices as possible for its girth) iff i = j;
(iv) is a well-covered graph (every minimal vertex cover has the same size as any other

minimal vertex cover) iff i = j.
All of these connection matrices have infinite rank, so we get

I Corollary 5.6. None of the properties above are CMSOL-definable as graphs even in the
presence of an order.

Using a modification 1̃ of the join operation used in [8, Remark 5.21] one can show the same
for the class of graphs which have a spanning tree of degree at most 3. For any fixed natural
number d > 3, by performing a transduction on G1̃H which attaches d− 3 new vertices as
pendants to each vertex of G1̃H, one can extend the non-definability result to the class of
graphs which have a spanning tree of degree at most d.

For the language of hypergraphs we cannot use the join operation, since it is not smooth.
Note also that Hamiltonian and having a perfect matching are both definable in CMSOL in
the language of hypergraphs. But using the connection sub-matrices of the disjoint union we
still get:
(i) Regular: Ki tKj is regular iff i = j;
(ii) A generalization of regular graphs are bi-degree graphs, i.e., graphs where every vertex

has one of two possible degrees. Ki t (Kj tK1) is a bi-degree graph iff i = j.
(iii) The average degree of Ki tKj is at most |V |2 iff i = j;
(iv) A digraph is aperiodic if the common denominator of the lengths of all cycles in the

graph is 1. We denote by Cdi the directed cycle with i vertices. For prime numbers p, q
the digraphs Cp t Cq is aperiodic iff p 6= q.

(v) A graph is asymmetric (or rigid) if it has no non-trivial automorphisms. It was shown
by P. Erdös and A. Rényi [13] that almost all finite graphs are asymmetric. So there is
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an infinite set I ⊆ N such that for i ∈ I there is an asymmetric graph Ri of cardinality
i. Ri tRj is asymmetric iff i 6= j.

I Corollary 5.7. None of the properties above are CMSOL-definable as hypergraphs even in
the presence of an order.
I Remark. The case of asymmetric graphs illustrates that it is not always necessary to find
explicit infinite families of graphs whose connection matrices are of infinite rank in order to
show that such a family exists.

6 L-Definable Graph Polynomials and Graph Parameters

L(τ)-polynomials
Here we follow closely the exposition from [23]. Let L be a tame fragment of SOL. We
are now ready to introduce the L-definable polynomials. They are defined for τ -structures
and generally are called L(τ) invariants as they map τ -structures into some commutative
semi-ring R, which contains the semi-ring of the integers N, and are invariant under τ -
isomorphisms. If τ is the vocabulary of graphs or hypergraphs, we speak of graph invariants
and graph polynomials.

For our discussion R = N or R = Z suffices, but the definitions generalize. Our
polynomials have a fixed finite set of variables (indeterminates, if we distinguish them from
the variables of L), X.

I Definition 1 (L-monomials). Let M be a τ -structure. We first define the L-definable
M-monomials. inductively.
(i) Elements of N are L-definableM-monomials.
(ii) Elements of X are L-definableM-monomials.
(iii) Finite products of monomials are L-definableM-monomials.
(iv) Let φ(a) be a τ ∪ {a}-formula in L, where a is a constant symbol not in τ . Let t be a

M-monomial. Then
∏
a:〈M,a〉|=φ(a) t is a L-definableM-monomial.

The monomial t may depend on relation or function symbols occurring in φ.

Note the degree of a monomial is polynomially bounded by the cardinality ofM.

I Definition 2 (L-polynomials). The M-polynomials definable in L are defined induct-
ively:
(i) M-monomials are L-definableM-polynomials.
(ii) Let φ(a) be a τ ∪{a}-formula in L where a = (a1, . . . , am) is a finite sequence of constant

symbols not in τ . Let t be a M-polynomial. Then
∑
a:〈M,a〉|=φ(a) t is a L-definable

M-polynomial.
(iii) Let φ(R) be a τ∪{R}-formula in L where R = (R1, . . . , Rm) is a finite sequence of relation

symbols not in τ . Let t be aM-polynomial definable in L. Then
∑
R:〈M,R〉|=φ(R) t is a

L-definableM-polynomial.
The polynomial t may depend on relation or function symbols occurring in φ.

AnM-polynomial pM(X) is an expression with parameterM. The family of polynomials,
which we obtain from this expression by lettingM vary over all τ -structures, is called, by
abuse of terminology, a L(τ)-polynomial.

Among the L-definable polynomials we find most of the known graph polynomials from
the literature, cf. [28, 23]. L-definable numeric graph parameters are evaluations of L-
definable polynomials and take values in R. L-definable properties are special cases of
numeric parameters which have boolean values.
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Some simple graph parameters are even FOL-definable, e.g. |V |, the number of vertices
and |E|, the number of edges. However, we leave the discussion of FOL-definable parameters
for the journal version of this paper, and concentrate on tame fragments of SOL which do
have second order variables.

Sum-like operations
For the proof of the The Finite Rank Theorem for L-polynomials which involve second order
variables it is not enough that the binary operation 2 on τ -structures be L-smooth. We
need a way to uniquely decompose the relation over which we perform summation in A2B

into relations in A and B respectively, from which we can reconstruct the relation in A2B.
For our discussion here it suffices to restrict 2 to L-sum-like operations. A2B is L-sum-like
if there is a scalar L-transduction Φ such that

A2B = Φ?(A trich B).

An operation is L-product-like if instead of scalar transductions we also allow vectorized
transductions. Typically, the Cartesian product is FOL-product-like, but not sum-like. The
k-sum and the join operation on graphs are FOL-sum-like (but, in the case of join, not on
hypergraphs).

The Finite Rank Theorem for L-polynomials
Now we can state the Finite Rank Theorem for L-polynomials. The proof uses the same
techniques as in [9, 27].
I Theorem 6.1 (The Finite Rank Theorem for L-polynomials).
Let L be a tame fragment of SOL and 2 be an L-sum-like operation between τ -structures
which is (s,L)-smooth. Let P be an L(τ)-polynomial. Then the connection matrix M(2, P )
has finite rank.
I Remark. In [16] the theorem was only formulated for k-sums, and the join operation and
for the logic CMSOL.

7 Non-definability of L(τ)-invariants

7.1 Numeric L(τ)-parameters
Theorem 6.1 can be used to show that many τ -parameters are not L-definable.

2-maximizing and 2-minimizing parameters
We say a τ -parameter f is 2-maximizing (2-minimizing) if there exist an infinite sequence
of non-isomorphic τ -structures A1,A2,A3, . . . ,Ai, . . . such that for any i 6= j,

f(Ai2Aj) = max{f(Ai), f(Aj)} .

Furthermore, if f is unbounded on A1,A2,A3, . . . then f is unboundedly 2-maximizing.
Analogously we define (unboundedly) 2-minimizing.
I Proposition 7.1. If f is a unboundedly 2-maximizing (2-minimizing) τ -parameter, then
M(f,2) has infinite rank.

Using Proposition 7.1 we show that many τ -parameters are not CMSOL-definable:
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I Proposition 7.2. Let L be tame and t-smooth. The following graph parameters are not
L-definable in the language of hypergraphs. In particular they are not CMSOL-definable.
Spectral radius, chromatic number, acyclic chromatic number, arboricity, star chromatic
number, clique number, Hadwiger number, Hajós number, tree-width, path-width, clique-
width, edge chromatic number, Thue number, maximum valency, circumference, longest
path, maximal connected planar (bipartite) induced subgraph, boxicity, minimal eigenvalue,
spectral gap, girth, degeneracy, and minimum valency.

Proof. All these graph parameters g are unboundedly t-maximizing or t-minimizing. J

Variations of the notions of 2-maximizing or 2-minimizing τ -parameters can also lead to
non-definability results, e.g.:
I Proposition 7.3. Under the same assumption on L as before, the number of connected
components (blocks, simple cycles, induced paths) of maximum (minimum) size is not
L-definable in the language of hypergraphs.

Proof. Consider the connection matrix of graphs i ·Ki which consist of the disjoint union of
i cliques of size i with the operation of disjoint union. We denote the number of connected
components of maximum size in a graph G by #max−cc(G). Then

#max−cc(nKn tmKm) =
{

max{n,m} n 6= m

n+m n = m

So M(#max−cc,t) is of infinite rank. The other cases are proved similarly. J

7.2 τ -polynomials
Here we use the method of connection matrices for showing that (hyper)graph polynomials
are not MSOL-definable. Some of the material here is taken from the first author’s thesis [33].
As examples we consider the polynomials χrainbow(G, k), χmcc(t)(G, k), and χconvex(G, k),
which were defined in the introduction.

To show that none of χrainbow(G, k), χmcc(t)(G, k), or χconvex(G, k) are CMSOL-
polynomials in the language of graphs, and that neither χrainbow(G, k) nor χconvex(G, k)
are CMSOL-polynomials in the language of hypergraphs, we prove the following general
proposition:
I Lemma 7.4. Given a τ -parameter p, a binary operation 2 on τ -structures and an infinite
sequence of non-isomorphic τ -structures Ai, i ∈ N, let f : N→ N be an unbounded function
such that for every λ ∈ N, p(Ai2Aj , λ) = 0 iff i + j > f(λ). Then the connection matrix
M(2, p) has infinite rank.

Proof. Let λ ∈ N and let pλ be the graph parameter given by pλ(G) = p(G,λ). The
restriction of the connection matrix M(pλ,2) to the rows and columns corresponding to Ai,
0 ≤ i ≤ f(λ)− 1, yields a finite triangular matrix with non-zero diagonal. Hence the rank of
M(pλ,2) is at least f(λ)− 1.

Using that f is unbounded, we get that M(p,2) contains infinitely many finite sub-
matrices with ranks which tend to infinity. Hence, the rank of M(p,2) is infinite, J

We now use Lemma 7.4 to compute connection matrices where 2 is the disjoint union t,
the 1-sum t1 or the join ./.
I Proposition 7.5. The following connection matrices have infinite rank:
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(i) M(t1, χrainbow(G, k));
(ii) M(t1, χconvex(G, k));
(iii) For every t > 0 the matrix M(./, χmcc(t)(G, k));

Proof.
(i) For χrainbow(G, k), we use that the 1-sum of paths with one end labeled is again a path

with Pi t1 Pj = Pi+j−1 and that χrainbow(Pr, k) = 0 iff r > k + 3.
(ii) For χconvex(G, k), we use edgeless graphs and disjoint union Ei t Ej = Ei+j and that

χconvex(Er, k) = 0 iff r > k.
(iii) For χmcc(t)(G, k) we use the join and cliques, Ki ./ Kj = Ki+j and that χmcc(t)(Kr, k) =

0 iff r > kt.
J

I Corollary 3.
(i) χrainbow(G, k) and χconvex(G, k) are not CMSOL-definable in the language of graphs

and hypergraphs.
(ii) χmcc(t)(G, k) (for any fixed t > 0) is not CMSOL-definable in the language of graphs.

Proof. (i) The 1-sum and the disjoint union are CMSOL-sum-like and CMSOL-smooth for
hypergraphs. (ii) The join is only CMSOL-sum-like and CMSOL-smooth for graphs. J

The same method yields non-definability results for other graph polynomials which arise
by counting other graph colorings from the literature, such as acyclic colorings, non-repetitive
colorings, t-improper colorings, co-colorings, sub-colorings and G-free colorings.
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