
A Computational Interpretation of the Axiom of
Determinacy in Arithmetic
Takanori Hida

Research Institute for Mathematical Sciences, Kyoto University
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
hida@kurims.kyoto-u.ac.jp

Abstract
We investigate the computational content of the axiom of determinacy (AD) in the setting of
classical arithmetic in all finite types with the principle of dependent choices (DC). By employing
the notion of realizability interpretation for arithmetic given by Berardi, Bezem and Coquand
(1998), we interpret the negative translation of AD. Consequently, the combination of the negative
translation with this realizability semantics can be seen as a model of DC, AD and the negation
of the axiom of choice at higher types. In order to understand the computational content of AD,
we explain, employing Coquand’s game theoretical semantics, how our realizer behaves.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases The axiom of determinacy, Gale-Stewart’s theorem, Syntactic continuity,
Realizability interpretation, Coquand’s game semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.335

1 Introduction

The theory of infinite games has proven to be very effective in the study of various fields of
logic and mathematics. There are a number of related works, and lots of game concepts have
been proposed. Prominent among infinite game theory is the two person infinite game with
perfect information, in which two players collaborate to define an infinite sequence of natural
numbers by choosing a natural number alternately. There are many intriguing questions over
this game, e.g., which games can be shown to be determined, in the sense that one of the
two players has a winning strategy? D. Gale and F.M. Stewart [6] proved that all games
for open or closed pay-off sets are determined. As the study of determinacy has revealed
several remarkable consequences to mathematics, the axiom of determinacy (AD, for short)
was introduced out of theoretical interest [17]: For every subset A of the Baire space ωω, the
game G(A) is determined. A substantial amount of research has been conducted over this
topic and a number of deep results have been obtained (see [8]).

The focus of this paper, however, is on a somewhat different aspect from prior set-
theoretical ones: what is the computational content of AD? For this purpose, we employ the
notion of realizability interpretation for arithmetic given in [2]. Realizability interpretation,
which is one formalization of BHK-interpretation, assigns a term to a valid formula. A
realizer of a formula provides computational evidence for that formula, and thus endows it
with computational content. Although there are other techniques for program extraction
from formal proofs such as Curry-Howard correspondence [19], the realizability interpretation
is better suited for our purpose: This methodology enables us to give interpretations even for
some non-trivial axioms and proofs using axioms, because the definition of the realizability
relation proceeds by induction not on proofs but on formulas.

© Takanori Hida;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 335–349

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.335
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

336 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Several notions of realizability interpretation have been presented [21]. Nevertheless, in
terms of the usage of realizability for the exploration of the computational content of classical
proofs, existing research can be classified into two categories: direct and indirect approaches.
The former studies computational meanings immediately in the setting of classical logic.
The fact that such an approach is possible comes as rather a surprise; from the viewpoint
of computation, classical logic is much more difficult to deal with than intuitioninstic logic.
Among this line of research, Krivine’s classical realizability is of great importance [12, 13, 14].
This technique is developed as a generalization of forcing and, using the orthogonal structure
between terms and stacks, provides a way of examining computational content of classical
logic. On the other hand, the indirect approach, which we follow in this paper, consists
of two steps. The first step is to embed classical proofs into an intuitionistic system by a
negative translation; then by using some notion of intuitionistic realizability, we interpret
the translated proofs.

The rest of this paper is organized as follows. In the next section, we define the basic
terminology and provide background information briefly. In order to realize a negative
translation of AD, we formalize the statement of Gale-Stewart’s theorem in arithmetic
and prove it in section 3. After presenting the notion of realizability in section 4, we
interpret the negative translation of the statement “every subset of ωω is open” and, as a
consequence, obtain a required realizer in section 5. Corollaries of this result include the
(relative) consistency of the principle of dependent choices and AD in arithmetic. Since our
purpose is not just to give a realizer of AD but also to know its computational meaning, we
explain the behavior of the realizer using Coquand’s game theoretical semantics in section 6.
In the final section, we discuss future work.

2 Notations and Definitions

2.1 Infinite Games
I Definition 1. (Two person, infinite game with perfect information)

For an arbitrary subset A of the set ωω of all infinite sequences of natural numbers, G(A)
denotes the following game:

There are two players, Player I and Player II,
At each round i, Player I chooses an xi ∈ ω, then Player II chooses a yi ∈ ω,
I x0 x1 · · · xi · · ·
II y0 y1 · · · yi · · ·

Player I wins the game G(A) if the infinite sequence 〈x0, y0, x1, y1, . . . 〉 is in A.

Each choice is called a move of the game, and the infinite sequence 〈x0, y0, x1, y1, . . . 〉
is called a play of the game. We refer to A as the pay-off set for the game G(A). Perfect
information means that both players have complete access to the way the game has been
played so far.

I Definition 2. (Strategies)
A strategy for Player I is a function σ : {s ∈ ω<ω | s is of even length} → ω,
A strategy for Player II is a function τ : {s ∈ ω<ω | s is of odd length} → ω,

where ω<ω is the set of all finite sequences of natural numbers.

Each player decides his or her move according to a strategy as follows:

T. Hida 337

I Definition 3. (The plays σ ∗ y and x ∗ τ)
Let σ be a strategy for Player I. For each y = 〈y0, y1, . . . 〉, σ ∗ y denotes the play

〈a0, y0, a1, y1, . . . 〉, where a0 = σ(〈〉) and an+1 = σ(〈a0, y0, . . . , an, yn〉).
Let τ be a strategy for Player II. For each x = 〈x0, x1, . . . 〉, x ∗ τ denotes the play

〈x0, b0, x1, b1, . . . 〉, where bn = τ(〈x0, b0, . . . , xn〉).

I Definition 4. (Winning strategies)
A strategy σ is a winning strategy for Player I in G(A) if σ ∗ y ∈ A for all y ∈ ωω.
A strategy τ is a winning strategy for Player II in G(A) if x ∗ τ /∈ A for all x ∈ ωω.

I Definition 5. (Determined)
A game G(A) is determined if either Player I or Player II has a winning strategy in this

game.
A set A ⊂ ωω is determined if the game G(A) is determined.

One natural question over this property would be: How much determinacy is derivable?
It is easy to see that all finite and cofinite subsets are determined. More interestingly, it has
been proven that all open and closed subsets [6], and all Borel subsets [15] are determined.
(Recall that the standard topology on ωω is induced by an open base {O(s) | s ∈ ω<ω},
where O(s) := {f ∈ ωω | s is an initial segment of f}. This space is called the Baire space).

I Definition 6. (The axiom of determinacy (AD))
The axiom of determinacy (AD) is the statement that every A ⊂ ωω is determined.

The relationship between AD and choice principles is worth pointing out: AD contradicts
the (full) axiom of choice (AC) in ZF set theory[6], but implies a restricted version of the
axiom of countable choice [18]. As regards the principle of dependent choices (DC), which is
an essential tool in exploring the consequences of AD, it is known that DC is independent
from ZF+AD [9].

There are a number of striking results around AD, such as its role in the study of consis-
tency strength and applications to infinite combinatorics. The investigation of determinacy
extends even to the area of second order arithmetic, e.g., [16]. The reader can find more
information in, e.g., [8].

2.2 Systems of Arithmetic
In order to investigate AD in arithmetic, let us fix the basic terminology of arithmetic and
present fundamental results. Firstly, we describe minimal (HAω−), intuitionistic (HAω) and
classical (HAωc) arithmetic in all finite types. We borrow most of our notation from [2].

I Definition 7. (Formal systems HAω−, HAω and HAωc)
Types, terms and formulas of the three systems are the same and given by the following
grammars:
Types τ, τ ′ ::= N | τ → τ ′

Terms t, u ::= xτ | λxτ .tτ ′ | tτ→τ ′
uτ | 0N | sN→N | Recτ→((N→τ→τ)→(N→τ))

τ

where tτ or t : τ indicate that a term t is of type τ .
Formulas φ, ψ ::= ⊥ | tN = t

′N (prime formula) | φ ∧ ψ | φ⇒ ψ | ∀x : τ φ | ∃x : τ φ
For every formula φ, we write ¬φ in place of φ⇒ ⊥ for brevity.
Higher type equations are abbreviations, e.g., fN→N = gN→N stands for ∀n : N (fn = gn).

Theory of HAω−

CSL’12

338 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Axioms and rules for first order many sorted minimal logic (with each sort corresponding
to a type).
Equality axioms and the induction schema:

t = t (eq1)
t1 = s1 ⇒ · · · ⇒ tk = sk ⇒ ft1 · · · tk = fs1 · · · sk (eq2)
t1 = s1 ⇒ · · · ⇒ tk = sk ⇒ {P (t1, . . . , tk)⇔ P (s1, . . . , sk)} (eq3)

φ(0) ∧ ∀n {φ(n)⇒φ(sn)} ⇒ ∀nφ(n) (Ind)

Successor axioms:
¬ sn = 0 (Suc1) sn = sm⇒ n = m (Suc2)

The defining equations of the constant Recτ for each type τ :
Rec tu0 = t (Rec0) Rec tu(sv) = uv(Rec tuv) (Recs)

λ-calculus axiom and rules:
(λx.t)u = t[u/x] (β)

t = t′

tu = t′u
(Ap1) u = u′

tu = tu′
(Ap2) t = t′

λx.t = λx.t′
(ir)

The theory of HAω (resp. HAωc) is obtained from that of HAω− by changing the base
logic from minimal to intuitionistic (resp. classical).

From now on, we assume that the variables i, j, k, l,m, n are of type N, f, g are of N→ N
and χ is of (N→ N)→ N, and omit types whenever there is no fear of confusion.

We then consider the following schemata (parametric in φ):

I Definition 8. (Schemata Comp(τ), AC(τ, τ ′) and DC(τ))
Comp(τ) ∃χ : τ → N ∀x : τ {χ(x) = 1⇔ φ(x)}.
AC(τ, τ ′) ∀x : τ ∃y : τ ′ φ(x, y)⇒ ∃f : τ → τ ′ ∀x : τ φ(x, f(x)).
DC(τ) ∀x : τ ∃y : τ φ(x, y)⇒ ∀a : τ ∃f : N→ τ {f(0) = a ∧ ∀nφ(f(n), f(n+ 1))}.

Using this notation, CAC (the axiom of countable choice) and DC (the principle of
dependent choices) are expressed as AC(N, τ) for all types τ and DC(τ) for all types τ ,
respectively.
I Remark. We refer to the schema Comp(τ) as comprehension under the identification of
a set {x : τ | φ(x)} with a function χ : τ → N satisfying ∀x : τ {χ(x) = 1⇔ φ(x)}, namely
a (generalized) characteristic function for {x : τ | φ(x)}. This schema is not counted as an
axiom of HAωc , and this may be the reason why [2] avoids the standard notation “PAω”, in
which comprehension is usually assumed. The absence of comprehension in our systems of
arithmetic will be crucial in section 6.
I Proposition 9. For any type τ and τ ′, we have
1. HAω− ` AC(τ, τ)⇒ DC(τ).
2. HAωc ` DC(N→ τ)⇒ AC(N, τ), and hence DC implies CAC.
3. HAω− ` AC(τ, τ ′)⇒ AC(τ, N).
4. HAωc ` AC(τ, N)⇒ Comp(τ). In particular, CAC implies Comp(N).

For each formula φ of HAωc , let φK denote the negative translation of φ obtained by
prefixing all prime formulas and existentially quantified formulas by double negations. For
instance, {∀n∃m (n+ 1 = m)}K is ∀n¬¬∃m¬¬ (n+ 1 = m).

Let us point out a fact, which will be crucial in section 5. This translation enables us to
embed classical arithmetic further into minimal arithmetic:
I Proposition 10. [2] HAωc +DC ` φ implies HAω− +DCK ` φK .

T. Hida 339

3 Gale-Stewart’s Theorem in Classical Arithmetic

D. Gale and F.M. Stewart [6] proved in ZF set theory that all open subsets of the Baire
space are determined (Open Determinacy). In this section, we formalize that statement in
HAωc and show informally that it is also provable in classical arithmetic.

Before proceeding any further, it would be better to introduce several abbreviations in
order to enhance the readability of the following discussion:

“n is odd” is the prime formula odd?(n) = 1, where the term odd?(n) of HAωc is equal to
1 when n is odd, and 0 otherwise.
“k ≤ m” is the prime formula k ·− m = 0, where ·− is the term for the truncated
subtraction: k ·−m is k −m when k > m, and 0 otherwise.
“OP (χ)” is the formula ∀f {χ(f) = 1 ⇒ ∃m ∀g (eq≤m(f, g) = 1 ⇒ χ(g) = 1)}, where
the term “eq≤m(f, g)” of HAωc is equal to 1 when f(k) = g(k) for all k ∈ {0, . . . ,m}, and
0 otherwise.
“OP” is the formula ∀χ OP (χ).

I Remark. It will be easy to confirm that functions like odd?, ·− and eq≤m(f, g) can be
implemented as terms of HAω. Notice also that these defined symbols do not add any power,
for HAω− proves the equivalence between the prime formula odd?(n) = 1 (resp. eq≤m(f, g) =
1) and the formula ∃k (k ≤ n ∧ n = 2k+ 1) (resp. ∀k {k ≤ m⇒ f(k) = g(k)}). Henceforth,
we introduce defined symbols in this way, i.e., without presenting the implementation as
terms of HAω.
I Remark. χ : (N→ N)→ N can be seen as a (generalized) characteristic function for some
A ⊂ ωω: ∀f {χ(f) = 1 ⇔ f ∈ A}. With this in mind, the formula OP (χ) is read as “χ
represents an open subset of the Baire space ωω”.

In the sequel, we need an encoding of ω<ω into ω in order to formalize the theory of
infinite games within arithmetic; fix a primitive recursive bijection 〈〈·, . . . , ·〉〉 : ω<ω → ω.
We also write (n)j := aj (0 ≤ j < k) and lh(n) := k if n = 〈〈a0, . . . , ak−1〉〉.

By employing this encoding, the plays in Definition 3 can be expressed by the following
terms, where σ, y, τ and x are of type N→ N:

σ ∗ y (i) :=
{
y((i ·−1)/2) (i : odd)
σ(〈〈σ ∗ y (0), . . . , σ ∗ y (i ·−1)〉〉) (i : even)

,

x ∗ τ (i) :=
{
τ(〈〈x ∗ τ (0), . . . , x ∗ τ (i ·−1)〉〉) (i : odd)
x(i/2) (i : even)

.

Strictly speaking, we should use different symbols for ∗ in σ ∗ y : N→ N and x ∗ τ : N→ N,
since now all of σ, y, τ and x are of the same type. However, no confusion may be caused by
this, as it is clear from the context.

For convenience, we also adopt the following abbreviations:
“I has a w.s. in G(χ)” is the formula ∃σ : N→ N ∀y : N→ N χ(σ ∗ y) = 1.
“II has a w.s. in G(χ)” is the formula ∃τ : N→ N ∀x : N→ N ¬ χ(x ∗ τ) = 1.
“Det(χ)” is the formula ¬ (I has a w.s. in G(χ))⇒ (II has a w.s. in G(χ)).
“AD” is the formula ∀χ Det(χ).

Now, let us formalize open determinacy in the language of HAωc and prove it within
arithmetic. Although the proof is presented informally, it can easily be formalized in
HAωc + CAC.

I Theorem 11. (Gale-Stewart [6]) HAωc + CAC ` ∀χ {OP (χ)⇒ Det(χ)}.

CSL’12

340 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Proof. For each x : N with x = 〈〈n0, . . . , nk−1〉〉 and f : N→ N, let us define x@ f : N→ N by

x@ f := 〈n0, . . . , nk−1, f(0), f(1), f(2), . . . 〉.

Using this notation, for each χ : (N→ N)→ N and x : N, we introduce χ/x : (N→ N)→ N by

χ/x (f) = 1⇔ χ(x@ f) = 1.

I Lemma 12. For every x : N with lh(x) odd, if ¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−2〉〉)),

then there exists a y such that ¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−2, (x)

lh(x) ·−1, y〉〉)).

Proof. We show the contraposition of the above statement. If there exists an x such that
lh(x) is odd, and (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, y〉〉)) holds for all y, then CAC

yields a ϕ : N→ (N→ N) such that ϕ(y) is a winning strategy for Player I in the game
G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, y〉〉). Define a strategy ρ : N→ N for Player I by:

ρ(n) =

(x)lh(x) ·−1 (n = 〈〈〉〉)
ϕ(y)〈〈p0, . . . , p2l ·−1〉〉 (n = 〈〈(x)lh(x) ·−1, y, p0, . . . , p2l ·−1〉〉)
0 (else)

.

Then, χ/〈〈(x)0, . . . , (x)
lh(x) ·−2〉〉(ρ∗z) = χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, z(0)〉〉(ϕ (z(0))∗shift(z)) = 1 holds
for all z : N→ N, where shift(z) is λn. z(n+ 1). This means that ρ is a winning strategy for
Player I in the game G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−2〉〉). J

I Lemma 13. There exists a τ : N→ N such that for all x : N, we have
{lh(x) is odd ∧ ¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−2〉〉))⇒
¬ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)

lh(x) ·−1, τ(x)〉〉))}.

Proof. Apply CAC to the statement of the previous lemma. J

Assume OP (χ) and ¬ (I has a w.s. in G(χ)). We show that the above τ is indeed a
winning strategy for Player II. Assume for contradiction that there were an x : N→ N such
that χ(x ∗ τ) = 1; then there exists an m such that, for all g, eq≤m(x ∗ τ, g) = 1 implies
χ(x ∗ τ) = χ(g). In particular, if eq≤2m+1(x ∗ τ, g) = 1 holds, then χ(x ∗ τ) is equal to
χ(g). Therefore, for all y : N→ N, it follows that χ/〈〈x ∗ τ(0), . . . , x ∗ τ(2m + 1)〉〉((λn.0) ∗ y) =
χ(〈〈x ∗ τ (0), . . . , x ∗ τ (2m+ 1)〉〉@ ((λn.0) ∗ y)) = 1.

On the other hand, (m+ 1)-times applications of Lemma 13 to the hypothesis ¬(I has a
w.s. in G(χ)) yields ¬ (I has a w.s. in G(χ/〈〈x ∗ τ(0), . . . , x ∗ τ(2m + 1)〉〉)). This means that for
the strategy λn.0, there exists a y : N→ N with χ/〈〈x ∗ τ(0), . . . , x ∗ τ(2m + 1)〉〉((λn.0) ∗ y) 6= 1.
A contradiction. J

I Remark. By Proposition 9 and Theorem 11, we immediately see that HAωc +DC proves
∀χ {OP (χ)⇒ Det(χ)}.

4 Realizability Interpretation

This section is a recapitulation of the notion of the realizability interpretation given in [2].
Since we would like to interpret HAω in a programming language with this methodology,
we need first to present the (infinitary) programming language P. Roughly speaking, P is
an extension of Gödel’s system T with list operators, the fixed-point combinator and some
auxiliary constructs (needed for realizing DCK). The types and terms of P are extensions
of that of HAω.

T. Hida 341

I Definition 14. (The programming language P)
Types Given by the following grammar: τ, τ ′ ::= N | Unit | Abs | τ → τ ′ | τ × τ ′ | [τ]

Here, [τ] is the type for lists of objects of type τ .
Seen as a type of P, a type of HAω is called an N-type.

Terms Given by the following grammar:

t, u ::= xτ | λxτ .tτ
′
| tτ→τ

′
uτ (lambda terms)

| 0N | sN→N | Recτ→((N→τ→τ)→(N→τ))
τ (system T constants)

| Y (τ→τ)→τ
τ (the fixed-point combinator)

| 〈, 〉τ1→τ2→(τ1×τ2) | π(τ1×τ2)→τi

i (i = 1, 2) (pairing and projection)
| nil[τ] | consτ→[τ]→[τ] | Lrec(τ→[τ]→σ→σ)→σ→[τ]→σ (list operators)
| DummyAbs | AxiomN→Abs

i (i = 1, 2) | ()Unit (technical constants)
| (λλn.tτn)N→τ (an infinite term)

Infinite operator λλ allows us to built a single term λλn.tτn out of an arbitrary sequence
tτ0 , t

τ
1 , . . . of terms of type τ .

We abbreviate s0 as 1, ss0 as 2 and so on, and refer to them as numerals hereafter.
Formulas For each type τ , tτ1 = tτ2 is a formula.
Theory

The defining equations of the constant Recτ for each type τ (see Definition 7).
λ-calculus axiom and rules (see Definition 7).
The axiom for the fixed-point combinator Yτ : Yt = t(Yt) (Y)
Pairing axioms and list axioms:

πi〈t1, t2〉 = ti (i = 1, 2) (pri)
Lrec(f, u, nil) = u (Lrec0)
Lrec(f, u, cons(t, L)) = f(t, L, Lrec(f, u, L)) (Lrec1)

The axiom for infinite terms: (λλn.tn)k = tk (ββ)

I Remark. Although infinite terms and unfamiliar constants appear to be ad hoc, such terms
are not included for computational purposes. In fact, every theorem of HAω− +DCK can be
realized without them [2]; moreover, these technical terms are not so important for the rest
of this paper. However, the infinite operator λλ and two constants Axiom1 and Axiom2 are
necessary for testing termination of realizers of CACK and DCK [2].

Let us list several known facts about P [2, Section 3.4]:
There exists a reduction relation such that its reflexive, symmetric and transitive
closure coincides with =.
Moreover, this reduction relation enjoys the following:
The Church-Rosser property,
Every closed normal form of type N (resp. Unit) is a numeral (resp. ()),
Every closed normal form of type Abs is either Dummy or of the form Axiomik.

We present two preparatory definitions in advance of the main definition of the realizability
relation. With each formula φ of HAω, we associate a type |φ| of P as follows:

I Definition 15. (Associated type |φ| of P)
|t = t′| is Unit,
|⊥| is Abs,

CSL’12

342 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

|φ⇒ ψ| is |φ| → |ψ|,
|φ ∧ ψ| is |φ| × |ψ|,
|∀x : τ φ| is τ → |φ|,
|∃x : τ φ| is τ × |φ|.

For every closed term t of P of the N-type, the technical notion of reducibility is given by
induction on the N-type:

I Definition 16. (Reducible terms of N-type)
t : N is reducible if t reduces to k for some k ∈ ω,
t : τ → τ ′ is reducible if tu : τ ′ is reducible for all reducible u : τ .

All terms of HAω are clearly reducible.
We cite the following property of P from [2, Section 3.4] without proof. Note that this

so-called syntactic continuity1 can also be taken as a topological continuity: χ is a continuous
function from the Baire space ωω to the discrete space ω.

I Proposition 17. For every reducible terms χ : (N→ N)→ N and f : N→ N, there exists an
m ∈ ω such that for all reducible g : N→ N with f(i) = g(i) (∀ i ≤ m), we have χf = χg.

This proposition says that the closed normal form of χf is determined only from finitely
many outputs of f . This property does not come as a surprise, for f is used (essentially)
finitely many times during the reduction of χf to a numeral.

We are now in a position to define the realizability relation t : |φ| ® φ for a closed formula
φ of HAω possibly including closed reducible terms of P, and for a closed term t of P of
type |φ|. This notion of realizability is essentially the so-called modified realizability [11],
except the restriction to the reducible terms when interpreting quantifiers, and the existence
of a term t satisfying that t ® ⊥.

I Definition 18. (Realizability relation)
t : Abs ® ⊥ if t = Axiomik for some k ∈ ω and i = 1, 2,
t : Unit ® t1 = t2 if t = () and both t1 and t2 reduce to the same numeral in P,
t : |φ1| → |φ2| ® φ1 ⇒ φ2 if tu ® φ2 whenever u ® φ1,
t : |φ1| × |φ2| ® φ1 ∧ φ2 if t = 〈t1, t2〉 and ti ® φi (i = 1, 2),
t : τ → |φ| ® ∀x : τ φ if tu ® φ [u/x] for all reducible u : τ ,
t : τ × |φ| ® ∃x : τ φ if t = 〈p, u〉 with p : τ reducible and u ® φ [p/x].

I Remark. Since P contains the fixed-point combinator Y, the non-termination problem
arises. For exactly this reason, quantification should be restricted to reducible terms, in
other words, to hereditarily normalizing terms. Otherwise, there could be problems such as,
(i) a realizer of an existential formula may fail to give a witness, and (ii) the identity axiom
“∀x (x = x)” cannot be realized.

1 It has been proved by Čeitin (independently by Kreisel, Lacombe and Shoenfield) that for every effective
operation e and total recursive index y, a modulus of continuity for e at y can be computed by a
partial recursive function under the assumption of Markov principle (see [1, Chapter IV, Theorem 3.1]).
However, it would be impossible here to adopt this theorem to show the existence of a modulus-of-
continuity functional, i.e., a partial recursive function which compute a modulus of continuity. This is
because our setting is far from intensional. Furthermore, f and g can be non-recursive here due to the
existence of the infinite operator. In fact, it is known that there is no extensional modulus-of-continuity
functional [1, Chapter IV, Section 3.3].

T. Hida 343

I Remark. If, for every term t and formula φ, t ® φ holds if and only if t ® φK holds, then
the negative translation K plays no effective role in realizing a formula. The first clause of
the above definition is demanded to break this equivalence, at the price of the non-existence
of a realizer for the ex falso axiom: ⊥ ⇒ φ. Moreover, this definition allows us to use Axiomi

for computing witnesses [2, Section 4.4]: These terms catch a witness n of an existential
formula ∃nφ(n) during reduction and freeze that datum as in the form of Axiomin. When
the execution of a program stops, one can pick up that n out of the residue of the calculation.

We say a formula φ is realizable when there exists a {λλ, Axiomi(i = 1, 2)}-free term t

satisfying that t : |φ| ® φ. The main theorem of [2] reads in this notation as follows:

I Theorem 19. [2] Every theorem of HAω− +DCK is realizable.

I Remark. In [2], the most difficult cases, the realizations of CACKand DCK , are managed
with bar recursion and continuity. The problem of the termination of realizers, which
boils down to the problem of the termination of bar recursion used in them, is proved
non-constructively. The difficulty is to be attributed to the fact that the negatively translated
choice principles are much more powerful than the choice principles themselves in HAω. In
fact, [7] shows that HAω +AC(N, N) +AC(N, N→ N) is conservative over Heyting arithmetic.

I Corollary 20. ∀χ {OP (χ)⇒ Det(χ)}K is realizable.

By closely following the proof of Theorem 11, we obtain the following realizer of the
formula ∀χ {OP (χ)⇒ Det(χ)}K (see Appendix for detail): λχθζη.ΦP2(ζ, η, θ)H2(χ)[].

5 A Realizer of the Negative Translation of AD

In view of Corollary 20, it suffices to realize OPK for realizing ADK .
Let us consider again the formula OP :

∀χ ∀f {χ(f) = 1⇒ ∃m ∀g (eq≤m(f, g) = 1⇒ χ(g) = 1)},
which expresses that “every χ represents an open subset of ωω”. More precisely, OP states
that for every element f of (the set represented by) χ, there exists an m such that a basic
open neighborhood {g | eq≤m(f, g) = 1} at f is contained in χ. Following [1], we call this m
a modulus for χ at f .

Let us recall Proposition 17 here: for every reducible χ and f , the existence of a modulus
m for χ at f is assured there from the external viewpoint. This, however, does not imply
the existence of an internally definable term t such that t(χ, f) is a modulus for χ at f . It
would be impossible to build such a term t in our setting (see footnote 1).

To realize OP itself will also be impossible, for if there were a realizer s of OP , a modulus
could be computed internally as follows: Take any reducible χ and f with χ(f) = 1. Then,
from s ® OP and () ® χ(f) = 1, we see that sχf() witnesses ∃m ∀g (eq≤m(f, g) = 1 ⇒
χ(g) = 1), and hence, π1(sχf()) reduces to a modulus.

The thing is quite different when it comes to realizing the negative translation OPK of
OP . In contrast to the realization of OP , where we do have to calculate a modulus only
from χ and f internally, it suffices to indicate the existence of a modulus m externally when
realizing OPK . This point—internal or external—is to be noted as an essential difference
between intuitionistic and classical logic.
I Remark. The reader may still have some doubt if it is really possible to realize even the
negative translation of such a strange statement. This happens by virtue of the absence of
the comprehension schema Comp(N→ N) at type N→ N. In fact, Comp(N→ N) implies the
existence of a “set” χ satisfying ∀f {χ(f) = 1⇔ ∀n (f(n) = 0)}; but such χ is not open.

CSL’12

344 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Now we prove:

I Lemma 21. OPK is realizable.

Proof. First of all, let us recall the formula OPK :
∀χ∀f {¬¬χ(f) = 1⇒ ¬¬∃m ∀g (¬¬ eq≤m(f, g) = 1⇒ ¬¬χ(g) = 1)}.

To realize this, we introduce a term Θ by

Θχfuvn := v〈n, λgpq. t(n, g, p, q)〉, with
t(n, g, p, q) := if eq≤n(f, g) = 0 then p(λr.Dummy) else

if χ(f) = χ(g) then uq else Θχfuv(sn),
where if n = m then · · · else · · · is a syntactic sugar.

In the following, we show that λχfuv.Θχfuv0 ® OPK . Take arbitrary reducible terms
χ and f . We need to prove ΘχfUV 0 ® ⊥ for every term U and V with U ® ¬¬χ (f) = 1
and V ® ¬∃m ∀g (¬¬ eq≤m(f, g) = 1⇒ ¬¬χ(g) = 1).

We first claim that, for every n, ΘχfUV sn ® ⊥ implies ΘχfUV n ® ⊥. Assume that
ΘχfUV sn ® ⊥. Since we have V ® {∃m ∀g (¬¬ eq≤m(f, g) = 1 ⇒ ¬¬χ(g) = 1) ⇒ ⊥}
and ΘχfUV n = V 〈n, λgpq. t(n, g, p, q)〉, in order to show our first claim, it suffices to prove
λgpq. t(n, g, p, q) ® ∀g (¬¬ eq≤n(f, g) = 1⇒ ¬¬χ(g) = 1). Take an arbitrary reducible term
g : N→ N and terms P and Q satisfying P ® ¬¬ eq≤n(f, g) = 1 and Q ® ¬χ (g) = 1. We
have to examine the following three cases to verify t(n, g, P,Q) ® ⊥:

Case 1: ∃i ≤ n f(i) 6= g(i) — t(n, g, P,Q) reduces to P (λr.Dummy). Since we have
eq≤n(f, g) = 0 and P ® ¬¬ eq≤n(f, g) = 1, we conclude that P (λr.Dummy) ® ⊥.

Case 2: ∀i ≤ n f(i) = g(i) and χ(f) = χ(g) — t(n, g, P,Q) reduces to UQ. Since we have
U ® ¬¬χ (f) = 1 and Q ® ¬χ (g) = 1, it follows that UQ ® ⊥.

Case 3: ∀i ≤ n f(i) = g(i) and χ(f) 6= χ(g) — In this case, t(n, g, P,Q) reduces to
ΘχfUV sn. Hence we have t(n, g, P,Q) ® ⊥ by the hypothesis.

Next, we claim that if m is a modulus for χ at f , then ΘχfUV m ® ⊥ holds. The proof
proceeds along the same line as above except the last case, which no longer happen by the
fact that m is a modulus.

Since Proposition 17 assures the existence of a modulus m for χ at f , though we know
the existence only externally, ΘχfUV 0 ® ⊥ follows from the foregoing arguments. J

I Remark. Inspired by [2], U. Berger and P. Oliva presented a similar result axiomatically in
[3]. Instead of implementing a bar recursion as a term of P using the fixed-point combinator
Y, they extended the calculus by directly adding the so-called modified bar recursion (MBR),
which allows us to approximate a choice function and to realize DCK . We have an impression
that OPK is not realizable in their framework. If an unbounded search used as in Θ were
primitive recursively definable (p.r.d.) in MBR, the functional µ̂ would also be p.r.d. in
MBR, where µ̂(χ, f) := min{ k | χ(f �k @ λn.0) = χ(f �k @ λn.1)}. If so, Kohlenbach’s bar
recursion (KBR) is p.r.d. in MBR, because KBR is p.r.d. in µ̂ plus Spector’s bar recursion
(SBR) [10], and SBR is p.r.d. in MBR [4]. However, KBR is not p.r.d. in MBR [4].

I Theorem 22. ADK is realizable.

Proof. Follows easily from Corollary 20 and Lemma 21. J

I Corollary 23. ¬AC(N→ N, N)K is realizable.

T. Hida 345

Proof. HAωc + AC(N→ N, N) proves an instance ∃χ∀f {χ(f) = 1 ⇔ ∀n (f(n) = 0)} of
Comp(N→ N) by Proposition 9 . In view of the remark above Lemma 21, we find that
HAωc +AC(N→ N, N) +OP is inconsistent. Thus, HAωc proves OP ⇒ ¬AC(N→ N, N), and
hence, OPK ⇒ ¬AC(N→ N, N)K is realizable. The assertion follows from Lemma 21. J

I Remark. Corollary 23 shows that it is impossible to realize the axiom of choice at higher
order in the framework of [2]. But even further is indicated by the above discussion: To
realize such an axiom would be hopeless in any reasonable setting—at least if one sticks to
the usual indirect approach. If we assume continuity, we will fail to realize AC(N→ N, N)K .
This is because we may interpret OPK , which contradicts the axiom of choice at higher type
as we saw. On the other hand, if we drop the assumption of continuity, to realize even CAC
becomes difficult. It is only a novel idea, if any, that can open the possibility for the higher
order.

From these results, we find that the combination of the negative translation K and the
realizability semantics à la [2] can be seen as a model of HAωc +DC +AD+¬AC(N→ N, N).
Therefore, we can reduce the consistency of this system to that of P:

I Corollary 24. HAωc +DC +AD + ¬AC(N→ N, N) is consistent.

The next is a straightforward consequence of the previous corollary and Proposition 9.

I Corollary 25. HAωc +DC ` AC(N, τ), but HAωc +DC 0 AC(N→ N, N).

As far as the author knows, Corollaries 24 and 25 do not follow trivially from known
results in set theory.2 One future work is to investigate whether or not Corollary 24 remains
true in the presence of Comp(N→ N).

Note that the foregoing three corollaries are still valid even if we replace AC(N→ N, N)
by AC(N→ N, τ) for an arbitrary type τ (see Proposition 9).

6 How Does the Realizer Behave?

By combining the realizer of OPK given in the proof of Lemma 21 and the realizer of
∀χ {OP (χ)⇒ Det(χ)}K given after Corollary 20 (see also Appendix), we obtain a realizer
of ADK . This section is devoted to the explanation of its behavior.

Our realizer takes the following two steps:
Step 1: construct a strategy τ for Player II

In order to facilitate understanding of this step, let us employ Coquand’s game theoretical
semantics [5]. Firstly we give a recapitulation of that semantics below. The semantics is
defined for an infinitary propositional calculus. The formulas of this calculus are defined
inductively as: (i) 0 and 1 are (atomic) formulas, and (ii) if φi (i ∈ I) are formulas, where I
is a countable set, then both

∧
i∈I φi and

∨
i∈I φi are formulas. Note that each arithmetical

formula can be represented as a formula of this infinitary propositional calculus in a natural
way. For instance, AD is expressed as:∨

σ

∧
y

χ(σ ∗ y) = 1 ∨
∨
τ

∧
x

χ(x ∗ τ) = 1. (∗)

2 As regards Corollary 24, one may think that at least the consistency of HAωc +DC+AD follow trivially
from that of ZF +DC +AD. This is certainly so, but the consistency of ZF +DC +AD itself is much
stronger than that of ZFC [8].

CSL’12

346 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

Henceforth, some formulas of HAωc will be considered as formulas of this calculus without
further explanation.

We then introduce the notion of classical validity by specifying the set V of classically
valid formulas. V is the smallest set of formulas satisfying: (i) 1 ∈ V, (ii)

∧
i∈I φi ∈ V if

φi ∈ V for all i ∈ I, and (iii)
∨
i∈I φi ∈ V if there exists an i0 ∈ I such that either φi0 is 1, or

φi0 is of the form
∧
j∈J φi0j with φi0j ∨

∨
i∈I φi ∈ V for all j ∈ J .3

Game theoretical semantics for this calculus is given as a perfect information game over
a formula between two players: ∃loise, who plays for existential formulas, and ∀belard,
who plays for universal formulas. Here, we regard atomic formulas as both universal and
existential. The game for a formula φ is played as follows: If ∃loise (resp. ∀belard) has to
play and φ is atomic, then ∃loise (resp. ∀belard) wins if φ is 1 (resp. 0). If φ is universal of
the form

∧
i∈I φi, then ∀belard has to choose an i ∈ I and ∃loise starts the game for φi. If φ

is existential of the form
∨
i∈I φi, then ∃loise chooses an i ∈ I and wins if φi is 1, looses if φi

is 0. When φi is universal of the form
∧
j∈J φij , ∃loise can start the game not for φij but for

φij ∨
∨
i∈I φi after ∀belard returns a j ∈ J . The rule of this game is rather unfair to ∀belard;

it is only ∃loise who is allowed to change her mind and backtrack in her choice. It will be
easy to verify that
I Proposition 26. [5] ∃loise has a winning strategy for φ ⇔ φ is classically valid.

Then, in order to describe this step, let us consider the following instance of the axiom of
countable choice used in the proof of Lemma 13:

CACφ :=
∨
x

∧
y

φxy ∨
∨
τ

∧
x

φxτ(x), with

φxy := (lh (x) is odd)K ∨ (I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−2〉〉))

K∨

(I has a w.s. in G(χ/〈〈(x)0, . . . , (x)
lh(x) ·−1, y〉〉))K ,

where the formula φ is the complement of a formula φ obtained by interchanging 0 and 1,
∨

and
∧
. Observe that φxy is the direct translation of the statement of Lemma 12.

How our realizer constructs a strategy τ is illustrated by the following dialog.4 ∀belard’s
answers should be read as values provided by arguments of our realizer, in other words, the
environment. ∃loise’s way of answering should be compared to the way our realizer returns
values to the environment:

∃loise: Let me kick off the game by choosing, say τ0 = λn.0.
∀belard: Then, my choice is x = x0. By this, I can win in the game for φx0 τ0(x0)(= φx00).

I Now the formula is CACφ ∨ φx00.
∃loise: What is your answer when I play x = x0 in the game for

∨
x

∧
y
φxy?

∀belard: In that case, I choose y = y0. This can make you lose in the game for φx0y0 .
I Now the formula is CACφ ∨ φx00 ∨ φx0y0 .

∃loise: Since it is you who said that φx0y0 is false, φx0y0 should be true, right?
(∀belard: Oops!) Then I backtrack my previous choice τ0 and select
τ1 := λx. if x = x0 then y0 else τ0(x).

∀belard: Well, x = x1 is fine. This time, I can defeat you in the game for φx1τ1(x1).

3 Since only the original paper [5] employs φi0j ∨
∨
i∈I−{i0}

φi instead of φi0j ∨
∨
i∈I φi in the formulation

of the classical validity, we shall adopt the formulation given in the subsequent papers.
4 Strictly speaking, the following “game” is different from the concept defined so far; now that τ ranges

over the (uncountable) set of all functions from N to N. In fact, by introducing conjunctions and
disjunctions over N→ N, cut-elimination theorem, which holds in the original version, is no longer true
[2, Section 2.3]. It serves only as an explanation of the behavior.

T. Hida 347

I Now the formula is CACφ ∨ φx00 ∨ φx0y0 ∨ φx10.
∃loise: If I choose x = x1 in the game for

∨
x

∧
y
φxy, what is your choice?

∀belard: Again that question!? · · · (sigh). y = y1 is the best option; I will win in the
game for φx1y1 .
I Now the formula is CACφ ∨ φx00 ∨ φx0y0 ∨ φx10 ∨ φx1y1 .

∃loise: Wait a minute. It means φx1y1 should be true, doesn’t it. (∀belard: Oh no!)
I do not have to stick to my previus move any more; let me choose
τ2 := λx. if x = x1 then y1 else τ1(x).

...

Both players continue playing in this way and, at each round, ∃loise updates a strategy
τ using ∀belard’s previous answers xi and yi. If ∀belard decides his move on finitely much
information from the move of ∃loise, then, for some n and m with n < m, his choice
for x in the n-th and m-th round will be the same one: xn = xm. (This assumption on
∀belard comes true in P due to continuity). Observe that, at that point, the formula is
CACφ ∨ · · · ∨ φxnyn ∨ · · · ∨ φxmyn .
Step 2: derive the determinacy

Our realizer at last witnesses the determinacy. Let us continue employing the terminology
of Coquand’s game.
∃loise plays the game for the formula CACφ ∨ · · · ∨ φxnyn ∨ · · · ∨ φxmyn . Since either

φxmyn
or φxnyn

is true, ∃loise can certainly win by playing the games for φxmyn
and φxnyn

alternately. If it turns out that φxmyn is true, the realizer concludes that τ satisfies
∧
x φxτ(x).

This is because τ has been constructed so that φx τ(x) holds for all possible moves x of
∀belard. With the help of the property OPK , which is verified by just a simple unbounded
search for a modulus, τ is understood as a winning strategy for Player II, in other words,∧
x χ(x ∗ τ) = 1 is verified. (Recall the proof of Theorem 11 here: the construction of a

winning strategy τ for Player II is conducted without appealing to OP . In other words,
OP has nothing to do with the construction of τ—the role of OP is to confirm that if a
τ : N→ N satisfies

∧
x φxτ(x), then it is indeed a required one). On the other hand, when

φxnyn
is true, our realizer tries to disprove the non-existence of a winning strategy for Player

I by actually constructing a winning strategy for Player I as in the proof of Lemma 12 and,
as a consequence,

∨
σ

∧
y χ(σ ∗ y) = 1 is verified. Neither ∀belard nor ∃loise knows which

player—Player I or Player II—is shown to have a winning strategy. This is because we cannot
calculate the modulus m internally (cf. the previous section).

In summary, our realizer behaves as follows: It first constructs a strategy τ for Player
II not by choosing values herself but by making use of ∀belard’s returns x0, y0, x1, y1, . . .

against her attempt at exposing falsehood. When a good approximation is made, it either
verifies that τ is indeed a winning strategy for Player II with the help of OP , or shifts the
blame to the assumption that Player I has no winning strategy.

The behavior of our realizer reflects the proof of Theorem 11: Since we proved that
theorem by constructing a winning strategy for Player II under the assumption that Player I
does not have a winning strategy, the resulting realizer constructs a winning strategy for
Player II. If we change the proof so that it constructs a winning strategy for Player I assuming
that there is no winning strategy for Player II, the corresponding realizer will try to construct
a winning strategy for Player I. One future work is, based on a game theoretical intuition, to
build a realizer of ADK that works symmetrically, in other words, a realizer which behaves
in such a way that winning strategies for Player I and Player II are constructed alternately
by backtracking. (see (∗)—the formula itself is symmetric).

CSL’12

348 A Computational Interpretation of the Axiom of Determinacy in Arithmetic

7 Future Work

As emphasized previously, our focus is on the computational content of the AD rather
than on the set theoretical applications. Since, insofar as the author knows, there are
not so much research on the computational aspect of AD, the author wishes more work
would be conducted in this area. This paper will conclude with suggestions for future research:
Indirect approach to AD: Over the property determinacy, several axioms have been
proposed and explored [8]. It would be interesting to see whether these variants are
realizable. The following intriguing problem should also be addressed: To realize ADK

not in arithmetic but in stronger systems, e.g., in ZF set theory.
Direct approach to AD: Krivine’s classical realizability is a machinery which enables
us to extract the computational content directly from second order classical logic. All
axioms of ZF set theory are realizable in that framework [12]. Moreover, by adding the
quote (or clock) instruction to the calculus, both CAC and DC become realizable [13]. It
would be interesting to ask, for realizing AD, what kind of instruction we should add
to the calculus? What instruction is indispensable? If we can realize AD with some
instructions, this technology will attract more attention of set theorists. This is because
Krivine’s classical realizability yields a new model of ZF+DC+AD, if AD is realizable.

Consistency in arithmetic: In ZF set theory, (full) AC contradicts AD [6]. This is
because a well-ordering of the set of all strategies, the existence of which follows from an
equivalent of AC, enables us to build a non-determined pay-off set by means of transfinite
induction. It seems hard to adjust that proof to the setting of arithmetic. Does full AC
and AD contradict in HAωc ? Or, does AC(N→ N, N) refute AD in HAωc ?

Acknowledgements I thank my master thesis supervisors Kazushige Terui and Masahito
Hasegawa for lots of helpful comments, Stefano Berardi for explaining the underlying ideas
of his joint work [2], and Makoto Tatsuta for drawing my attention to [1]. Finally, I would
like to thank the anonymous referee who made a lot of useful suggestions.

A The Realizer of the Negative Translation of Open Determinacy

λχθζη.ΦP2(ζ, η, θ)H2(χ)[] ® ∀χ {OP (χ)⇒ Det(χ)}K , where
ΦPHL := P (fun L, λx. rea L x (λx′x′′. Hxλ〈y, z〉.ΦPH ((x, y, z) : L))) ;
fun [(x0, y0, z0), . . . , (xn, yn, zn)] x := yi (when ∃ i ≤ n (x = xi)), := 0 (otherwise);
rea [(x0, y0, z0), . . . , (xn, yn, zn)] x a := zi (when ∃ i ≤ n (x = xi)), := a (otherwise);
H2(χ) := λsh.h〈0, λ〈w1, w2〉v. if (lh(s) is odd)

then c1χs(λq.q())H1(h) P1(s, w2) else w1(λe. Dummy)〉;
P2(ζ, η, θ) := λ〈τ, q〉.η〈τ, λxξ.θ(x ∗ τ)ξ(λ〈m,u〉.Q1(ζ, q, x ∗ τ,m)Q2(u, x ∗ τ)) 〉;
H1(h) := λm′z′.h〈m′, λzx.xz′〉;
P1(s, w2) := λ〈σ, p〉.w2 (λr. r〈F ′(σ, s), λy′. p y′(0) shift(y′)〉) ;
c1 := λχsuh′p′.if (lh(s) is odd) then Φp′h′[] else u(λr.Dummy);
Q1(ζ, q, x ∗ τ,m) := Rec ζ (λnz. q 〈〈x ∗ τ (0), . . . , x ∗ τ (2n)〉〉〈λd. d(), z〉)m+ 1;
Q2(u, x ∗ τ,m) := λl. l〈λj. 0, λy. u F (x ∗ τ,m, y) (λk.k())〉;
F (x ∗ τ,m, y)(n) := λn.if n ≤ 2m+ 1 then x ∗ τ (n) else ((λn.0) ∗ y) (n ·−2m ·−2);

F ′(σ, s)(n) :=

(s)lh(s) ·−1 (n = 〈〈〉〉)
σ(m)〈〈k0, . . . , k2j+1〉〉 (n = 〈〈(s)lh(s) ·−1,m, k0, . . . , k2j+1〉〉)
0 (else)

.

T. Hida 349

References
1 M.J. Beeson: Foundations of constructive mathematics. A series of modern surveys in

mathematics, Springer Verlag, pp. xxiii+466, 1985
2 S. Berardi, M. Bezem and Th. Coquand: On the computational content of the axiom of

choice. J. Symbolic Logic vol. 63, no. 2, pp. 600–622, 1998
3 U. Berger and P. Oliva: Modified bar recursion and classical dependent choice. Lecture

Notes in Logic vol. 20, pp. 89–107, 2005
4 U. Berger and P. Oliva: Modified bar recursion. Math. Structures Comput. Sci. vol. 16,

issue 2, pp. 163–183, 2006
5 Th. Coquand: A semantics of evidence for classical arithmetic. J. Symbolic Logic vol. 60,

no. 1, pp. 325–337, 1995
6 D. Gale and F.M. Stewart: Infinite games with perfect information. In: H.W. Kuhn and

A.W. Tucker (eds.) Contributions to the theory of games, vol 2. Ann. Math. Studies 28.
Princeton Univ. Press, pp. 245–266, 1953

7 N. Goodman: Intuitionistic arithmetic as a theory of constructions. PhD thesis, Stanford
University, pp. 222, 1968

8 A. Kanamori: The higher infinite, second edition. Springer monographs in mathematics,
pp. xxii+536, 2003

9 A.S. Kechris: The axiom of determinacy implies dependent choices in L(R). J. Symbolic
Logic vol. 49, no. 1, pp. 161–173, 1984

10 U. Kohlenbach: Theory of majorizable and continuous functionals and their use for the
extraction of bounds from non-constructive proofs: effective moduli of uniqueness for
best approximations from ineffective proofs of uniqueness (German). PhD thesis, Goethe-
Universität Frankfurt, pp. xxii+278, 1990

11 U. Kohlenbach: Applied proof theory: Proof interpretations and their use in mathematics.
Springer monographs in mathematics, pp. xix+532, 2008

12 J.-L. Krivine: Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math.
Logic 40, no. 3, pp. 189–205, 2001

13 J.-L. Krivine: Dependent choice, ‘quote’ and the clock. Theoret. Comput. Sci. vol. 308, pp.
259–276, 2003

14 J.-L. Krivine: Realizability algebras II: new models of ZF+DC. http://www.pps.jussieu.
fr/~krivine/articles/R_ZF.pdf

15 D.A. Martin: Borel determinacy. Ann. Math. vol. 102, no. 2, pp. 363–371, 1975
16 A. Montalbán and R.A. Shore: The limits of determinacy in second order arithmetic. Proc.

London Math. Soc. vol. 104, part 2, pp.223–252, 2012
17 J. Mycielski and H. Steinhaus: A mathematical axiom contradicting the axiom of choice.

Bulletin de l’Académie Polonaise des Sciences, Série des Sciences Mathématiques, As-
tronomiques et Physiques 10, pp.1–3, 1962

18 J. Mycielski and S. Swierczkowski: On the Lebesgue measurability and the axiom of deter-
minateness. Fundamenta Mathematicae vol. 54, pp. 67–71, 1964

19 M.H. Sørensen and P. Urzyczyn: Lectures on the Curry-Howard isomorphism. Stud. Logic
Found. Math. 149, Elsevier, pp. xiv+442, 2006

20 C. Spector: Provably recursive functionals of analysis: a consistency proof of analysis
by an extension of principles in current intuitionistic mathematics. In: F.D.E. Dekker
(ed.) Recursive function theory: Proc. Symposia in Pure Mathematics, vol. 5, American
Mathematical Society, Providence, Rhode Island, pp. 1–27, 1962

21 A.S. Troelstra: Realizability. In: S.R. Buss (ed.) Handbook of proof theory. Stud. Logic
Found. Math. 137, Elsevier, pp. 407–473, 1998

CSL’12

http://www.pps.jussieu.fr/~krivine/articles/R_ZF.pdf
http://www.pps.jussieu.fr/~krivine/articles/R_ZF.pdf

	Introduction
	Notations and Definitions
	Infinite Games
	Systems of Arithmetic

	Gale-Stewart's Theorem in Classical Arithmetic
	Realizability Interpretation
	A Realizer of the Negative Translation of AD
	How Does the Realizer Behave?
	Future Work
	The Realizer of the Negative Translation of Open Determinacy

