
Collapsing non-idempotent intersection types
Thomas Ehrhard

CNRS, PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité
F–75205 Paris, France

Abstract
We proved recently that the extensional collapse of the relational model of linear logic coincides
with its Scott model, whose objects are preorders and morphisms are downwards closed relations.
This result is obtained by the construction of a new model whose objects can be understood as
preorders equipped with a realizability predicate. We present this model, which features a new
duality, and explain how to use it for reducing normalization results in idempotent intersection
types (usually proved by reducibility) to purely combinatorial methods. We illustrate this ap-
proach in the case of the call-by-value lambda-calculus, for which we introduce a new resource
calculus, but it can be applied in the same way to many different calculi.

1998 ACM Subject Classification F.3.2

Keywords and phrases Linear logic, λ-calculus, denotational semantics

Digital Object Identifier 10.4230/LIPIcs.CSL.2012.259

1 Introduction

The relational model of linear logic (LL) has been introduced implicitly by Girard in [12]
as a model of the λ-calculus and recognized only later as a model of LL by several authors
independently. Its objects are plain sets and a morphism from X to Y is a subset of X ×Y .
Often despised because it identifies many logical constructions of LL (most dramatically
X⊥ = X), this model is nevertheless extremely interesting as it preserves many relevant
information about programs: it is quantitative in the sense that the interpretation of func-
tions allows to recover how many times an argument is used to compute a given result. For
that reason, computation time can be recovered from the interpretation of terms, as shown
in [3, 4]. Arbitrary fixpoints of types are quite easy to compute and therefore many interest-
ing relational models of the pure λ-calculus and of its variants and extensions are available:
call-by-value (cbv) λ-calculus, λµ- calculus etc. Also, the relational model provides a natural
interpretation of the differential and resource λ-calculi and LL [7, 8, 9, 21, 19].

Scott semantics is of course older. It has been recognized as a model of LL a few years
after Girard’s discovery of LL, by Michael Huth [13, 14] and independently by Glynn Win-
skel [22, 23]. In this model, types are interpreted as prime algebraic complete lattices, or
equivalently as preorders, since any such lattice can be presented as the set of downwards
closed subsets of a preorder. The Kleisli category associated with this model of LL is (equi-
valent to) the category of prime-algebraic complete lattices and Scott-continuous functions.
This model forgets much more information about programs than the relational model: it is
purely qualitative in the sense that the interpretation of a function tells which parts of the
arguments are used to compute a given result, but not how many times they are used.

This difference between the relational model and the Scott model of LL materializes
itself in the fact that the Kleisli category of the second model is well-pointed (intuitively:
morphisms can be seen as functions), whereas the Kleisli category of the first model is
not. We proved in [6] that the the second model is the extensional collapse of the first

© Thomas Ehrhard;
licensed under Creative Commons License NC-ND

Computer Science Logic 2012 (CSL’12).
Editors: Patrick Cégielski, Arnaud Durand; pp. 259–273

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917347?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.259
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

260 Collapsing non-idempotent intersection types

one. The extensional collapse logical relation is a partial equivalence relation (PER) which
equates morphisms if they yield equal results when applied to equal arguments. We explain
now briefly how we proved that the second model is the “quotient” of the first one by the
extensional collapse PER.

An object in Rel (the relational model) is a plain set and an object in Pol (the preorder
model) is a structure S = (|S|,≤S) where |S| is a set (the web) and ≤S is a preorder
relation on |S|. We can define the Scott semantics of LL in such a way that the web of the
Pol object interpreting a formula coincide with the Rel object (set) interpreting the same
formula. Using this fact, we build a new model of LL whose objects – called preorder with
projections (pop) – are pairs E = (〈E〉,D(E)) where 〈E〉 is a preorder and D(E) is a subset of
P(|〈E〉|) which satisfies a closure property defined by an orthogonality relation. This allows
to define a PER on P(|〈E〉|): u and v are E-equivalent if they both belong to D(E) and have
the same 〈E〉-downwards closure. This PER coincides with the extensional collapse PER:
given pops E and F , the pop G = (E ⇒ F) = (!E (F) is such that w,w′ ⊆ |〈G〉| are
G-equivalent iff, for any u, u′ ⊆ |〈E〉|, if u and u′ are E-equivalent, then w(u) and w′(u′)
are F -equivalent (applications are computed in the relational model). The 〈G〉-downwards
closure of w is a morphism in the Scott model, which represents the equivalence class of
w. Since conversely any downwards closed subset of |〈G〉| belongs to D(G), the Scott model
coincides with the extensional collapse of the relational model. The constructions of [6] allow
also to extend this result to arbitrary fixpoints of types.

Content

Indeed, just as Rel and Pol, this new category Pop is a model of LL where all types
have least fixpoints, for a suitable notion of inclusion between pops. In the present paper,
we use this property to prove an adequacy result for a Scott model of the cbv λ-calculus,
which is defined as the least fixpoint US (for a suitable order relation on preorders) of the
operation S 7→ !S (!S. We can solve the same domain equation in Pop and we get an
object UP for which 〈UP〉 = US and UR = |〈UP〉| satisfies UR = !UR (!UR in Rel. Given a
term M of the cbv λ-calculus, that we assume to be closed for simplicity, we can therefore
compute its relational interpretation [M]R which is a subset of UR which belongs to D(UP)
and its Scott interpretation [M]S, which is a downwards closed subset of UR = |〈UP〉| (for
the preorder relation of 〈UP〉 = US). By induction on M , and using crucially the properties
of the model Pop, one proves that [M]S = ↓[M]R: this is an instance of the “extensional
collapse property” of this model. Now, adequacy of UR for the cbv λ-calculus (that is: if
[M]S 6= ∅ then M reduces to a value) can be proved purely combinatorially, introducing a
cbv resource λ-calculus and the fact that Rel satisfies a version of the Taylor formula. If
[M]S 6= ∅ then [M]R 6= ∅ since [M]S = ↓[M]R and so M reduces to a value. Whereas the
standard proofs of this kind of results for Scott semantics are based on reducibility (with the
noticeable exception of [2]), the present approach provides a purely semantical reduction of
this result to a combinatorial argument: all the reducibility argument has been encapsulated
in the model Pop. This approach can be used in the same way for many different calculi
(standard λ-calculus, PCF, λµ-calculus. . .).

This work can be understood as relating usual idempotent intersection typing systems –
points in the Pol model can be seen as idempotent intersection types – with non-idempotent
ones, which use points of the Rel model as types. We adopt this viewpoint in Sections 6.1
and 7.1 where we present the semantics of the cbv λ-calculus under consideration as typing
systems. Actually, in both systems, types are pairs (p, q) where p and q are finite multisets
of types but the systems differ by their typing rules. The type (p, q) could also nicely be
written p(q and “intersection” corresponds to multiset concatenation.

T. Ehrhard 261

Notations. We use [a1, . . . , an] for the multiset made of a1, . . . , an, taking multiplicities
into account. We use [] for the empty multiset and standard algebraic notations such as
m+m′ of

∑
imi for sums of multisets. We use |m| for the support of the multiset m, which

is the set of elements which appear at least once in m.

2 Categorical semantics of LL in a nutshell

Our main reference for categorical models of LL is the survey paper [16].
Let C be a Seely category. We recall briefly that such a structure consists of a category C,

whose morphisms should be thought of as linear maps, equipped with a symmetric monoidal
structure for which it is closed and ∗-autonomous wrt. a dualizing object ⊥. The monoidal
product (tensor product) is denoted as ⊗, the linear function space object from X to Y is
denoted as X (Y . We use ev ∈ C((X (Y) ⊗ X,Y) for the linear evaluation morphism
and λ(f) ∈ C(Z,X (Y) for the “linear curryfication” of a morphism f ∈ C(Z ⊗ X,Y).
The dual object X (⊥ is denoted as X⊥. Given an object X of C and a permutation
f ∈ Sn, we use σf for the induced automorphism of X⊗n in C; the operation f → σf is a
group homomorphism from Sn to the group of automorphisms of X⊗n in C.

We also assume that C is cartesian, with a cartesian product denoted as & and a terminal
object >. By ∗-autonomy, this implies that C is also cocartesian; we use ⊕ for the coproduct
and 0 for the initial object. If C has cartesian products of all countable families (Xi)i∈I of
objects, we say that it is countably cartesian, and in that case, C is also countably cocartesian.
If finite sums and finite products coincide, then each hom-set has a canonical commutative
monoid structure and all operations defined so far (composition, tensor product, linear
curryfication) are linear wrt. this structure. In that case we say that C is additive. We say
that it is countably additive if this property extends to countable sums and products, and in
that case hom-sets have countable sums. The corresponding operations are denoted using
the standard mathematical notations for sums.

Last, we assume that C is equipped with an endofunctor !_ which has a structure of
comonad (unit dX ∈ C(!X,X) called dereliction, multiplication pX ∈ C(!X, !!X) called
digging). Moreover, this functor must be equipped with a monoidal structure which turns
it into a symmetric monoidal functor from the symmetric monoidal category (C,&) to the
symmetric monoidal category (C,⊗): the corresponding isomorphisms m : 1 → !> and
mX,Y : !X ⊗ !Y → !(X & Y) are often called Seely isomorphisms. An additional diagram,
relating digging and the Seely isomorphisms is required, see [16].

2.1 Structural natural transformations

Using these structures, we can define a weakening natural transformation wX ∈ C(!X, 1) and
a contraction natural transformation cX ∈ C(!X, !X ⊗ !X) as follows. Since > is terminal,
there is a canonical morphism tX ∈ C(X,>) and we set wX = m−1 !tX . Similarly, we have
a diagonal natural transformation ∆X ∈ C(X,X & X) and we set cX = m−1

X,X !∆X .
One can also prove that the Kleisli category C! of the comonad !_ is cartesian closed,

with & as cartesian product and !X (Y as function space object: this is a categorical
version of Girard’s translation of intuitionistic logic into linear logic.

We use cnX : !X⊗n → !X⊗n ⊗ !X⊗n for the generalized contraction morphism which

is defined as the composition (!X)⊗n
(cX)⊗n

// (!X ⊗ !X)⊗n
σf // (!X)⊗n ⊗ (!X)⊗n where

f ∈ S2n is the bijection which maps 2k − 1 to k and 2k to n+ k (for k = 1, . . . , n).

CSL’12

262 Collapsing non-idempotent intersection types

Similarly, we define a generalized weakening morphism wnX as the composition of morph-

isms (!X)⊗n
(wX)⊗n

// (1)⊗n ν // 1 where ν is the unique canonical isomorphism in-
duced by the monoidal structure. Given f ∈ C((!X)⊗n, X), it is standard to define f ! ∈
C((!X)⊗n, !X), using the comonad and the monoidal structure of the functor !_. This oper-
ation is usually called promotion in LL. Given two LL models C and D, an LL functor from
C to D is a functor F : C → D which preserves all the structure defined above. For instance,
we must have F (f ⊗ g) = F (f) ⊗ F (g), F (pX) = pF (X) etc.

2.2 Weak differential LL models

The notion of categorical model recalled above allows to interpret standard classical linear
logic. If one wishes to interpret differential constructs as well (in the spirit of the differen-
tial λ-calculus or of differential linear logic), more structure and hypotheses are required.
Basically, we need:

that the cartesian and cocartesian category C be additive
and that the model be equipped with a codereliction natural transformation dX ∈
C(X, !X) such that dX dX = IdX .

More conditions are required if one wants to interpret the full differential λ-calculus of [7] or
full differential LL as presented in e.g. [18]: these conditions are a categorical axiomatization
of the usual chain rule of calculus, but this rule is not required in the present paper, see [10]
for a complete axiomatization. When these additional conditions hold, we say that the chain
rule holds in C.

If C is a weak differential LL model, we can define a coweakening morphism wX ∈ C(1, !X)
and a cocontraction morphism cX ∈ C(!X ⊗ !X, !X) as we did for wX and cX . Similarly
we also define cnX ∈ C((!X)⊗n, !X). Due to the naturality of dX we have wX dX = 0
and cX dX = dX ⊗ wX + wX ⊗ dX . We also define dnX = d⊗nX cnX ∈ C(!X,X⊗n) and
dnX = cnX d⊗nX ∈ C(X⊗n, !X).

2.3 The Taylor formula

Let C be a weak differential LL model which is countably additive. Remember that each
hom-set C(X,Y) is endowed with a canonical structure of commutative monoid in which
countable families are summable. We assume moreover that these monoids are idempotent.
This means that, if f ∈ C(X,Y), then f + f = f . We say that the Taylor formula holds in
C if, for any morphism f ∈ C(X,Y), we have !f =

∑∞
n=0 dnY f⊗n dnX

I Remark. If the idempotency condition does not hold in C, one has to require the hom-
sets to have a module structure over the rig of non-negative real numbers, and the Taylor
condition must be written in the more familiar way !f =

∑∞
n=0

1
n!d

n

Y f
⊗n dnX .

I Remark. If the chain rule holds in C, the Taylor condition reduces to the particular case
of identity morphisms: one has just to require that Id!X =

∑∞
n=0

1
n!d

n

XdnX (in the non-
idempotent case) or Id!X =

∑∞
n=0 dnXdnX (in the idempotent case).

3 The extensional collapse

We present the extensional collapse construction developed in [6].

T. Ehrhard 263

3.1 The relational model of LL
The model. The base category is Rel, the category of sets and relations. Identities
are diagonal relations and composition is the standard composition of relations. In this
category, the isomorphisms are the bijections. The symmetric monoidal structure is given
by 1 = {∗} (arbitrary singleton set) and X ⊗ Y = X × Y , we do not give the monoidal
isomorphisms which are obvious. This symmetric monoidal category (SMC) is closed, with
X (Y = X × Y and ev = {(((a, b), a), b) | a ∈ X and b ∈ Y }. It is ∗-autonomous with
dualizing object ⊥ = 1 so that X⊥ = X up to an obvious isomorphism.

Rel is countably cartesian with
˘
i∈I Xi =

⋃
i∈I{i}×Xi (disjoint union) and projections

πi = {((i, a), a) | a ∈ Xi}. It is also countably additive with
⊕

i∈I Xi =
˘
i∈I Xi. The sum

of a countable family of elements of Rel(X,Y) is its union, so that hom-sets are idempotent
monoids.

The exponential functor is given by !X =Mfin(X) (finite multisets of elements ofX) and,
ifR ∈ Rel(X,Y), one sets !R = {([a1, . . . , an], [b1, . . . , bn]) | n ∈ N and (a1, b1), . . . , (an, bn) ∈
R}. The Seely isomorphism m ∈ Rel(1, !>) is {(∗, [])} and the Seely natural isomorphism
mX,Y ∈ Rel(!X ⊗ !Y , !(X & Y)) is the bijection which maps ([a1, . . . , an], [b1, . . . , bp]) to
[(1, a1), . . . , (1, an), (2, b1), . . . , (2, bp)])}. Dereliction is dX ∈ Rel(!X,X) defined by dX =
{([a], a) | a ∈ X} and digging is pX ∈ Rel(!X, !!X) defined by pX = {(m1 + · · · +
mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ !X}. As easily checked, weakening is given by wX =
{([], ∗)} ∈ Rel(!X, 1) and binary contraction is cX = {(m1 +m2, (m1,m2))) | m1,m2 ∈ !X}.

This structure can also be extended to a weak differential LL model, codereliction being
defined as dX = {(a, [a]) | a ∈ X} ∈ Rel(X, !X). In this model, the Taylor formula holds as
easily checked.

Fixpoints of types. Let Rel⊆ be the class of sets, ordered by inclusion. It is closed under
arbitrary unions. A function (Rel⊆)n → Rel⊆ is continuous if it is monotone wrt. inclusion
and preserves all directed lubs. Any continuous function Φ : Rel⊆ → Rel⊆ admits a
least fixpoint defined as usual as

⋃
n∈N Φn(∅). All the LL constructions defined above are

continuous functions.

3.2 The Scott model of LL
The model. A preordered set is a pair S = (|S|,≤S) where |S| is a countable set and
≤S is a transitive and reflexive binary relation on |S|. We denote as I(S) the set of all
subsets of |S| which are downwards closed wrt. the ≤S relation. We set Sop = (|S|,≥S).
We use S × T for the product preorder. Scott semantics can also be presented as a model
of LL. The base category is Pol, the category whose objects are preordered sets and where
Pol(S, T) = I(Sop×T). The identity morphism at S is IdS = {(a, a′) ∈ |S|× |S| | a′ ≤S a}.
Composition is just the usual composition of relations.

I Lemma 1. There is an order isomorphism from Pol(S, T) to the set of functions I(S)→
I(T) which preserve arbitrary unions, ordered under the pointwise order. This isomorphism
maps the relation R to the function ξ 7→ Rξ = {b ∈ |T | | ∃a ∈ ξ (a, b) ∈ R}.

This is quite easy to prove, and this mapping from relation to functions is functorial. We
equip Pol with a symmetric monoidal structure, taking 1 = ({∗},=) and S ⊗ T = S × T
(product preorder).

If two preorders S and S′ are isomorphic as preorders through a bijection ϕ : |S| → |S′|,
then they are isomorphic in Pol by the relation {(a, a′) | a′ ≤S′ ϕ(a)} but the converse is

CSL’12

264 Collapsing non-idempotent intersection types

far from being true. In the first case we say that ϕ is a strong isomorphism from S to S′.
The isomorphisms of the symmetric monoidal structure of Pol are the obvious strong ones.
This SMC is closed, with S (T = Sop×T and linear evaluation ev ∈ Pol((S (T) ⊗ S, T)
given by ev = {(((a′, b), a), b′) | a′ ≤S a and b′ ≤T b}. Pol is ∗-autonomous with dualizing
object ⊥ = 1, so that, up to an obvious strong isomorphism, S⊥ = Sop. Observe that as in
Rel, the cotensor product ` coincides with the tensor product ⊗; both categories Rel and
Pol are compact closed.

Pol is countably cartesian: the cartesian product of a countable family (Si)i∈I of pre-
orders is S =

˘
i∈I Si defined by |S| =

⋃
i∈I{i} × |Si| preordered as follows: (i, a) ≤S (j, b)

if i = j and a ≤Si b. The projections are πi = {((i, a), a′) | a′ ≤Si a}. In particular, the
terminal object is (∅, ∅). The category Pol is therefore also cocartesian, and it is countably
additive with sums of morphisms defined as unions. We define the exponential functor by
!S = (Mfin(|S|),≤!S) where the preorder is defined by p ≤!S q if ∀a ∈ |p| ∃b ∈ |q| a ≤S b.
Given R ∈ Pol(S, T), we set !R = {(p, q) ∈ |!S| × |!T | | ∀b ∈ |q| ∃a ∈ |p| (a, b) ∈ R} and it is
quite easy to check that !R ∈ Pol(!S, !T), and that this operation is functorial.

I Remark. The crucial point in the definition of !S is that ≤!S does not take multiplicities
into account. Indeed, there is another possible definition, for which we use another notation:
we can set !sS = (Pfin(|S|),≤!sS), with preorder defined just as above: µ ≤!sS ν if ∀a ∈ µ∃b ∈
ν a ≤S b. The preorders !S and !sS are isomorphic (but not strongly isomorphic) through
the relation eS ∈ Pol(!S, !sS) defined by eS = {(p, µ) | ∀a ∈ µ∃a′ ∈ |p| a ≤S a′}. The
important point is that this natural isomorphism is compatible with all the structures of
both exponentials, so that the models defined by these exponentials are equivalent. We
prefer to use the multiset-based construction to present the model because it is closer to
the exponential of the relational model – this simplifies greatly the presentation of the
extensional collapse as we shall see – but keep in mind that we could give the same definitions
with the other version.

The Seely isomorphism m ∈ Pol(1, !>) is {(∗, [])} and the Seely natural isomorphism
mS1,S2 ∈ Pol(!S1 ⊗ !S2, !(S & T)) is {((p1, p2), q) | (i, a) ∈ |q| ⇒ ∃a′ ∈ |pi| a ≤Si

a′}.
Dereliction dS ∈ Pol(!S, S) is dS = {(p, a) | ∃a′ ∈ |p| a ≤S a′} and digging pS ∈ Pol(!S, !!S)
is pS = {(p, [p1, . . . , pn]) | i ∈ N and ∀i pi ≤!S p}. As easily checked, weakening is given
by wS = {(p, ∗) | p ∈ |!S|} ∈ Rel(!S, 1) and binary contraction is cS = {(p, (p1, p2))) |
p, p1, p2 ∈ |!S| p1 ≤!S p and p2 ≤!S p}. Unlike the relational model, this structure cannot
be extended into a weak differential LL model.

I Proposition 2. There is no natural transformation dS ∈ Pol(S, !S) such that dS dS = IdS .

Proof. We prove first that necessarily dS = {(a, p) ∈ |S| × |!S| | p ≤!S [a]}. First, let (a, p) ∈
dS . Let a′ ∈ |p|. By definition of dS , we have (p, a′) ∈ dS , and hence (a, a′) ∈ dS dS = IdS .
Therefore a′ ≤S a and hence p ≤!S [a]. Conversely, let a ∈ |S|. We have (a, a) ∈ IdS and
therefore there exists p such that (a, p) ∈ dS and (p, a) ∈ dS . By the second property, we can
find a′ ∈ |p| such that a ≤S a′. We have [a] ≤!S p and (a, p) ∈ dS ∈ Pol(S, !S). Therefore
(a, [a]) ∈ dS . It follows that, for any p such that p ≤!S [a], one has (a, p) ∈ dS .

Let S = ({0},=) and T = ({1, 2},=). Let R = {(0, 1), (0, 2)}, we have R ∈ Pol(S, T).
Observe that ([0], [1, 2]) ∈ !R (warning: this is of course not true in Rel) so that (0, [1, 2]) ∈
!R dS . But there is no b ∈ |T | such that (b, [1, 2]) ∈ dT and hence we do not have (0, [1, 2]) ∈
dT R, and this shows that dS is not a natural transformation. �

Fixpoints of types. Let S and T be preorders, we write S ⊆ T if |S| ⊆ |T | and, for any
a, a′ ∈ |S|, one has a ≤S a′ iff a ≤T a′. This is an order relation on the class of preorders

T. Ehrhard 265

and we use Pol⊆ for this partially ordered class. It is clear that any countable directed
family in Pol⊆ has a lub and that all the LL constructions presented above are continuous.
It is also clear that any continuous function Φ : Pol⊆ → Pol⊆ has a least fixpoint.

3.3 The collapsing model of LL
Our last model combines the two models above. It is based on a new duality.

The model. Let S be a preorder and let u, u′ ⊆ |S|. We write u ⊥ u′ if u ∩ u′ = ∅ ⇒
(↓Su) ∩ u′ = ∅.

Observe that (↓Su) ∩ u′ = ∅ holds iff (↓Su) ∩ (↓Sopu′) = ∅ so that u ⊥ u′ holds relatively
to S iff u′ ⊥ u holds relatively to Sop. Given D ⊆ P(|S|), we define D⊥(S) ⊆ P(|S|) by
D⊥(S) = {u′ ⊆ |S| | ∀u ∈ D u ⊥ u′}. It is clear that D ⊆ D⊥(S)⊥(Sop) and that D1 ⊆ D2 ⇒
D2
⊥(S) ⊆ D1

⊥(S), so that D⊥(S) = D⊥(S)⊥(Sop)⊥(S). Observe that I(Sop) ⊆ D⊥(S) ⊆ P(|S|)
so that, when D is “closed” in the sense that D = D⊥(S)⊥(Sop), one has I(S) ⊆ D ⊆ P(|S|).

The objects of the model are called preorders with projections (pop) and are pairs E =
(〈E〉,D(E)) where 〈E〉 is a preorder and D(E) ⊆ P(|〈E〉|) satisfies (D(E))⊥(〈E〉)⊥(〈E〉op) ⊆
D(E), that is (D(E))⊥(〈E〉)⊥(〈E〉op) = D(E). If E is a pop, we set E⊥ = (〈E〉op

, (D(E))⊥(〈E〉)).
Let E and F be pops. One defines E ⊗ F by 〈E ⊗ F 〉 = 〈E〉 × 〈F 〉 and D (E ⊗ F) =
{u× v | u ∈ D(E) and v ∈ D(F)}⊥(〈E〉×〈F 〉)⊥(〈E⊥〉×〈F⊥〉). Let E (F = (E ⊗ F⊥)⊥.

I Lemma 3. Let R ⊆ |〈E (F 〉|. One has R ∈ D(E (F) iff any of the following equivalent
conditions holds.

If u ∈ D(E) and v′ ∈ D(F⊥), then R ∩ (u× v′) = ∅ ⇒ R ∩ (↓〈E〉u× ↑〈F 〉v′) = ∅.
If u ∈ D(E), then Ru ∈ D(F) and R ↓u ⊆ ↓(Ru).
If u ∈ D(E), then Ru ∈ D(F) and ↓(Ru) = (↓〈E〉(〈F 〉R) (↓u).

Proof. See [6]. �

To define the category Pop of pops, we set Pop(E,F) = D(E (F). By Lemma 3
IdE = {(a, a) | a ∈ |〈E〉|} ∈ Pop(E,E), and if Q ∈ Pop(E,F) and P ∈ Pop(F,G), then
P Q ∈ Pop(E,G) and so identities and composition of Pop are defined as in Rel. This
category is ∗-autonomous: we have already defined the tensor product on objects. On
morphisms, it is defined just as in Rel. The internal hom object E (F has also been
defined above, and the linear evaluation relation is defined as in Rel again. Of course,
one has to check carefully that all these relations are Pop morphisms, this is done in [6].
Notice that, as shown in that paper, this category is not compact closed. The category
Pop is countably cartesian, E =

˘
i∈I Ei is defined by 〈E〉 =

˘
i∈I〈Ei〉 and w ⊆ D(E)

iff πi w ∈ D(Ei) for each i ∈ I (where πi is the ith projection in the relational model).
The projections morphism in Pop are those of the relational model. The category Pop is
therefore also countably cocartesian, and one checks easily that it is countably additive.

We define now the exponential !E of a pop E. One sets 〈!E〉 = !〈E〉 and therefore,
we have |〈!E〉| = !|〈E〉| = Mfin(|〈E〉|) by our definition of !E based on multisets and not on
sets, see the remark in Section 3.2. We set D(!E) = {u! | u ∈ D(E)}⊥(〈!E〉)⊥(〈!E〉op), where
u! =Mfin(u). Here is the main tool for dealing with this construction. See [6] for the proof.

I Proposition 4. Let E and F be pops and let R ∈ Rel(|〈!E〉|, |〈F 〉|). One has R ∈ Pop(!E,F)
iff, for any u ∈ D(E)

Ru! ∈ D(F)
R (↓〈E〉u)! ⊆ ↓〈F 〉(Ru!).

CSL’12

266 Collapsing non-idempotent intersection types

The Seely isomorphisms, and the dereliction and digging natural transformations are
defined exactly as in Rel.

Fixpoints of types. Let E and F be pops. We write E ⊆ F if 〈E〉 ⊆ 〈F 〉, D(E) ⊆ D(F)
and, for any v ∈ D(F), one has v ∩ |〈E〉| ∈ D(E) and ↓〈F 〉v ∩ |〈E〉| ⊆ ↓|〈E〉|(v ∩ |〈E〉|). This
is an order relation on the class of preorders with projections, and we write Pop⊆ for the
corresponding partially ordered class. It is shown in [6] that this partially ordered class is
complete (all directed lubs exist) and we define as usual the notion of continuous function
(Pop⊆)n → Pop⊆, one checks that all constructions of linear logic are continuous functions,
and that any continuous function Φ : Pop⊆ → Pop⊆ admits a least fixpoint

⋃∞
n=0 Φn(∅).

Forgetful LL functors. There is an obvious functor ρ : Pop → Rel defined on objects
by ρ(E) = |〈E〉| and which is the identity on morphisms. With a preorder with projection
E, we can also associate a preorder σ(E) = 〈E〉. This operation is extended to morphisms
as follows: let R ∈ Pop(E,F), we set σ(R) = ↓〈E〉(〈F 〉R.

I Lemma 5. Both ρ and σ are LL functors.

The proof can be found in [6]. The statement concerning ρ is straightforward. Concerning
σ, LL functoriality is made possible by the presence of the sets D(E). For instance func-
toriality results directly from Lemma 3 and Lemma 1. But notice that, given preorders S,
S′ and S′′ and arbitrary relations R ∈ Rel(|S|, |S′|) and R′ ∈ Rel(|S′|, |S′′|), the inclusion
(↓S′(S′′R

′) (↓S(S′R) ⊆ ↓S(S′′(R′R) does not hold in general.

I Lemma 6. When restricted to inclusions, ρ induces a continuous function Pop⊆ → Rel⊆

and σ induces a continuous function Pop⊆ → Pol⊆.

4 The cbv λ-calculus

Our syntax for the cbv λ-calculus is a slight modification of the ordinary λ-calculus syntax.
If V is a value, then 〈V 〉 is a term;
if M and N are terms, then M N is a term;
if x is a variable, then x is a value;
if M is a term and x is a variable, then λxM is a value.

We use Λt for the set of terms, Λv for the set of values and Λe for the disjoint union of
these two sets, whose elements will be called expressions and denoted with letters P,Q,
As usual, expressions are considered up to α-equivalence.

Reduction relations. One can define a general reduction relation βV for this calculus: it
is the contextual closure of the basic reduction rule 〈λxM〉 〈V 〉 βV M [V/x]. We use β∗V for
the transitive closure of βV. We also define a weak reduction relation β̂V which is included in
βV and which consists in reducing only redexes not occurring inside a value (that is, under
a λ). It is defined by the following rules.

〈λxM〉 〈V 〉 β̂V M [V/x]
M β̂V M

′

M N β̂V M
′N

N β̂V N
′

M N β̂V M N ′

T. Ehrhard 267

5 Linear-logic based models

Let C be an LL model. We present here a general notion of model for the cbv λ-calculus
C, which corresponds to a translation of intuitionistic logic into LL alluded to by Girard in
[11] and called by him “boring”. It is compatible with the translation of the cbv λ-calculus
into LL given in [15] and with other notions of model such as [20] and of course with [17] if
one keeps in mind that the functor “!” defines a strong monad on the Kleisli category C!.

A C-model of cbv as a triple (U, app, lam) where U is an object of C, app ∈ C(U, !U (!U)
and lam ∈ C(!U (!U,U) are such that app lam = Id!U(!U .

Given an expression P and a sequence of variables ~x = (x1, . . . , xn) adapted to P (this
means that the sequence is repetition-free and contains all the free variables of P), we define
[P]~x ∈ C((!U)⊗n, X) where X = U if P is a value and X = !U if P is a term. The definition
is by induction on P , and we consider first the cases where P is a term.

Assume first that P = 〈V 〉. By inductive hypothesis we have [V]~x : (!U)⊗(n) → U , and we
set [P]~x = ([V]~x)! : (!U)⊗(n) → !U . Assume next that P = M N . By inductive hypothesis,
we have [M]~x, [N]~x ∈ C((!U)⊗n, !U). Therefore app dU [M]~x ∈ C((!U)⊗n, !U (!U). So we
set [P]~x = ev ((app dU [M]~x) ⊗ [N]~x) cnU ∈ C((!U)⊗n, !U).

Now we interpret values. Assume first that P is a variable, so that P = xi for an
uniquely determined i ∈ {1, . . . , n}. Then we set [M]~x = w⊗(i−1)

U ⊗ dU ⊗ w⊗(n−i)
U :

(!U)⊗n → 1⊗(i−1) ⊗ U ⊗ (1)⊗(n−i) ' U (we keep this isomorphism implicit). Assume last
that P = λxM . We can assume that x does not occur in ~x. By inductive hypothesis, we
have [M]~x,x ∈ C((!U)⊗n ⊗ !U, !U) and hence λ([M]~x,x) ∈ C((!U)⊗n, !U (!U) and we set
[P]~x = (lamλ([P]~x,x)) ∈ C((!U)⊗n, U).

I Lemma 7 (Substitution Lemma). Let P be an expression, x a variable and V a value. Let
~x which does not contain x, is adapted to V and such that ~x, x is adapted to E. We have
[P [V/x]]~x = [P]~x,x ((!U)⊗n ⊗ ([V]~x)!) cnU where n is the length of ~x.

I Theorem 8. Let ~x be adapted to the expressions P and P ′ and assume that P βV P ′.
Then [P]~x = [P ′]~x.

6 A relational model and the associated type system

Let ΦR : Rel⊆ → Rel⊆ be the continuous function defined by ΦR(X) = !X (!X. Let UR
be its least fixpoint, then we have UR = !UR (!UR so that UR is a Rel-model of cbv with
app = lam = Id. An element of UR is a pair (p, q) where p and q are finite multisets of elements
of UR. The simplest of these elements is ε = ([], []), here is another one: ([ε, ε, ([ε], [])], [ε]).

6.1 Non-idempotent intersection types
We introduce a typing system for deriving judgments of shape Γ `M : m whereM is a term,
m ∈ !UR and Γ is a context (that is, a finite function from variables to !UR) and judgments
of shape Γ ` V : a where V is a value and a ∈ UR. The sum of contexts Γ + ∆ is defined
pointwise (using the sum of multisets), when Γ and ∆ have the same domain. A context
Γ is often written Γ = (x1 : m1, . . . , xn : mn) where the xi’s are pairwise distinct variables
and m1, . . . ,mn ∈ !UR. The typing rules for terms are

Γ `M : [(p, q)] ∆ ` N : p
Γ + ∆ `M N : q

Γ1 ` V : a1 · · · Γk ` V : ak
Γ1 + · · ·+ Γk ` 〈V 〉 : [a1, . . . , ak]

The second rule conveys the intuition that [a1, . . . , ak] represents the intersection of types
a1, . . . , an. The typing rules for values are

CSL’12

268 Collapsing non-idempotent intersection types

x1 : [], . . . , xn : [], x : [a] ` x : a
Γ, x : p `M : q

Γ ` λxM : (p, q)

I Proposition 9. Let P be an expression and let ~x = (x1, . . . , xn) be a list of variables
adapted to P . Let ~p ∈ (!UR)n and let α ∈ X (where X = UR if P is a value and X = !UR if
P is a term). Then one has (~p, α) ∈ [P]~xR iff the typing judgment x1 : p1, . . . , xn : pn ` P : α
is derivable.

The proof is a simple verification, by induction on the structure of P .

6.2 A CBV resource calculus
We introduce a resource calculus whose terms can be used to denote typing derivations in
the typing system described above.

6.2.1 Notation. Given a finite family (ai)i∈I and a predicate P on I, we use [ai | P (i)]
for the multiset whose elements are the ai’s such that P (i) holds, taking multiplicities into
account.

6.2.2 Syntax. We describe first the syntax of our resource calculus.
If v1, . . . , vn are simple values, then 〈v1, . . . , vn〉 is a simple term;
if s and t are simple terms, then s t is a simple term;
if x is a variable, then x is a simple value;
if x is a variable and s is a simple term, then λx s is a simple value.

Terms are sets of simple terms, and values are defined similarly. We speak of (simple)
expressions when we don’t want to be specific. We write these sets as a sums to insist on the
algebraic flavor of the semantical background. The above syntactic constructs are extended
to non simple expressions, by linearity. For instance, if v =

∑
i∈I vi and w =

∑
j∈J wj are

values (the summands being simple), the expression 〈v, w〉 denotes
∑
i∈I,j∈J 〈vi, wj〉. And

if s =
∑
i∈I si is a term, then λx s denotes

∑
i∈I λx si, which is a value.

Given a simple expression e and simple values v1, . . . , vn, we define the linear substitution
∂x(e; v1, . . . , vn), which is an expression of the same kind as e, by

∂x(e; v1, . . . , vn) =

∑
f∈Sn

e
[
v1/xf(1), . . . , vn/xf(n)

]
if n = degxe

0 otherwise

where degxe is the number of free occurrences of x in e and x1, . . . , xn are these occurrences
(in the case n = degxe).

6.2.3 Reduction rules. We can give now the reduction rules of the calculus. We define a
reduction relation denoted as δ from simple expressions to generally non simple expressions
by the following rules.

〈λx s〉 〈v1, . . . , vn〉 δ ∂x(s; v1, . . . , vn)
if n 6= 1

〈v1, . . . , vn〉 t δ 0
s δ s′

λx s δ λx s′

s δ s′

s t δ s′ t
t δ t′

s t δ s t′
v δ v′

〈v, v1, . . . , vn〉 δ 〈v′, v1, . . . , vn〉

T. Ehrhard 269

This reduction can be extended to non simple expressions, but this is not needed here
and is postponed to a longer version of this paper.

One defines a size function on simple expressions by ‖x‖ = 0, ‖λx s‖ = 1 + ‖s‖, ‖s t‖ =
‖s‖+ ‖t‖ and ‖〈v1, . . . , vk〉‖ =

∑k
j=1 ‖vj‖. In other words ‖e‖ is the number of of λ’s in e.

I Lemma 10. There is no infinite sequence (ei)i∈N+ of simple expressions such that, for
each i, ei δ e′ with ei+1 ∈ e′.

Proof. ‖ei+1‖ < ‖ei‖. �

6.3 Categorical denotational semantics
Let U be a C-model of cbv, where we assume moreover that C is a weak differential LL model
which is countably additive and where hom-sets have idempotent sums. We show how to
interpret the cbv resource calculus in such a structure.

We introduce a convenient notation. Let g1, . . . , gk ∈ C((!U)⊗n, U). We set 〈g1, . . . , gk〉 =
dkU (g1 ⊗ · · · ⊗ gk) cn,kU , where cn,kU ∈ C((!U)⊗n, ((!U)⊗n)⊗k) is an obvious generalization of
cnU .

Given a simple expression e and an adapted sequence of variables ~x, we define [e]~x ∈
C((!U)⊗n, X) where X = U if e is a value and X = !U if e is a term. The definition is
by induction on e. For the syntactical constructs which are similar to those of the cbv λ-
calculus (namely: variables, application and abstraction), the interpretation is the same as in
Section 5. To complete the definition we have just to define the semantics of 〈v1, . . . , vk〉. By
inductive hypothesis we have defined gj = [vj]~x ∈ C((!U)⊗n, U) and we set [〈v1, . . . , vk〉]~x =
〈g1, . . . , gk〉. If e is an expression, that is a set of simple expressions e =

∑
i∈I ei and a list

of variables ~x adapted to all xi’s, we set [e]~x =
∑
i∈I [ei]~x which is well defined because we

have assumed that the sum of morphisms is idempotent in C.

I Lemma 11. If e δ e′ and ~x is adapted to e and e′, then [e]~x = [e′]~x.

Proof. It suffices to prove the result in the case where e is simple, by induction on e. The
proof uses the following property of linear substitution wrt. the interpretation (substitution
lemma). Let e be a simple expression and v1, . . . , vk be simple values. Let ~x, x a sequence
of variable adapted to e and to all vj ’s. Let n be the length of ~x. Then we have

[∂x(e; v1, . . . , vk)]~x = [e]~x,x (!U⊗n ⊗
〈
[v1]~x, . . . , [vk]~x

〉
) cnU

and this is proved by a simple induction on e. �

For any expression P of the cbv λ-calculus, we define a set T (P) of simple expressions
by induction.

T (x) = {x} T (λxM) = {λx s | s ∈ T (M)}
T (M N) = {s t | s ∈ T (M) and t ∈ T (N)}
T (〈V 〉) = {〈v1, . . . , vk〉 | k ∈ N and ∀i vi ∈ T (V)} .

Observe that the set T (P) is infinite as soon as P has a subterm of shape 〈V 〉.

I Lemma 12. Let P be an expression and let V be a value. Let e ∈ T (P) and v1, . . . , vk ∈
T (V). Then ∂x(e; v1, . . . , vk) ⊆ T (P [V/x]).

Proof. Easy induction on P . �

CSL’12

270 Collapsing non-idempotent intersection types

I Lemma 13. If the Taylor formula holds in C then for any expression P and any ~x adapted
to P we have [P]~x =

∑
e∈T (P)[e]~x.

Proof. Easy induction on P . �

6.4 Adequacy in Rel
I Lemma 14. Let P, P ′ be expressions and let e ∈ T (P). If P β̂V P ′ then there exists
e′ ⊆ T (P ′) such that e δ e′.

Proof. Simple inspection, using Lemma 12. �

One has to be careful when using this lemma because, using the notations of the lemma,
nothing prevents the expression e′ – which is not simple in general – from being empty.

I Theorem 15. Let P be an expression. Let ~x be adapted to P and let n be the length of ~x.
Let m1, . . . ,mn ∈ !UR and let α ∈ X where X = UR if P is a value and X = !UR if P is a
term. If x1 : m1, . . . , xn : mn ` P : α then P is β̂V strongly normalizing.

Proof. By Proposition 9, our hypothesis means that (~m,α) ∈ [P]~x. By Lemma 13 there exists
e ∈ T (P) such that (~m,α) ∈ [e]~x. If P β̂V P ′ there then there exists e′ ⊆ T (P ′) such that
e δ e′ by Lemma 14. By Lemma 11 we have (~m,α) ∈ [e′]~x and hence there exists f ∈ e′ such
that (~m,α) ∈ [f]~x (so e′ is not empty!). Therefore, for any reduction P = P1 β̂V P2 . . . β̂V Pl
we can find e1 ∈ T (P1), . . . , el ∈ T (Pl) with ‖e1‖ > ‖e2‖ > · · · > ‖el‖ and (~m,α) ∈ [ei]~x for
each i. �

7 A Scott model and the associated type system

Let ΦS : Pol⊆ → Pol⊆ be the continuous functions defined by ΦS(S) = !S (!S. Let US be
the least fixpoint of ΦS, then US (equipped with two identity morphisms) is a Pol⊆-model
of the cbv λ-calculus. We use ≤ for the both preorder relations ≤US and ≤!US .

It is clear that |US| = UR, so that an element of |US| is a pair (p, q) where p and q are
finite multisets of elements of |US|. On finite multisets, the preorder is given by p ≤!US p

′

if ∀a ∈ |p| ∃a′ ∈ |p′| a ≤US a
′ and on pairs, the US-preorder is given by (p, q) ≤US (p′, q′) if

p′ ≤!US p and q ≤!US q
′.

7.1 Idempotent intersection types
We introduce a typing system for deriving judgments of shape Γ `S M : m and Γ `S V : a
with the same notations as in Section 6.1: just as in that section, the types are the elements
of |US| = UR and the contexts associate finite multisets of types with variables. But the
typing rules are different. For terms, they are given by

Γ `S M : [(p, q)] Γ `S N : p
Γ `S M N : q

Γ `S V : a1 · · · Γ `S V : ak
Γ `S 〈V 〉 : [a1, . . . , ak]

and for values, they are given by

[a] ≤ m
Γ, x : m `S x : a

Γ, x : p `S M : q
Γ `S λxM : (p, q)

Similar typing systems for cbv have already been proposed, see [5] in particular.

T. Ehrhard 271

I Proposition 16. Let P be an expression and let ~x = (x1, . . . , xn) be a list of variables
adapted to P . Let ~m ∈ (|!US|)n and let α ∈ |S| (where S = US if P is a value and S = !US if P
is a term). Then one has (~m,α) ∈ [P]~xS iff the typing judgment x1 : m1, . . . , xn : mn ` P : α
is derivable.

The proof is a simple verification, by induction on the structure of P .

I Remark. We can define a model U ′S of cbv λ-calculus using the exponential !s_ mentioned
in the remark of Section 3.2, and by this remark, the models US and U ′S are isomorphic
in Pol. Now the typing system associated with U ′S is exactly the same as the system
presented above, up to the fact that all multisets occurring in types should be replaced by
the corresponding sets and, up to this transformation, it is equivalent to the system above.
In that sense, the typing system of this section is actually an idempotent intersection typing
system. And indeed, if say `S M : p is derivable (where M is a closed term to simplify the
notations) and if p′ is equivalent to p in the preorder !US (in other words p ≤ p′ and p′ ≤ p),
then one can infer `S M : p′ by an isomorphic typing derivation. This is in particular the
case if p and p′ differ only by the multiplicities of their subtypes, that is if p− = p′− where
[a1, . . . , an]− = {a−1 , . . . , a−n } ∈ |!sU ′S| and (p, q)− ∈ (p−, q−) ∈ |U ′S|.

7.2 Adequacy in the idempotent case
One can prove an analog of Theorem 15 for this idempotent typing system, but the same
technique does not apply because, as we have seen with Proposition 2, Pol is not a model
of the cbv resource calculus. The standard method to prove adequacy in this model is by
reducibility, an example of such a proof will be given in a longer version of this paper.

I Theorem 17. Let P be an expression. Let ~x be adapted to P and let n be the length of ~x.
Let m1, . . . ,mn ∈ |!US| and let α ∈ |X| where X = US if P is a value and X = !US if P is a
term. If x1 : m1, . . . , xn : mn `S P : α then P is β̂V strongly normalizing.

We show now how to use the model Pop and the non-idempotent adequacy result to prove
this theorem.

7.3 Adequacy in the idempotent case, using preorders with projections
Let ΦP : Pop⊆ → Pop⊆ be the continuous function defined by ΦP(E) = !E (!E. Let UP
be the least fixpoint of ΦP, then UP (equipped with two identity morphisms) is a Pop-model
of the cbv λ-calculus.

By Lemma 6, we have ρ(UP) = UR and σ(UP) = US.
Let P be an expression and let ~x be a sequence of variables adapted to P , let n be the

length of ~x. Because ρ is an LL functor, we have [P]~xP = ρ([P]~xP) = [P]~xR, and similarly we
have σ([P]~xP) = [P]~xS . These properties are proved by a straightforward induction on P . As a
consequence, using the definition of the functor σ, we get the following result, which relates
the relational semantics of an expression to its Scott semantics.

I Theorem 18. Let P be an expression and let ~x be a sequence of variables of length n,
adapted to P . Then [P]~xS = ↓[P]~xR where the downwards closure is taken in (!US)⊗n (S

(with S = US if P is a value and S = !US if P is a term).

We prove Theorem 17. We deal with the case of a term, but the proof is of course similar
for values. So assume that x1 : m1, . . . , xk : mk `S M : m which means that (~m,m) ∈ [M]~xS
wherem1, . . . ,mn,m ∈ |!US|. Then by Theorem 18, we can findm′1, . . . ,m′n,m′ ∈ |!US| = !UR

CSL’12

272 Collapsing non-idempotent intersection types

with ∀i m′i ≤!US mi and m ≤!US m
′ and such that (m′1, . . . ,m′n,m′) ∈ [M]~xR. By Theorem 15,

M is β̂V strongly normalizing.

I Remark. It is quite instructive to try to prove Theorem 18 by a direct induction on
derivations in the idempotent typing system of Section 7.1 and to observe that it is not
as easy as one could think. Given a derivation of Γ `S P : α we want to find a derivation
Γ′ ` P : α′ such that α ≤ α′ and Γ′ ≤ Γ (this means that Γ and Γ′ have same domain
and that Γ′(x) ≤ Γ(x) for each x). Observe first that we cannot hope to have Γ′ = Γ
and α′ = α in general, because our proof would fail on its base case (variables). Assume
that the derivation ends with an application rule: P = M N , α = q, and we have (shorter)
derivations of Γ `S M : [(p, q)] and Γ `S N : p. By inductive hypothesis, we can find Γ′1, p′1, q′1
with Γ′1 ≤ Γ, p′1 ≤ p and q ≤ q′1 such that Γ′1 `M : [(p′1, q′1)] is derivable and also Γ′2, p′2 such
that Γ′2 ≤ Γ, p ≤ p′2 and Γ′2 ` N : p′2 is derivable. To build a typing derivation for M N in
this non-idempotent system, we would need to force p′2 = p′1 but nothing in our inductive
hypothesis guarantees that this is possible. It is precisely the point of the model UP in Pop
to show that, for “well behaved” sets of the relational model (those belonging to D(US))
downwards closure commutes with application – this is the main content of Lemma 3 –
and that the relational interpretation of cbv λ-calculus expressions are precisely such well-
behaved sets.

Conclusion

We have shown how to use a purely semantical construction (the model Pop) to reduce
the proof of an adequacy theorem usually proved by reducibility to a purely combinatorial
argument and we have illustrated this approach in the cbv λ-calculus. In further work, we’ll
apply this approach to other languages and other notions of normalization to understand
better how the reducibility structure is encoded in the model. We’ll also explore the probable
connections between our work and [1].

Acknowledgments

The author thanks the referees for their valuable suggestions and comments. This work has
been partly supported by the international ANR-NSFC project Locali.

References

1 Alexis Bernadet and Stéphane Lengrand. Filter models: Non-idempotent intersection types,
orthogonality and polymorphism. In CSL, Lecture Notes in Computer Science, pages 51–66.
Springer-Verlag, 2011. To appear.

2 René David. Every unsolvable lambda-term has a decoration. In Jean-Yves Girard, editor,
TLCA, volume 1581 of Lecture Notes in Computer Science, pages 98–113. Springer, 1999.

3 Daniel De Carvalho. Execution Time of λ-Terms via Denotational Semantics and Intersec-
tion Types. Research Report RR-6638, INRIA, 2008.

4 Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure of
the execution time in linear logic. Theoretical Computer Science, 412(20):1884–1902, 2011.

5 Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in
call-by-value languages. In Andrew D. Gordon, editor, FoSSaCS, volume 2620 of Lecture
Notes in Computer Science, pages 250–266. Springer, 2003.

T. Ehrhard 273

6 Thomas Ehrhard. The Scott model of Linear Logic is the extensional collapse of its rela-
tional model. Theoretical Computer Science, 2011. To appear. A draft version is available
on http://www.pps.jussieu.fr/~ehrhard.

7 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Com-
puter Science, 309(1-3):1–41, 2003.

8 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. In Proceedings of
WoLLIC’04, volume 103 of Electronic Notes in Theoretical Computer Science, pages 35–
74. Elsevier Science, 2004.

9 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Technical report, Institut de mathématiques de Luminy, 2005. submitted
to Theoretical Computer Science.

10 Marcelo P. Fiore. Differential structure in models of multiplicative biadditive intuitionistic
linear logic. In Simona Ronchi Della Rocca, editor, TLCA, volume 4583 of Lecture Notes
in Computer Science, pages 163–177. Springer, 2007.

11 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
12 Jean-Yves Girard. Normal functors, power series and the λ-calculus. Annals of Pure and

Applied Logic, 37:129–177, 1988.
13 Michael Huth. Linear Domains and Linear Maps. In Stephen D. Brookes, Michael G. Main,

Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, MFPS, volume 802 of
Lecture Notes in Computer Science, pages 438–453. Springer-Verlag, 1993.

14 Michael Huth, Achim Jung, and Klaus Keimel. Linear types and approximation. Mathem-
atical Structures in Computer Science, 10(6):719–745, 2000.

15 John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, call-by-
value, call-by-need and the linear lambda calculus. Theoretical Computer Science, 228(1-
2):175–210, 1999.

16 Paul-André Melliès. Categorical semantics of linear logic. Panoramas et Synthèses, 27,
2009.

17 Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

18 Michele Pagani. The cut-elimination theorem for differential nets with promotion. In
Pierre-Louis Curien, editor, TLCA, volume 5608 of Lecture Notes in Computer Science,
pages 219–233. Springer, 2009.

19 Michele Pagani and Simona Ronchi Della Rocca. Solvability in resource lambda-calculus.
In C.-H. Luke Ong, editor, FOSSACS, volume 6014 of Lecture Notes in Computer Science,
pages 358–373. Springer-Verlag, 2010.

20 Alberto Pravato, Simona Ronchi Della Rocca, and Luca Roversi. The call-by-value lambda-
calculus: a semantic investigation. Mathematical Structures in Computer Science, 9(5):617–
650, 1999.

21 Paolo Tranquilli. Intuitionistic Differential Nets and Lambda-Calculus. Theoretical Com-
puter Science, 2008. To appear.

22 Glynn Winskel. A linear metalanguage for concurrency. In Armando Martin Haeberer,
editor, AMAST, volume 1548 of Lecture Notes in Computer Science, pages 42–58. Springer-
Verlag, 1998.

23 Glynn Winskel. Linearity and non linearity in distributed computation. In Thomas
Ehrhard, Jean-Yves Girard, Paul Ruet, and Philip Scott, editors, Linear Logic in Com-
puter Science, volume 316 of London Mathematical Society Lecture Note Series. Cambridge
University Press, 2004.

CSL’12

http://www.pps.jussieu.fr/~ehrhard

	Introduction
	Categorical semantics of LL in a nutshell
	Structural natural transformations
	Weak differential LL models
	The Taylor formula

	The extensional collapse
	The relational model of LL
	The Scott model of LL
	The collapsing model of LL

	The cbv -calculus
	Linear-logic based models
	A relational model and the associated type system
	Non-idempotent intersection types
	A CBV resource calculus
	 Notation.
	 Syntax.
	 Reduction rules.

	Categorical denotational semantics
	Adequacy in Rel

	A Scott model and the associated type system
	Idempotent intersection types
	Adequacy in the idempotent case
	Adequacy in the idempotent case, using preorders with projections

