
Equivalence Constraint Satisfaction Problems∗

Manuel Bodirsky1 and Michał Wrona2

1 CNRS / LIX (UMR 7161)
École Polytechnique
91128 Palaiseau, France
bodirsky@lix.polytechnique.fr

2 Department of Computer and Information Science
Linköpings universitet
SE-581 83 Linköping, Sweden
michal.wrona@liu.se

Abstract
The following result for finite structures Γ has been conjectured to hold for all countably infinite
ω-categorical structures Γ: either the model-complete core ∆ of Γ has an expansion by finitely
many constants such that the pseudovariety generated by its polymorphism algebra contains a
two-element algebra all of whose operations are projections, or there is a homomorphism f from
∆k to ∆, for some finite k, and an automorphism α of ∆ satisfying ∀x1, . . . , xk. f(x1, . . . , xk) =
α(f(x2, . . . , xk, x1)). This conjecture has been confirmed for all infinite structures Γ that have a
first-order definition over (Q;<), and for all structures that are definable over the random graph.
In this paper, we verify the conjecture for all structures that are definable over an equivalence
relation with a countably infinite number of countably infinite classes.

Our result implies a complexity dichotomy (into NP-complete and P) for a family of constraint
satisfaction problems (CSPs) which we call equivalence constraint satisfaction problems. The
classification for equivalence CSPs can also be seen as a first step towards a classification of the
CSPs for all relational structures that are first-order definable over Allen’s interval algebra, a
well-known constraint calculus in temporal reasoning.
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1 Introduction

The constraint satisfaction problem for a fixed structure Γ with finite relational signature
is the following computational problem, denoted by CSP(Γ): given a finite structure I
with the same signature as Γ, decide whether there is a homomorphism from I to Γ. By
selecting an appropriate structure Γ, many computational problems in various areas of
theoretical computer science can be formulated as CSP(Γ), for example problems from
artificial intelligence, combinatorics, finite model theory, scheduling, and database theory.
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In 1993, Feder and Vardi conjectured that CSP(Γ) is for all finite structures Γ in P or NP-
complete. There has been a considerable research activity around this dichotomy conjecture
in constraint satisfaction, producing many results of independent interest.

One of the results that came out of the attempts to prove the dichotomy conjecture is the
following universal-algebraic dichotomy, which essentially follows from [17, 2]; also see [4].
All concepts that appear in the statement will be defined in Section 2.

I Theorem 1.1 (follows from [17, 2]). Let Γ be a finite relational structure. Then either
the pseudovariety generated by the polymorphism algebra of the expansion of the core of Γ
by constants contains a two-element algebra all of whose operations are projections, or
there is a homomorphism f from Γk to Γ, for some finite k ≥ 2, that satisfies

∀x1, . . . , xk. f(x1, . . . , xk) = f(x2, . . . , xk, x1) .

It is known that when Γ satisfies the first item in Theorem 1.1, then CSP(Γ) is NP-hard.
Bulatov, Jeavons, and Krokhin [13] made the conjecture that for finite structures Γ with finite
relational signature that do not satisfy the first item in Theorem 1.1, the problem CSP(Γ)
can be solved in polynomial time. This conjecture has been called the tractability conjecture,
and obviously the tractability conjecture implies the dichotomy conjecture. The tractability
conjecture has been verified for 2-element structures [22], 3-element structures [12], undirected
graphs [11], and many other classes of finite structures.

While the tractability conjecture is open for general finite structures, it turns out that a
generalized version of the tractability conjecture is true for several large classes of infinite
relational structures Γ. To define those classes, we need the following concepts. In this paper
we say that a relational structure Γ is first-order definable in ∆ if Γ has the same domain
as ∆, and for every relation R of Γ there is a first-order formula φ in the signature of ∆
such that φ holds exactly on those tuples that are contained in R. The class of all structures
with a first-order definition in (Q;<) has been studied in [6]; the CSPs for those structures
are called temporal constraint satisfaction problems and they can be used to model many
computational problems in temporal reasoning and scheduling. The class of all structures
with a first-order definition over the countable universal homogeneous graph, aka the random
graph, has been studied in [9]. All those structures are ω-categorical, that is, all countable
models of their first-order theory are isomorphic.

The following has been conjectured for all ω-categorical structures (see Conjecture 5.3
from [4]; the formulation there is different, but equivalent by Theorem 5.5.18 in [4]).
I Conjecture 1.2. Let Γ be a countable ω-categorical relational structure. Then either
1. the model-complete core of Γ has an expansion ∆ by finitely many constants such that

the pseudovariety generated by the polymorphism algebra of ∆ contains a two-element
algebra all of whose operations are projections, or

2. the model-complete core of Γ has a polymorphism f and an automorphism α satisfying

∀x1, . . . , xn. f(x1, . . . , xn) = α(f(x2, . . . , xn, x1)) .

This conjecture generalizes the universal-algebraic dichotomy that holds for finite struc-
tures Γ. Conjecture 1.2 has been shown for all structures Γ definable over (Q;<) [6], or over
the random graph [9]. Moreover, the two cases of Conjecture 1.2 correspond precisely to the
cases that CSP(Γ) is NP-hard, or polynomial, respectively.

In this article, we show that Conjecture 1.2 holds for all structures that are first-order
definable over (D;Eq), where D is a countable infinite set, and Eq is an equivalence relation
on D with infinitely many infinite classes. We show that also in this case the dichotomy
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described in the conjecture coincides with a complexity dichotomy for the corresponding
CSPs. We call them equivalence CSPs, since solutions to an instance I of CSP(Γ) where Γ is
first-order definable over (D;Eq) can be represented by exhibiting an equivalence relation on
the image of a mapping from I to Γ (and thus CSP(Γ) is always in NP).

Apart from the fact that (D;Eq) is, besides (Q;<) and the random graph, one of the
fundamental ω-categorical structures, there is additional motivation to specifically study the
class of structures definable over (D;Eq), and we describe this motivation in the following.

1.1 Motivation and Applications
1.1.1 Composing Classification Results
Suppose ∆1 and ∆2 are such that we have shown Conjecture 1.2 for all structures Γ that
are definable over ∆1 or definable over ∆2. To better understand Conjecture 1.2 in general,
we would like to prove that the conjecture also holds for all structures Γ that are definable
over a structure ∆ that is built from ∆1 and ∆2 in a simple way. One of the basic ways to
construct a new ω-categorical structure ∆ from ω-categorical structures ∆1 and ∆2 is to
take infinitely many copies of ∆2, to identify each element of ∆1 with one of those copies,
and to join the copies according to the relations in ∆1. Formally, for i ∈ {1, 2}, write Di for
the domain and τi for the signature of ∆i. Suppose that τ1 and τ2 are disjoint (otherwise
rename the symbols). Then ∆ is a τ1 ∪ τ2 structure with domain D1 ×D2. A k-ary relation
R ∈ τ2 denotes {((a, b1), . . . , (a, bk)) | (b1, . . . , bk) ∈ R∆2 , a ∈ D1} in ∆; a k-ary relation
R ∈ τ1 denotes {((a1, b1), . . . , (ak, bk)) | (a1, . . . , ak) ∈ R∆1 , b1, . . . , bk ∈ D2} in ∆.

The simplest situation for this is when ∆1 = ∆2 = (N; =). Note that the structure
(D;Eq) is isomorphic to

(
N; {(x, y), (u, v) | x = u}

)
; that is, the relation Eq relates exactly

those elements that come from the same copy of ∆2. So the task outlined above for
∆1 = ∆2 = (N; =) amounts precisely to studying the class of all structures Γ definable over
(D;Eq).

1.1.2 Fragments of Allen’s Interval Algebra
Allen’s interval algebra is a formalism introduced for temporal reasoning in Artificial Intelli-
gence [1], and plays a central role in qualitative reasoning in general. The most fundamental
computational problem for Allen’s interval algebra is the so-called network satisfaction
problem, which can be viewed as the CSP for the following structure ∆: the domain I of ∆
are the pairs (u, v) ∈ Q2 with u < v, and the relations of ∆ are all binary relations R such
that the 4-ary relation {(x, y, u, v) | ((x, y), (u, v)) ∈ R} has a first-order definition in (Q;<).
An important achievement in temporal reasoning is the complete complexity classification
of the fragments of Allen’s interval algebra in [20, 21], that is, of the constraint satisfaction
problems for structures Γ obtained from ∆ by removing some of the relations.

This result has been obtained without the universal-algebraic approach as it is used
in [13, 2, 6, 9], but by a clever case distinction and heavy use of primitive positive definitions
to show hardness in cases where the known algorithms do not apply. A proof based on the
universal-algebraic approach would have the advantage that it would automatically yield
the much stronger classification result for all structures Γ that are first-order definable in ∆.
In contrast to the classification in [20], this includes structures that have relations of arity
larger than two. Such a result would be a considerable extension of the result from [20], and
is currently out of reach. However, for structures Γ with a first-order definition in ∆ that
contain the binary relation

{
((x, y), (u, v)) | y = u

}
(this relation is typically denoted by m

in the literature on Allen’s interval algebra), a classification of the complexity of CSP(Γ) can
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be derived from the classification for the structures definable in (Q;<) (see Section 5.5.4
in [4]). Note that every structure with a definition in (D;Eq) is isomorphic to a structure
definable over Allen’s interval algebra, by the observation that (D;Eq) is isomorphic to(

I; {((x, y), (u, v)) | x = u}
)
.

Hence, the classification presented here is a part of the more ambitious project to classify
the CSP for all structures that are first-order definable over Allen’s interval algebra.

1.2 Techniques and Outline
We give a description of our proof strategy; in this description, we freely use concepts that
will be introduced in Section 2. Let Γ be a structure with a first-order definition in (D;Eq). If
the binary relation E(x, y) defined by Eq(x, y)∧x 6= y, or the binary relation N(x, y) defined
by ¬Eq(x, y) is not primitive positive definable in Γ, then Γ must have an endomorphism that
does not preserve E or that does not preserve N . It turns out that in this case Γ is degenerate,
and we use a Ramsey-theoretic analysis of the endomorphisms to reduce the classification to
known results (Theorem 3.3). If E and N are primitive positive definable, then so is Eq, and
we are in the situation that the polymorphism algebra A of Γ has a non-trivial congruence,
namely Eq. The quotient of A by Eq is an algebra that contains all permutations of its
domain, and for such algebras Conjecture 1.2 has already been established (Theorem 3.3).
Moreover, we will consider certain algebras of A obtained from the congruence classes of Eq,
and again they contain all permutations of their domain. The central part of the paper is a
universal-algebraic argument how to combine the classification results for the quotient and
the congruence classes to obtain the general classification result.

2 Tools. . .

2.1 . . . from Model Theory
In this paper we consider two kinds of first-order structures: relational structures (typically
ω-categorical or finite, sometimes expanded with constants) and algebras, that is, structures
with a functional signature (see Section 2.2).

Let σ and τ be signatures with σ ⊆ τ . When ∆ is a σ-structure and Γ is a τ -structure
with the same domain such that R∆ = RΓ for all R ∈ σ, and f∆ = fΓ for all f ∈ σ, then
∆ is called a reduct of Γ, and Γ is called an expansion of ∆. We say that Γ is a first-order
expansion of ∆ if Γ is an expansion of ∆ and all relations in Γ are first-order definable over
∆. A structure ∆ is called a finite reduct of Γ if ∆ is a reduct of Γ with a finite signature. We
also write (Γ, R) for the expansion of Γ by a new relation R. Given two σ-structures Γ over
the domain A and ∆ over the domain B, ∆ is said to be an (induced) substructure of Γ iff (i)
B ⊆ A, (ii) for every n-ary function symbol f in σ the function f∆ is a restriction of fΓ to Bn,
and (iii) for every n-ary relation symbol R in σ we have R∆ = RΓ ∩Bn. For two τ -structures
Γ1 and Γ2 the direct product ∆ = Γ1×Γ2 is the τ structure on the domain A1×A2, where A1
is the domain of Γ1 and A2 is the domain of Γ2 such that: (i) for every n-ary relation symbol
R in τ we have ((a1

1, a
1
2), . . . , (an1 , an2 )) ∈ R∆ iff (a1

1, . . . , a
n
1 ) ∈ RΓ1 and (a1

2, . . . , a
n
2 ) ∈ RΓ2 ,

and (ii) for every n-ary function symbol f in τ we have that f∆(
(a1

1, a
1
2), . . . , (an1 , an2 )

)
=(

fΓ1(a1
1, . . . , a

n
1 ), fΓ2(a1

2, . . . , a
n
2 )

)
. The direct product Γ× Γ is also denoted by Γ2, and the

k-fold product Γ× · · · × Γ, defined analogously, by Γk.
We say that a map h from the domain of a τ -structures Γ to the domain of a τ -

structure ∆ preserves a first-order τ -formula φ with free variables x1, . . . , xn if for all
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elements a1, . . . , an of Γ such that Γ satisfies φ(a1, . . . , an), ∆ satisfies φ(h(a1), . . . , h(an)). A
map h : Γ→ ∆ is a homomorphism if it preserves all atomic τ -formulas. An embedding is an
injective homomorphism satisfying the stronger condition that (t1, . . . , tn) ∈ RΓ if and only
if (h(t1), . . . , h(tn)) ∈ R∆, for all relation symbols R ∈ τ . An isomorphism is a surjective
embedding, and an automorphism of Γ is an isomorphism between Γ and itself. The set of
all automorphisms of Γ is denoted by Aut(Γ). An orbital of Aut(Γ) is a binary relation of
the form

{
(α(t1), α(t2)) | α ∈ Aut(Γ)

}
for elements t1, t2 of Γ.

A first-order theory T is model-complete if every embedding between models of T preserves
all first-order formulas. We say that a structure is model-complete if its theory is model-
complete. A homomorphism of a structure Γ into itself is called an endomorphism. A
structure Γ is called a core if all endomorphisms of Γ are embeddings. A structure ∆ is called
a core of Γ if ∆ is a core as well as Γ and ∆ are homomorphically equivalent, that is, there is
a homomorphism from Γ to ∆ and a homomorphism from ∆ to Γ.

I Theorem 2.1 ([3]). Every ω-categorical structure Γ is homomorphically equivalent to an
ω-categorical model-complete core ∆. All model-complete cores of Γ are isomorphic.

When ∆ is a model-complete core with finite relational signature, c is an element of the
domain of ∆, and (∆, {c}) is the expansion of ∆ by the unary relation {c}, then there is a
polynomial-time reduction from CSP((∆, {c})) to CSP(∆).

A structure Γ is homogeneous if every isomorphism between finite substructures of Γ can
be extended to an automorphism of Γ. Homogeneous structures with a finite signature are
ω-categorical. Good introductions to ω-categoricity can be found in [14, 18].

2.2 . . . from Universal Algebra
Let Γ be a structure. Homomorphisms from Γk to Γ are called polymorphisms of Γ. When
R is a relation over the set D, we say that f : Dk → D preserves R if f is a polymorphism
of (D;R), and that f violates R otherwise. The set of all polymorphisms of a relational
structure Γ, denoted by Pol(Γ), forms an algebraic object called a clone. A clone on some
fixed domain D is a set of operations on D containing all projections and closed under
composition. A clone C is locally closed iff for all natural numbers n, for all n-ary operations
g on D, if for all finite B ⊆ Dn there exists an n-ary f ∈ C which agrees with g on B, then
g ∈ C . A set of operations F locally generates an operation f if f is in the smallest locally
closed clone containing F , denoted by 〈F 〉.
I Proposition 2.2 (see e.g. Propositions 5.1.1 and 5.2.1 in [4]). Let F be a set of operations
on some domain D. Then the following are equivalent: (i) F is the polymorphism clone of a
relational structure; and (ii) F is a locally closed clone. Moreover, F locally generates g if
and only if g preserves all relations preserved by F .

Primitive positive formulas over a signature τ are first-order formulas built exclusively
from conjunction, existential quantifiers, equality and relation symbols from τ . The first
part of the following theorem is from [7], the second part is a straightforward consequence of
Theorem 5.2.3 and Lemma 5.3.5 in [4].

I Theorem 2.3. A relation R has a primitive positive definition in an ω-categorical structure
Γ if and only if R is preserved by all polymorphisms of Γ. An orbital O of Aut(Γ) has a
primitive positive definition in Γ if and only if O is preserved by all endomorphisms of Γ.

An algebra A whose set of operations equals Pol(Γ) is called a polymorphism algebra of Γ;
note that polymorphism algebras are not unique, since we can freely rename the operations
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in A and still obtain a polymorphism algebra; however, since such a renaming is in our
context always irrelevant, we also call A the polymorphism algebra of Γ, and denote it by
Alg(Γ), as if it were unique.

A congruence of an algebra A with domain A is an equivalence relation on A that is
preserved by all operations in A. Let A,B be algebras with the same signature τ . If there is
a surjective homomorphism h from A to B, then B is called a homomorphic image of A. The
kernel {(a, b) ∈ A2 | h(a) = h(b)} of h is a congruence on A. Any congruence of A gives rise to
a quotient algebra of A, denoted by A/θ, whose domain A/θ consists of the equivalence classes
of θ, and which has the same signature as A so that fA/θ(a1/θ, . . . , an/θ) = fA(a1, . . . , an)/θ,
for every f ∈ τ and all a1, . . . , an ∈ A; here, ai/θ is the equivalence class of θ containing ai.

A class V of algebras with the same signature is called a pseudovariety if V contains all
homomorphic images, subalgebras, and finite direct products of algebras in V. The smallest
pseudovariety containing A is called the pseudovariety generated by A, and denoted by
V(A). The relevance of pseudovarieties in constraint satisfaction comes from the following
fact, which is a consequence of Theorems 5.5.6 and 5.5.15 in [4].
I Proposition 2.4. Let Γ and ∆ be ω-categorical structures. If there exists an algebra A in
V(Alg(Γ)) with the same domain as ∆ and whose operations are polymorphisms of ∆, then
there is for every finite reduct ∆′ of ∆ a finite reduct Γ′ of Γ such that CSP(∆′) reduces to
CSP(Γ′) in polynomial time.

The following lemma is a consequence that will be used several times.

I Lemma 2.5. Let Γ be an ω-categorical structure such that V(Alg(Γ)) contains a two-
element algebra all of whose operations are projections. Then Γ has a finite reduct Γ′ such
that CSP(Γ′) is NP-hard.

Proof . Suppose V(Alg(Γ)) contains an algebra A with domain {0, 1} all of whose operations
are projections. The operations in A preserve the relation R = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
The problem CSP(({0, 1};R)) is known under the name positive 1-IN-3-3SAT, and NP-
hard [16]. Now the statement follows from Proposition 2.4. �

We remark that the two cases in Conjecture 1.2 are always disjoint; this follows along the
lines of the proof of Proposition 5.6.9 and 5.6.10 in [4]; we state it here for easy reference.
I Proposition 2.6. Let Γ be an ω-categorical model-complete core with a polymorphism f

and an automorphism α satisfying ∀x1, . . . , xn. f(x1, . . . , xn) = α(f(x2, . . . , xn, x1)). Then
for every expansion ∆ of Γ by constants, every algebra in the pseudovariety generated by the
polymorphism algebra of ∆ contains an operation that is not a projection.

2.3 . . . from Ramsey Theory
We use Ramsey theory to show that polymorphisms must behave canonically on large parts of
the domain; canonical behavior will be introduced below. A wider introduction to canonical
operations can be found in [8] and [4]; the definitions we present here are tailored towards
applications for equivalence constraint satisfaction problems.

I Definition 2.7. Let Γ and ∆ be structures over the same domain D. A behavior of a
binary operation f : D2 → D on S ⊆ D is a partial function that sends a pair of orbitals
(O1, O2) of Aut(Γ) to an orbital O3 of Aut(∆) such that for all (a1, a2) ∈ S2 ∩ O1 and
(b1, b2) ∈ S2 ∩O2 we have (f(a1, a2), f(b1, b2)) ∈ O3. A behavior is canonical if it is a total
function. An operation f : D2 → D is canonical on S as a function from Γ2 to ∆ if it has
a canonical behavior on S. If a behavior of f on S sends (O1, O2) to O3, then we write
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128 Equivalence Constraint Satisfaction Problems

f(O1, O2) =S O3. Canonical unary operations and their behavior are defined analogously.
An operation f behaves as an operation g on S if they share the same behavior on S. In
these definitions, we might omit to specify S in case that S = D.

Let Γ,∆ be finite τ -structures. We write
(∆

Γ
)
for the set of all substructures of ∆ that are

isomorphic to Γ. When Γ,∆,Θ are τ -structures, then we write Θ→ (∆)Γ
r if for all colorings

χ :
(Θ

Γ
)
→ {1, . . . , r} there exists ∆′ ∈

(Θ
∆

)
such that χ is constant on

(∆′

Γ
)
.

I Definition 2.8. A class of finite relational structures C that is closed under isomorphisms
and substructures is called Ramsey if for all Γ,∆ ∈ C and for every finite k ≥ 1 there exists
a Θ ∈ C such that Θ→ (∆)Γ

k .

A structure Γ is called Ramsey if the class of all finite structures that embed into Γ is
Ramsey. A structure is called ordered if it carries a binary relation that denotes a linear
order on its domain. When Γ is Ramsey and ordered, then the following theorem allows us
to work with canonical polymorphisms of the expansion of Γ by constants.

I Theorem 2.9 ([10]). Let Γ be a homogeneous ordered Ramsey structure with finite relational
signature and domain D. Let c1, . . . , cm ∈ D, and let f : D2 → D be any operation. Then
{f} ∪Aut((Γ, c1, . . . , cm)) locally generates an operation that is canonical as a function from
(Γ, c1, . . . , cm)2 to Γ, and which is identical with f on all tuples containing only values from
c1, . . . , cm.

3 Equivalence Constraint Satisfaction Problems

We consider structures Γ with a first-order definition in (D;Eq), where D is a countably
infinite domain and Eq is an equivalence relation onD with infinitely many infinite equivalence
classes. In the following, such structures Γ are called equivalence constraint languages.

We define E(x, y) := Eq(x, y) ∧ x 6= y and N(x, y) := ¬Eq(x, y). Note that Eq(x, y) has
the primitive positive definition ∃z(E(x, z)∧E(z, y)) over (D;E), and it follows in particular
that every operation that preserves E also preserves Eq.

I Example 3.1. An example of an equivalence constraint language is Γ := (D; {(x, y, z) |
E(x, y) ∨N(y, z)}); it follows from our classification result (Corollary 7.5) that CSP(Γ) is
in P. On the other hand, consider ∆ := (D;R) where R =

{
(x, y, z) | (Eq(x, y) ∨ Eq(y, z)) ∧

(N(x, y) ∨N(y, z))
}
. It follows from Corollary 7.5 that CSP(∆) is NP-complete.

When R1, R2 are binary relations over D and a = (a1, a2) ∈ D2 and b = (b1, b2) ∈ D2,
we write a

(
R1
R2

)
b to denote that R1(a1, b1) and R2(a2, b2).

I Observation 3.2. Let f : D2 → D be a binary function that preserves E, and let a, b, c ∈ D2

such that a
(
E
=

)
b and b

(=
E

)
c. Then E(f(a), f(b)) or E(f(b), f(c)).

Proof . Since f preserves Eq, we have Eq(f(a), f(b)) and Eq(f(b), f(c)). Since a
(
E
E

)
c and

f preserves E, we have E(f(a), f(c)). Thus, f(a) 6= f(b) or f(b) 6= f(c), which proves the
statement. �

It is easy to see that (D;Eq) is a homogeneous structure and therefore ω-categorical.
Every structure with a first-order definition in an ω-categorical structure is again ω-categorical
(see e.g. [18]); thus, all equivalence constraint languages are ω-categorical. All equivalence
constraint languages are preserved by the automorphisms of (D;Eq), and we make the
following convention: a set of operations F generates an operation g if F ∪ Aut((D;Eq))
locally generates g (see Section 2.2). Moreover, we say that f generates g if {f} generates g.
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id const eEE eNN eN=

= = = = = =
N N = E N N
E E = E N =

Figure 1 Canonical unary behaviors.

A linear order < on (D;Eq) is convex if for all a < b < c in D, if (a, c) ∈ Eq, then
(a, b) ∈ Eq. Expansions (D;Eq,<) of (D;Eq) by a convex linear order < are Ramsey
(see [19], Corollary 6.8).

An important subclass of equivalence constraint languages is the class of equality constraint
languages, i.e., structures with a first-order definition over (D; =). We will use the following
theorem, which is due to [5], in a formulation from [4] (a combination of Theorem 6.3.3 and
5.5.18 in [4]). Note that a countably infinite relational structure is isomorphic to an equality
constraint language if and only if it is preserved by all permutations of its domain [5].

I Theorem 3.3 (of [5]). Let Γ be an equality constraint language. Then exactly one of the
following two cases applies.

Γ is a model-complete core and V(Alg(Γ)) contains a two-element algebra whose operations
are projections. In this case, Γ has a finite reduct Γ′ such that CSP(Γ′) is NP-complete.
Γ has a binary polymorphism f and an automorphism α satisfying ∀x, y. f(x, y) =
α(f(y, x)); in fact, f can be chosen to be either constant or injective. Moreover, for all
finite reducts Γ′ of Γ the problem CSP(Γ′) is in P.

4 Endomorphisms

In this section we show that if an equivalence constraint language Γ has an endomorphism
that violates E or N , then Γ also has one out of five canonical endomorphisms described in
the following. This result will be an important first step in our complexity classification, as
we will see in Section 5.

The five mentioned behaviors of canonical unary operations are denoted by id, const,
eEE , eNN , and eN= and presented in Figure 1. For example, we require that eEE(N) = E

and eEE(E) = E. It is clear that for each of those five behaviors there exists a function from
D → D with this behavior. We also use the symbols id, const, eEE , eNN , and eN= to denote
a function with the respective behavior; since any two functions who have the same of these
behaviors generate each other, the precise choice of those functions will not be important.

To prove the main result of this section, Theorem 4.5, we use Ramsey theory via
Theorem 2.9 as follows. When e violates E or N , then there are c1, c2 ∈ D such that E(c1, c2)
and ¬E(e(c1), e(c2)), or N(c1, c2) and ¬N(e(c1), e(c2)). Let < be a convex linear order on D
such that c1 < c2; as mentioned before, (D;Eq, <) is Ramsey. By Theorem 2.9, the operation
e generates an operation f that is canonical as a function from (D;Eq, <, c1, c2) to (D;Eq, <)
(and hence also canonical as a function from (D;Eq, <, c1, c2) to (D;Eq)) and still violates
E or N . We say that f has behavior B between two points x, y ∈ D if f has behavior B on
{x, y}.

I Lemma 4.1. Let f : D → D be canonical as a function from (D;Eq, <, c1, c2) to (D;Eq).
If f behaves as the identity on all infinite orbits, and if it behaves as the identity between the
constants c1, c2 and all other points, then it preserves N .
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Proof . Since f violates N we have that Eq(f(c1), f(c2)). Let c3 be such that E(c1, c3) and
N(c2, c3). Then E(f(c1), f(c3)) and N(f(c2), f(c3)), contradicting transitivity of Eq. �

I Lemma 4.2. Let f : D → D be canonical as a function from (D;Eq, <, c1, c2) to (D;Eq).
If f violates E and behaves as the identity on all infinite orbits, and if it behaves as the
identity between the constants c1, c2 and all other points, then it generates eN=.

Proof . Since f violates E we have E(c1, c2) and either f(c1) = f(c2) or N(c1, c2). We first
show that the second case is impossible. There is c3 such that E(c1, c3) and E(c2, c3). Hence,
E(f(c1), f(c3)), E(f(c2), f(c3)), and N(f(c1), f(c2)), contradicting transitivity of Eq.

So f(c1) = f(c2), and in particular f preserves Eq. We show by local closure that f
generates eN=. Let F be a finite subset of D. Let e be an operation generated by f such
that the cardinality k of the set

{
(x, y) ∈ E ∩ F 2 | e(x) = e(y)

}
is maximal. If k = |E ∩ F 2|,

then e behaves on F as eN= and we are done. Otherwise, suppose there is (x, y) ∈ E ∩ F 2

such that e(x) 6= e(y). Since f and therefore e preserve Eq, we must have E(e(x), e(y)).
Let α be an automorphism of (D;Eq) that maps (e(x), e(y)) to (c1, c2). Then the mapping
e′ := f ◦ α ◦ e maps x and y to the same element, and

{
(x, y) ∈ E ∩ F 2 | e′(x) = e′(y)

}
> k,

contradicting the choice of e. �
We now analyze canonical behavior of injective functions in the case without constants.

I Lemma 4.3. Let f : D → D be canonical as a function from (D;Eq, <, c1, c2) to (D;Eq).
Let S be an infinite orbit of (D;Eq, <, c1, c2) that induces a copy of (D;Eq). If f does not
behave as the identity on S, then it generates eEE, eN=, eNN , or a constant operation.

Proof . Since all orbitals of (D;Eq) are symmetric, the unary operation f is canonical as a
function from (D;Eq, <) to (D;Eq) if and only if it is canonical as a function from (D;Eq) to
(D;Eq). If f does not behave as the identity on S, then f violates E or N on S. If f violates
N , then either f(N) =S (=) or f(N) =S E. In the first case we must have f(E) =S (=),
and f is constant on S. Since S induces a copy of (D;Eq), it follows by local closure that f
generates a constant operation. So suppose that f(N) =S E. If f(E) =S E then f behaves
as eEE on S, and therefore generates eEE . The case that f(E) =S N is impossible, since
for u, v, w with N(u, v), N(u,w), E(v, w) this would imply E(f(u), f(v)), E(f(u), f(w)),
N(f(v), f(w)), contradicting transitivity of Eq.

So suppose that f preserves N but violates E on S. If f(E) =S (=) then f behaves as
eN= on S and therefore generates eN=. Otherwise, f(E) =S N ; in this case f behaves as
eNN on S, and therefore generates eNN . �

Next, we analyze canonical behavior of operations in the presence of two constants.

I Lemma 4.4. Let c1, c2 ∈ D be constants and let f : D → D be canonical as a function
from (D;Eq, <, c1, c2) to (D;Eq). Let O be an infinite orbit of (D;Eq, <, c1, c2). If f does
not behave as the identity on O, or if it does not behave as the identity between one of c1, c2
and a point from O, then it generates eEE, eN=, eNN , or a constant operation.

Proof . Let P be an orbit of (D;Eq, <, c1, c2) that induces a copy of (D;Eq) in (D;Eq). We
assume that f behaves as the identity on P ; otherwise, we are done by Lemma 4.3. Between
any u ∈ D \ P and any v ∈ P , f must behave as the identity. To see this, observe that
necessarily N(u, v). Suppose that u < v; the case that v < u is analogous. Suppose for
contradiction that Eq(f(u), f(v)). Pick a v′ ∈ P \ {v} such that N(u, v′) and N(v, v′). Then
u < v′ because < is convex. Since f is canonical we have Eq(f(u), f(v′)). Since f behaves as
the identity on P , we have N(f(v), f(v′)). This contradicts transitivity of Eq. We conclude
that N(f(u), f(v)) and hence f behaves as the identity between any u ∈ D \ P and v ∈ P .
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First suppose that f does not behave as the identity on O. As we have observed above,
we are done if O induces in (D;Eq) a structure that is isomorphic to (D;Eq). Otherwise,
there exists a c ∈ {c1, c2} such that E(u, c) for all u ∈ O. Since f does not behave as the
identity on O we have either f(E) =O (=) or f(E) =O N . In the first case, by local closure
f generates eN=. In the second case, f generates eNN , again by local closure.

Now suppose that f does not behave as the identity between one of the constants
c ∈ {c1, c2} and a point p from O. We have already shown in the first paragraph that we are
done when O induces in (D;Eq) a structure isomorphic to (D;Eq). Therefore, E(p, c) for all
p ∈ O. If f(E) =O (=) then f generates eN=, and if f(E) =O N then f generates eNN . �

I Theorem 4.5. Any e : D → D violating E or N generates eEE, eNN , eN=, or a constant
operation.

Proof . Since e violates E orN , there are c1, c2 ∈ D such that E(c1, c2) and not E(e(c1), e(c2)),
or N(c1, c2) and Eq(e(c1), e(c2)). By Theorem 2.9, the operation e generates an operation f
that is canonical as a function from (D;Eq, <, c1, c2) to (D;Eq) and still violates E or N .
Then by Lemma 4.1 and by Lemma 4.2, either

f generates eN=, and we are done, or
there is an infinite orbit O such that f does not behave as the identity on O, or
there is an infinite orbit O such that f does not behave as the identity between one of
the constants c ∈ {c1, c2} and a point from O.

In the last two cases f generates eEE , eNN , eN=, or a constant operation by Lemma 4.4. �

5 Hardness

This section has two parts: we first use the results from the previous section to show that
we can focus on equivalence constraint languages where E and N are primitive positive
definable. In the second part, we use Theorem 3.3 in two different ways to isolate two groups
of first-order expansions of (D;E,N) that have NP-hard CSPs, and correspond to Item 1
of Conjecture 1.2. This will be complemented in the next sections by the proof that the
remaining first-order expansions of (D;E,N) are preserved by a binary polymorphism f

satisfying Item 2 of Conjecture 1.2, and correspond to polynomial-time tractable equivalence
constraint satisfaction problems.

I Lemma 5.1. Let Γ be first-order definable in (D;Eq), and let ∆ be the model-complete
core of Γ. Then one of the following holds:

the pseudovariety generated by the polymorphism algebra of ∆ contains a two-element
algebra all of whose operations are projections. In this case, there exists a finite reduct Γ′
of Γ such that CSP(Γ′) is NP-complete;
∆ has a polymorphism f and an automorphism α satisfying ∀x, y. f(x, y) = α(f(y, x)).
In this case, for every finite reduct Γ′ of Γ we have that CSP(Γ′) is in P;
both E and N have a primitive positive definition in Γ.

Proof . Consider first the case that Γ has an endomorphism f that violates E or N . By
Theorem 4.5 we obtain that f generates an operation e which is from {eEE , eNN , eN=} or a
constant operation. By Theorem 2.2, e is an endomorphism of Γ. If e is constant, then we
are in Case 2 and done. Otherwise, the structure ∆ induced by the image of e in Γ is infinite
and preserved by all permutations, and hence an equality constraint language. Moreover, ∆
is a model-complete core of Γ and the statement follows directly from Theorem 3.3.
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min(E,=) = E N

= = E ?
E E E ?
N ? ? N

min(N,Eq) = E N

= = ? N
E ? E N
N N N N

min(N,E,=) = E N

= = E N
E E E N
N N N N

Figure 2 Important behaviors: min(E,=) (left), min(N,Eq) (middle), and min(N,E,=) (right).

Now suppose that the orbitals E or N of (D;Eq) are preserved by all endomorphisms; in
particular, they are preserved by all automorphisms, and hence form orbitals of Aut(Γ). By
Theorem 2.3, E and N must be primitive positive definable. �

To classify first-order expansions of (D;E) we use Theorem 3.3 in two different ways.
The first way is via the following observation, whose proof we leave to the reader.
I Proposition 5.2. Let Γ be a first-order expansion of (D;E). Then Eq is a congruence of
A := Alg(Γ) and the algebra B := A/Eq contains all permutations of its domain.

Another way how Theorem 3.3 comes into play is as follows; again, the proof is straight-
forward and left to the reader.
I Proposition 5.3. Let Γ be a first-order expansion of (D;E), and let c ∈ D be arbitrary.
Then for any c ∈ D, the set {d ∈ D | E(c, d)} induces a subalgebra B of A := Alg((Γ, c))
that contains all permutations of its domain.

By combining those results we prove that either Γ satisfies Item 1 of Conjecture 1.2, or it
has certain binary polymorphisms. Three important behaviors of binary operations, min(E,=),
min(N,Eq), and min(N,E,=) are depicted in Figure 2, which should be read analogously to
Figure 1. For example, we require that min(N,Eq)(N,E) = min(N,Eq)(E,N) = N . The name
of min(N,E,=) comes from the observation that it equals the minimum operation with respect
to the order N < E < (=). The existence of operations with these behaviors follows from
Proposition 6.1.
I Proposition 5.4. Let Γ be a first-order expansion of (D;E,N), and let c ∈ D be arbitrary.
Then Γ is a model-complete core, and either V(Alg((Γ, c))) contains a two-element algebra
all of whose operations are projections, and Γ has a finite reduct Γ′ such that CSP(Γ′) is
NP-hard, or Γ is preserved by
1. an operation f with the behavior min(E,=) on {d ∈ D | E(c, d)}, and
2. an operation with the behavior min(N,Eq).
Proof . Since Γ contains E and N , every endomorphism of Γ behaves as the identity. Hence,
every endomorphism of Γ is locally generated by Aut(Γ). By Theorem 3.6.11 in [4], the
structure Γ is a model-complete core.

The subalgebra A induced by {d |E(c, d)} in B := Alg((Γ, c)) contains a unary function
for each permutation of its domain (Proposition 5.3). Let ∆ be the structure with the same
domain as A that contains all the relations that are preserved by the operations in A, and let
A′ be the polymorphism algebra of ∆. If V(A′) contains a two-element algebra all of whose
operations are projections, then so does V(A) since every operation of A is also an operation
of A′. In this case, also V(B) contains this two-element algebra, and by Lemma 2.5 there
is a finite reduct Γ′ of Γ such that CSP((Γ′, {c})) is NP-hard. Since Γ is a model-complete
core, Theorem 2.1 shows that CSP(Γ′) is NP-hard.

If V(A′) does not contain a two-element algebra all of whose operations are projections,
then Theorem 3.3 implies that ∆ has either a binary injective or constant polymorphism f .
Since Γ contains the relations E and N , all its endomorphisms are injective, and therefore
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also the unary operations in B, in A, and in A′ are injective. This implies that f is binary
injective. Let τ be the signature of A. Since the operations in A locally generate the
operations in A′ (Proposition 2.2), it follows that for every finite subset S of the domain
of A there exists a g ∈ τ such that gA behaves as f on S; since f is binary injective, gB

therefore has the behavior min(E,=) on S as a function over Γ. By an easy compactness
argument (see Lemma 3.1.8 in [4]), Γ has a polymorphism with the behavior min(E,=) on all
of {d |E(c, d)}, satisfying the condition of Item 1 in the statement.

The proof that Γ also has a polymorphism with behavior min(N,Eq) is similar, based on
the fact that Eq is a congruence of C := Alg(Γ), and that the algebra D := C/Eq contains
all permutations of its domain. Similarly as above we argue that for every finite subset S of
the domain of D there is an operation in D that behaves as min(N,Eq) on the union of the
classes of D = C/Eq that correspond to elements in S (unless V(D) contains a two-element
algebra all of whose operations are projections). As above, a compactness argument gives
the existence of an operation in D that behaves as min(N,Eq) on the entire domain of Γ. �

6 Tractability

In this section we show that equivalence CSPs that have a polymorphism with the behavior
min(N,E,=) can be solved in polynomial time.
I Proposition 6.1. There is a binary function f that is canonical as a function from (D;Eq)2

to (D;Eq) with the behavior min(N,E,=). This function can be chosen such that there is an
automorphism α of (D;Eq) satisfying ∀x, y. f(x, y) = α(f(y, x)).
Proof . Observe that the structure (D;Eq)2 is again an equivalence relation on a countable set
with infinitely many infinite classes, and by ω-categoricity there is an isomorphism i between
(D;Eq)2 and (D;Eq). This isomorphism has the behavior min(N,E,=). Let β : D2 → D2 be
defined by (x, y) 7→ (y, x). Then β is an automorphism of (D;Eq)2, and α := i ◦ β ◦ i−1 is an
automorphism of (D;Eq) such that i(x, y) = α(i(y, x)). �

The operation f whose existence is shown in Proposition 6.1 will also be denoted by
min(N,E,=), i.e., we use the same symbol for this operation and its behavior.
I Proposition 6.2. Let ∆ be a structure that is first-order definable in (D;Eq), with finite re-
lational signature, and polymorphism min(N,E,=). Then CSP(∆) can be solved in polynomial
time.
Proof . We use Proposition 2.4, and Theorem 3.3. An operation f is called essentially
injective if it can be obtained from an injective operation by adding dummy variables (that
is, the function value of f does not depend on those additional arguments of f). Let A be
an algebra with domain N whose operations are precisely the essentially injective operation
over N. It is easy to verify that the operations of A form a locally closed clone, and hence,
by Proposition 2.2, there exists a relational structure Γ with polymorphism algebra A. We
will show there is an algebra B with domain D in the pseudovariety generated by A such
that all operations of B preserve ∆. It then follows from Proposition 2.4 that there exists
a finite signature reduct Γ′ of Γ such that CSP(∆) reduces to CSP(Γ′). Polynomial-time
tractability of CSP(Γ′) follows from Theorem 3.3.

The relation C = {((u1, u2), (v1, v2)) ∈ N | u1 = v1} is a congruence of A2, with
infinitely many infinite congruence classes. Let b be any bijection between the congruence
classes of C and the domain D of ∆, and let B be the homomorphic image of A2 with
respect to the map b. We claim that every operation fB of B preserves ∆. If there are
i1, . . . , ik ∈ {1, . . . , n} such that fA : Nn → N satisfies f(x1, . . . , xn) = g(xi1 , . . . , xik ) for
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all x1, . . . , xn ∈ N, then it clearly suffices to verify the claim for g instead of f . Since fA

is essentially injective, we can therefore assume that fA is injective. Then fB(x1, . . . , xn)
behaves as min(N,E,=)(x1,min(N,E,=)(x2, . . . ,min(N,E,=)(xn−1, xn) . . . )): indeed,

Eq(fB(x1, . . . , xn), fB(y1, . . . , yn))⇔ fA(x1
1, . . . , x

n
1 ) = fA(y1

1 , . . . , y
n
1 )

⇔ xi1 = yi1 for all i ≤ n
⇔ Eq(xi, yi) for all i ≤ n .

Since ∆ is preserved by min(N,E,=), it is also preserved by fB. �

7 Generating min(N,E,=)

In this section we show that when f has the behavior min(E,=) on {d ∈ D | E(c, d)} for
some c ∈ D and g has the behavior min(N,Eq), then {f, g} generates min(N,E,=). Some of the
proofs in this section have been omitted and can be found in the full version of the paper.

I Lemma 7.1. Let Γ be a first-order expansion of (D;E), and c ∈ D. Suppose that Γ has
a polymorphism that behaves as min(E,=) on {d ∈ D |E(c, d)}. Then Γ is also preserved by
min(E,=).

In the proof of Lemma 7.1 we use the following lemma, which is inspired by similar
statements in [9]. We remark that Item 2 in the statement below is formally unrelated to
the notion of independence as studied in [15], but similar in spirit.

I Lemma 7.2. Let Γ be a first-order expansion of (D;E). Then the following are equivalent.
1. Γ has a polymorphism with the behavior min(E,=).
2. For every primitive positive formula φ(x1, . . . , xn) and y1, . . . , y4 ∈ {x1, . . . , xn}, when

φ(x1, . . . , xn) ∧ E(y1, y2) ∧ y3 = y4 and
φ(x1, . . . , xn) ∧ y1 = y2 ∧ E(y3, y4)

are satisfiable over Γ, then also φ(x1, . . . , xn) ∧E(y1, y2) ∧E(y3, y4) is satisfiable over Γ.
3. For every finite subset S of D, Γ has a polymorphism with the behavior min(E,=) on S.

I Lemma 7.3. Let f be an operation with the behavior min(E,=). Then f generates an
operation with the behavior min(E,=) that is canonical as a function from (D;Eq)2 to (D;Eq).

I Lemma 7.4. Let f and g be operations with the behavior min(N,Eq) and min(E,=), respec-
tively. Then {f, g} generates min(N,E,=).

Proof . By Lemma 7.3, we can assume that f is canonical as a function from (D;Eq)2

to (D;Eq). We will show that h(x, y) := g(f(x, y), f(y, x)) has the behavior min(N,E,=).
Consider arbitrary points a = (a1, a2), b = (b1, b2) in D2. Because f and g preserve E and
N , h also does, and hence h(E,E) = E and h(N,N) = N . If a

(
E
=

)
b or a

(=
E

)
b, then because

f has the behavior min(E,=), we have both E(f(a1, a2), f(b1, b2)) and E(f(a2, a1), f(b2, b1)).
Since g preserves E, we obtain that E(h(a), h(b)) and we are done in this case.

We now turn to the case where a
(
N
Q

)
b andQ ∈ {E,=}, and show thatN(f(a1, a2), f(b1, b2))

or N(f(a2, a1), f(b2, b1)). Assume the contrary. Let α be an automorphism of (D;Eq) such
that α(a2) = a1. Then (a1, a1)

(
N
Q

)
(b1, α(b2)) and (a1, a1)

(
Q
N

)
(α(b2), b1). By transitivity of

Eq, we have that (b1, α(b2))
(
N
N

)
(α(b2), b1). Since f is canonical as a function from (D;Eq)2 to

(D;Eq), we have that Eq(f(a1, a1), f(b1, α(b2))) and Eq(f(a1, a1), f(α(b2), b1)). Therefore,
Eq(f(b1, α(b2)), f(α(b2), b1)) by transitivity of Eq. This contradicts the fact that f preserves
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N . Thus we have proved that N(f(a1, a2), f(b1, b2)) or N(f(a2, a1), f(b2, b1)). Further,
because g has the behavior min(N,Eq), we obtain that N(h(a), h(b)).

The case where a
(
Q
N

)
b for Q ∈ {E,=} is symmetric. We have considered all the cases,

and conclude that indeed h has the behavior min(N,E,=). �
By combining Proposition 5.4, Proposition 6.2, and Lemma 7.4, we obtain the following.

I Corollary 7.5. Let Γ be a first-order expansion of (D;E,N). Then Γ is preserved by
min(N,E,=), and for every finite reduct Γ′ of Γ the problem CSP(Γ′) is in P, or Γ has a finite
reduct Γ′ such that CSP(Γ′) is NP-hard.

8 Conclusions and Future Work

We have shown that Conjecture 1.2 holds for all structures with a first-order definition over
an equivalence relation with infinitely many infinite classes; moreover, the universal-algebraic
dichotomy from Conjecture 1.2 corresponds in this case precisely to a complexity dichotomy
of the corresponding constraint satisfaction problems. We obtain the following.

I Theorem 8.1. For equivalence constraint languages Γ exactly one of the following holds:
1. There is an expansion ∆′ of the model-complete core ∆ of Γ by a constant such that

Alg(∆′) contains a two-element algebra whose operations are projections. In this case,
for some finite reduct Γ′ of Γ we have that CSP(Γ′) is NP-complete.

2. The model-complete core ∆ of Γ has a polymorphism f and an automorphism α satisfying
∀x, y. f(x, y) = α(f(y, x)). In this case, CSP(Γ′) is in P for every finite reduct Γ′ of Γ.

Proof . By Proposition 2.6, the two cases are mutually exclusive. By Lemma 5.1, we have
that either Case 1 or Case 2 holds, or E and N are primitively positively definable over Γ. By
Proposition 5.4 and Lemma 7.1 every first-order expansion Γ of (D;E,N) is a model-complete
core, and either satisfies Case 1 or is preserved by an operation f with the behavior min(E,=)
and an operation g with the behavior min(N,Eq). Further, Lemma 7.4 implies that Γ, and in
consequence every finite reduct Γ′ of Γ, is preserved by min(N,E,=). The tractability of each
such Γ′ follows from Proposition 6.2. By Proposition 6.1 there exists an automorphism α of
(D;Eq) satisfying ∀x, y. min(N,E,=)(x, y) = α(min(N,E,=)(y, x)); hence, we are in Case 2. �

Theorem 8.1 classifies also a non-trivial class of structures that are first-order definable
over Allen’s Interval Algebra (see Section 1.1): recall that the structure (I;RE), where
RE := {((x, y), (u, v)) | x = u}, is isomorphic to (D;Eq). In fact, we believe that the
techniques of this paper can be applied to eventually classify the complexity of the CSP
for all structures Γ with a first-order definition over Allen’s Interval Algebra. A next step
towards this goal might be to classify all such structures Γ that contain the relation RE . In
this case RE is a congruence of Alg(Γ). Note that the quotient of Alg(Γ) by RE , and all
subalgebras corresponding to equivalence classes of RE , contain all automorphisms of (Q;<).
Hence, the difference to the scenario of the present paper is that one might then have to
use the results from [6] about first-order expansions of (Q;<) instead of the dichotomy for
equality constraint languages.
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