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Abstract
Polynomial interpretations and their generalizations like quasi-interpretations have been used in
the setting of first-order functional languages to design criteria ensuring statically some complex-
ity bounds on programs [8]. This fits in the area of implicit computational complexity, which
aims at giving machine-free characterizations of complexity classes. In this paper, we extend
this approach to the higher-order setting. For that we consider the notion of simply-typed term
rewriting systems [30], we define higher-order polynomial interpretations for them and give a
criterion ensuring that a program can be executed in polynomial time. In order to obtain a
criterion flexible enough to validate interesting programs using higher-order primitives, we intro-
duce a notion of polynomial quasi-interpretations, coupled with a simple termination criterion
based on linear types and path-like orders.
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1 Introduction

The problem of statically analyzing the performance of programs can be attacked in many
different ways. One of them consists in verifying complexity properties early in the devel-
opment cycle, when programs are still expressed in high-level languages, like functional or
object oriented idioms. And in this scenario, results from an area known as implicit compu-
tational complexity (ICC in the following) can be useful: they consist in characterizations
of complexity classes in terms of paradigmatic programming languages (recursion schemes
[25, 6], λ-calculus [26], term rewriting systems [8], etc.) or logical systems (proof-nets, nat-
ural deduction, etc.), from which static analysis methodologies can be distilled. Examples
are type systems, path-orderings and variations on the interpretation method. The chal-
lenge here is defining ICC systems which are not only simple, but also intensionally powerful:
many natural programs among those with bounded complexity should be recognized as such
by the ICC system, i.e., should actually be programs of the system.

One of the most fertile direction in ICC is indeed the one in which programs are term
rewriting systems (TRS in the following) [8, 9], whose complexity can be kept under control
by way of variations of the powerful techniques developed to check termination of TRSs,
namely path orderings [16], dependency pairs [28] and the interpretation method [24]. Many
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different complexity classes have been characterized this way, from polynomial time to poly-
nomial space, to exponential time to logarithmic space. And remarkably, many of the intro-
duced characterizations are intensionally very powerful, in particular when the interpretation
method is relaxed and coupled with recursive path orderings, like in quasi-interpretations
[9].

The cited results indeed represent the state-of-the art in resource analysis for first-order
functional programs, i.e. when functions are not first-class citizens. If the class of pro-
grams of interest includes higher-order functional programs, the techniques above can only
be applied if programs are either defunctionalized or somehow put in first-order form, for
example by applying a translation scheme due to the second author and Simone Martini [15].
However, it seems difficult to ensure in that case that the target first-order programs sat-
isfy termination criteria such as those used in [9]. The article [10] proposed to get around
this problem by considering a notion of hierarchical union of TRSs, and showed that this
technique allows to handle some examples of higher-order programs. This approach is inter-
esting but it is not easy to assess its generality, besides particular examples. In the present
work we want to switch to a higher-order interpretations setting, in order to provide a more
abstract account of such situations.

We thus propose to generalize TRS techniques to systems of higher-order rewriting, which
come in many different flavours [21, 23, 30]. The majority of the introduced higher-order
generalizations of rewriting are quite powerful but also complex from a computational point
of view, being conceived to model not only programs but also proofs involving quantifiers.
As an example, even computing the reduct of a term according to a reduction rule can in
some cases be undecidable. Higher-order generalizations of TRS techniques [22, 29], in turn,
reflect the complexity of the languages on top of which they are defined. Summing up,
devising ICC systems this way seems quite hard.

In this paper, we consider one of the simplest higher-order generalizations of TRSs,
namely Yamada’s simply-typed term rewriting systems [30] (STTRSs in the following), we
define a system of higher-order polynomial interpretations [29] for them and prove that,
following [8], this allows to exactly characterize, among others, the class of polynomial
time computable functions. We show, however, that this way the class of (higher-order)
programs which can be given a polynomial interpretation does not include interesting and
natural examples, like foldr, and that this problem can be overcome by switching to an-
other technique, designed along the lines of quasi-interpretations [9]. This is the subject of
sections 3 and 4 below.

An extended version of this paper with all proofs is available [3].

2 Simply-Typed Term Rewriting Systems

2.1 Definitions and Notations

We recall here the definition of a STTRS, following [30, 2]. We will actually consider a
subclass of STTRSs, basically the one of those STTRSs whose rules’ left hand side consists
in a function symbol applied to a sequence of patterns. For first-order rewrite systems this
corresponds to the notion of constructor rewrite system.

We consider a denumerable set of base types, which we call data-types, that we denote
D,E, . . .. Types are defined by the following grammar:

A,B ::= D | A1 × · · · ×An → A.
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64 Higher-Order Interpretations and Program Complexity

A functional type is a type which contains an occurrence of→. Some examples of base types
are the type Wn of n-ary words and the type NAT of tally integers.

We denote by F the set of function symbols (or just functions), C the set of constructors
and X the set of variables. Constructors c ∈ C have a type of the form D1× · · · ×Dn → D,
for n ≥ 0. For instance Wn has constructors empty of type Wn and c1, . . . , cn of type
Wn → Wn. Functions f ∈ F , on the other hand, can have any functional type. Variables
x ∈ X can have any type. Terms are typed and defined by the following grammar:

t, ti := xA | cA | fA | (tA1×···×An→A tA1
1 . . . tAn

n )A

where xA ∈ X , cA ∈ C, fA ∈ F . We denote by T the set of all terms. Observe how
application is primitive and is in general treated differently from other function symbols.
This is what makes STTRSs different from ordinary TRSs. FV (t) is the set of variables
occurring in t. t is closed iff FV (t) = ∅.

To simplify the writing of terms we will often elide their type. We will also write (t s)
for (t s1 . . . sn). Therefore any term t is of the form (. . . ((α s1) s2) . . . sk) where k ≥
0 and α ∈ X ∪ C ∪ F . We will also use the following convention: any term t of the
form (. . . ((s s1) s2) . . . sk) will be written ((s s1 . . . sk)) or ((s s11 . . . s1n1 . . . sk1 . . . sknk

)).
Observe however that, e.g., if t has type A1 × A2 → (B1 × B2 → B), ti has type Ai for
i = 1, 2, si has type Bi for i = 1, 2, then both (t t1 t2) and ((t t1 t2) s1 s2) are well-typed
(with type B1×B2 → B and B, respectively), but (t t1) and (t t1 t2 s1) are not well-typed.
We define the size |t| of a term t as the number of symbols (elements of F∪C∪X ) it contains.
We denote t{x/s} the substitution of term s for x in t.

A pattern is a term generated by the following grammar:

p, pi := xA | (cD1×...×Dn→D pD1
1 . . . pDn

n ).

P is the set of all patterns. Observe that patterns of functional type are necessarily variables.
We consider rewriting rules in the form t→ s such that:
1. t and s are terms of the same type A, FV (s) ⊆ FV (t), and any variable appears at most

once in t;
2. t must have the form ((f p1 . . . pk)) where each pi for i ∈ 1, . . . , k consists of patterns only.

The rule is said to be a rule defining f, while the total number of patterns in p1, . . . , pk
is the arity of the rule.

Now, a simply-typed term rewriting system (STTRS in the following) is a set R of non-
overlapping rewriting rules such that for every function symbol f, every rule for f has the
same arity, which is said to be the arity of f. A program P = (f, R) is given by a STTRS R
and a chosen function symbol f ∈ F .

In the next section, a notion of reduction will be given which crucially relies on the
concept of a value. More specifically, only values will be passed as arguments to functions.
Formally, we say that a term is a value if either:
1. it has a type D and is in the form (c v1 . . . vn), where v1, . . . , vn are themselves values;
2. or it has functional type A and is of the form ((f v1 . . . vn)), where the terms in v1, . . . vn

are themselves values and n is strictly smaller than the arity of f.
Condition 2 is reminiscent of the λ-calculus, where an abstraction is a value. We denote
values as v, u and the set of all values as V.

2.2 STTRSs: Dynamics
The evaluation of terms will be formalized by a rewriting relation. Before that we need to
introduce notions of substitution and unification.
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A substitution σ is a mapping from variables to values with a finite domain, and such
that σ(xA) has type A. A substitution σ is extended in the natural way to a function from
T to itself, that we shall also write σ. The image of a term t under the substitution σ is
denoted tσ. Contexts are defined as terms but with the proviso that they contain exactly
one occurrence of a special constant •A (hole) having type A. They are denoted as C, D
. . . If C is a context with hole •A , and t is a term of type A, then C{t} is the term obtained
from C by replacing the occurrence of •A by t. Consider a STTRS R. We say that s reduces
to t in call-by-value, denoted as s→R t, if there exists a rule l→ r of R, a context C and a
substitution σ such that lσ is a closed term, s = C{lσ} and t = C{rσ}. When there is no
ambiguity on R, we simply write → instead of →R.

2.3 Typed λ-calculi as STTRSs
Please notice that one of the advantages of STTRSs over similar formalisms (like [23]) is
precisely the simplicity of the underlying unification mechanism, which does not involve any
notion of binding and is thus computationally simpler than higher-order matching. There
is a price to pay in terms of expressivity, obviously. The choice of the STTRS framework
as higher-order calculus is not too restrictive, however: one can show that typed λ-calculi
equipped with weak call-by-value reduction can be seen as STTRSs. This is achieved using
ideas developed for encodings of the λ-calculus into first-order term rewrite systems [15].
In particular, abstractions become function symbols, in the spirit of λ-lifting. More about
these embeddings can be found in [3], where encodings of PCF and Gödel’s T are described
in detail.

3 Higher-Order Polynomial Interpretations

We want to demonstrate how first-order rewriting-based techniques for ICC can be adapted
to the higher-order setting. Our goal is to devise criteria ensuring complexity bounds on
programs of first-order type possibly containing subprograms of higher-order types. A typical
application will be to find out under which conditions a higher-order functional program such
as e.g. map, iteration or foldr, fed with a (first-order) polynomial time program produces
a polynomial time program.

As a first illustrative step we consider the approach based on polynomial interpretations
from [8], which offers the advantage of simplicity. We thus build a theory of higher-order
polynomial interpretations for STTRSs. It starts from a particular concrete instantiation of
the methodology proposed in [30] for proving termination by interpretation, on which we
prove additional properties in order to obtain polynomial time complexity bounds.

Higher-order polynomials (HOPs) take the form of terms in a typed λ-calculus whose
only base type is that of natural numbers. To each of those terms can be assigned a strictly
monotonic function in a category FSPOS with products and functions. So, the whole process
can be summarized by the following diagram:

STTRSs
[·] // HOPs

J·K // FSPOS

3.1 Higher-Order Polynomials
Let us consider types built from a base type N:

A,B ::= N | A→ A.

CSL’12
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The expression An → B stands for the type A→ . . .→ A︸ ︷︷ ︸
n times

→ B. Let CP be the following set

of constants: CP = {+ : N2 → N,× : N2 → N} ∪ {n : N | n ∈ N?}. Observe that in CP
we have constants of type N only for strictly positive integers. We consider the following
grammar of Church-typed terms:

M := xA | cA | (MA→BNA)B | (λxA.MB)A→B ,

where cA ∈ CP and in (λxA.MB) we require that x occurs free in M . A higher-order
polynomial (HOP) is a term of this grammar which is in β-normal form. We use an infix
notation for + and ×. We assume given the usual set-theoretic interpretation of types and
terms, denoted as JAK and JMK: if M has type A and FV (M) = {xA1

1 , . . . , xAn
n }, then JMK

is a map from JA1K × . . . × JAnK to JAK. We denote by ≡ the equivalence relation which
identifies terms which denote the same function, e.g. we have: λx.(2 × ((3 + x) + y)) ≡
λx.(6 + (2×x+ 2× y)). Noticeably, even if HOPs can be built using higher-order functions,
the first order fragment only contains polynomials:

I Lemma 3.1. If M is a HOP of type Nn → N and such that FV (M) = {y1 : N, . . . , yk :
N}, then the function JMK is bounded by a polynomial function.

3.2 Semantic Interpretation
Now, we consider a subcategory FSPOS of the category SPOS of strict partial orders as
objects and strictly monotonic total functions as morphisms. Objects of FSPOS are freely
generated as follows:
N is the domain of strictly positive integers, equipped with the natural strict order ≺N ,
if σ, τ are objects, then σ × τ is obtained by the product ordering,
σ → τ is the set of strictly monotonic total functions from σ to τ , equipped with the
following strict order: f ≺σ→τ g if for any a of σ we have f(a) ≺τ g(a).

Actually we will also need to compare the semantics of terms which do not have the same
free variables. For that we define: if f ∈ σ1 × . . . × σn → τ , g ∈ σ1 × . . . × σm → τ and
n ≤ m, then: f ≺ g if ∀a1 ∈ σ1, . . .∀am ∈ σm, f(a1, . . . , an) ≺τ g(a1, . . . , am).

FSPOS is a subcategory of SET with all the necessary structure to interpret types and
terms. JAK≺ denotes the semantics of A as an object of FSPOS: we choose to set JNK≺ = N ,
while JA1 × . . .× An → AK≺ is JA1K≺ × . . .× JAnK≺ → JAK≺. Let M be a HOP of type A
with free variables xA1

1 , . . . , xAn
n . Then for every e ∈ JA1 × . . .× AnK≺, there is a naturally

defined f ∈ JAK≺. Moreover, this correspondence is strictly monotone and thus defines an
element of JA1 × . . .×An → AK≺ which we denote as JMK≺.

3.3 Assignments and Polynomial Interpretations
We consider X , C and F as in Sect. 2. To each variable xA we associate a variable xA where
A is obtained from A by replacing each occurrence of base type by the base type N and by
curryfication. We will sometimes write x (resp. A) instead of x (resp. A) when it is clear
from the context.

An assignment [ · ] is a map from C ∪ F to HOPs such that if f ∈ C ∪ F has type A, [f ]
is a closed HOP of type A. Now, for t ∈ T of type A, we define an HOP [t] of type A by
induction on t:

if t = x ∈ X , then [t] is x;
if t ∈ C ∪ F , [t] is already defined;
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otherwise, if t = (t0 t1 . . . tn) then [t] ≡ (. . . ([t0][t1]) . . . [tn]).
Observe that in practice, computing [t] will in general require to do some β-reduction steps.

Now, we say that an assignment [ · ] is a higher polynomial interpretation or simply a
polynomial interpretation for a STTRS R iff for every l→ r ∈ R, we have that JrK≺ ≺ JlK≺.
Note that in the particular case where the program only contains first-order functions, this
notion of polynomial interpretation coincides with the classical one for first-order TRSs. In
the following, we assume that [ · ] is a polynomial interpretation for R. A key property is
the following, which tells us that the interpretation of terms strictly decreases along any
reduction step:

I Lemma 3.2. If s→ t, then JtK≺ ≺ JsK≺.

As a consequence, the interpretation of terms (of base type) is itself a bound on the length
of reduction sequences:

I Proposition 3.3. Let t be a closed term of base type D. Then [t] has type N and any
reduction sequence of t has length bounded by JtK≺.

3.4 A Complexity Criterion
Proving a STTRS to have a polynomial interpretation is not enough to guarantee its time
complexity to be polynomially bounded. To ensure that, we need to impose some constraints
on the way constructors are interpreted.

We say that the assignment [ · ] is additive if any constructor c of type D1 × · · · ×Dn →
D, where n ≥ 0, is interpreted by a HOP Mc whose semantic interpretation JMcK≺ is a
polynomial function of the form: p(y1, . . . , yn) =

∑n
i=1 yi + γc, with γc ≥ 1. Additivity

ensures that the interpretation of first-order values is proportional to their size:

I Lemma 3.4. Let [ · ] be an additive assignment. Then there exists γ ≥ 1 such that for any
value v of type D, we have JvK≺ ≤ γ · |v|.

A function f : ({0, 1}∗)m → {0, 1} is said to be representable by a STTRS R if there is a
function symbol f of type (W2)n →W2 in R which computes f in the obvious way. We can
now state the main result about polynomial interpretations:

I Theorem 3.5 (Polynomial Bound). Let R be a STTRS with an additive polynomial in-
terpretation [ · ]. Consider a function symbol g of type (W2)n → W2. Then, there ex-
ists a polynomial p : Nn → N such that, for any w1, . . . , wn ∈ {0, 1}?, any reduction of
(g w1 . . . wn) has length bounded by p(|w1|, . . . , |wn|). This holds more generally for g of
type D1 × · · · ×Dn → D.

A key property we use in the proof of Theorem 3.5 is that function symbols of first-order
type are interpreted by functions which are bounded by a polynomial. This is a consequence
of Lemma 3.1 and is the main reason why we have chosen to define the interpretation of
terms via HOPs.

I Corollary 3.6. The functions on binary words representable by STTRSs admitting an
additive polynomial interpretation are exactly the polytime functions.

The fact that all polynomial time functions can be represented follows from [8], essentially
because our setting subsumes that of this paper.

The results we have just described are quite robust: one is allowed to extend CP with
new combinators, provided their set-theoretic semantics are strictly monotone functions for
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68 Higher-Order Interpretations and Program Complexity

which Lemma 3.1 continues to hold. However, the class of polynomial time STTRSs which
can be proved such by way of higher-order polynomial interpretations is quite restricted, as
we are going to argue.

3.5 Examples
Consider the STTRS defined by the following rules:

((map f) nilD)→ nilE ;
((map f) (consD x xs))→ (consE (f x) ((map f) xs));

with the following types:

f : D → E; map : (D → E)→ L(D)→ L(E);
nilD : L(D); consD : D × L(D)→ L(D);
nilE : L(E); consE : E × L(E)→ L(E).

Here D,E,L(D), L(E) are base types. For simplicity we use just one cons and one nil
notation for both types D and E. The interpretation below was given in [30] for proving
termination, but here we show that it also gives a polynomial time bound. Now, we choose
the following assignment of HOPs:

[nil] = 2 : N;
[cons] = λn.λm.(n+m+ 1) : N→ N→ N;

[map] = λφ.λn.n× (φ n) : (N→ N)→ N→ N.

One can check that the condition JrK≺ ≺ JlK≺ holds for both rules above. We thus have
an additive polynomial interpretation for map, therefore Corollary 3.6 applies and we can
conclude that for any f also satisfying the criterion, (map f) computes a polynomial time
function.

Now, one might want to apply the same method to an iterator iter, of type (D →
D) × D → NAT → D, which when fed with arguments f , d, n iterates f exactly n times
starting from d. However there is no additive polynomial interpretation for this program.
Actually, this holds for very good reasons: iter can produce an exponential-size function
when fed with a fast-growing polynomial time function, e.g. double : NAT → NAT .

One way to overcome this issue could be to show that iter does admit a valid polynomial
interpretation, provided its domain is restricted to some particular functions, admitting a
small polynomial interpretation, of the form λn.(n + c), for some constant c. This could
be enforced by considering a refined type systems for HOPs. But the trouble is that there
are very few programs which admit a polynomial interpretation of this form! Intuitively
the problem is that polynomial interpretations need to bound simultaneously the execution
time and the size of the intermediate values. In the sequel we will see how to overcome this
issue.

4 Beyond Interpretations: Quasi-Interpretations

The previous section has illustrated our approach. However we have seen that the intensional
expressivity of higher-order polynomial interpretations is too limited. In the first-order
setting this problem has been overcome by decomposing into two distinct conditions the role
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fA ∈ NF
Γ | ∆ ` f : A

cA ∈ C
Γ | ∆ ` c : A Γ | x : A,∆ ` x : A x : D,Γ | ∆ ` x : D

fA1,...,An→B ∈ RF ,with arity n
Γ | ∅ ` si : Ai

Γ | ∆ ` ((f s1 . . . sn)) : B

Γ | ∆ ` t : A1 × . . .×An → B

Γ | ∆i ` si : Ai
Γ | ∆,∆1, . . . ,∆n ` (t s1 . . . sn) : B

Figure 1 A Linear Type System for STTRS terms.

played by polynomial interpretations [27, 9]: (i) a termination condition, (ii) a condition
enforcing a bound on the size of values occurring during the computation. In [9], this has
been implemented by using: for (i) some specific recursive path orderings, and for (ii) a
notion of quasi-interpretation. We will examine how this methodology can be extended to
the higher-order setting.

The first step will take the form of a termination criterion defined by a linear type
system for STTRSs together with a path-like order, to be described in Section 4.1 below.
The second step consists in shifting from a semantic world of strictly monotonic functions
to one of monotonic functions. This corresponds to a picture like the following, and is the
subject of sections 4.2 and 4.3.

STTRSs
[·] // HOMPs

J·K // FPOS

4.1 The Termination Criterion
The termination criterion has two ingredients: a typing ingredient and a syntactic ingredient,
expressed using an order @ on the function symbols. Is it restrictive for expressivity? The
syntactic ingredient is fairly expressive, since it allows to validate all programs coming from
System T (see [3] for more details). As to the full termination criterion, including the typing
ingredient, it is general enough to embed Hofmann’s SLR [19] and LFPL [20], which are
distinct restrictions of System T capturing polytime functions.

Formally, introducing the typing ingredient requires splitting the class F into two disjoint
classes RF and NF . The intended meaning is that functions in NF will not be defined in
a recursive way, while functions in RF can. We further assume given a strict order @ on
F which is well-founded. If t is a term, t @ f means that for any g occurring in t we have
g @ f. The rules of a linear type system for STTRS terms are in Figure 1. In a judgement
Γ | ∆ ` t : A, the sub-context ∆ is meant to contain linear variables while Γ is meant to
contain non-linear variables.

A STTRS satisfies the termination criterion if every rule ((f p1 . . . pk)) → s satis-
fies:
1. either f ∈ RF , there are a term r and sequences of patterns q1, . . . , qk such that s =
r{x/((f q1 . . . qk))}, we have Γ | x : B,∆ ` r : B, r @ f, for any i, j, qi,j is subterm of
pi,j and there exist i0, j0 s.t. qi0,j0 6= pi0,j0 ;

2. or we have Γ | ∆ ` s : B and s @ f.
Observe that because of the typability condition in 1., this termination criterion implies that
there is at most one recursive call in the right-hand-side s of a rule.

Given a term t, its definitional depth is the maximum, over any function symbol f ap-
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T Sv(X) =1, if v is a first order value,

T S((f t1...tn))(X) =1 +

 ∑
tj ∈ FO

j ≤ arity(f)

T Stj (X)

+

 ∑
tj ∈ HO

j ≤ arity(f)

n ·X · T Stj (X)


+

( ∑
j≥arity(f)+1

T Stj (X)

)
+

( ∑
s∈R(f)

n ·X · T Ss(X)

)
, if f ∈ RF ;

T S((f t1...tn))(X) =1 +

( ∑
1≤j≤n

T Stj (X)

)
+

( ∑
s∈R(f)

T Ss(X)

)
, if f ∈ NF ;

T S((c t1...tn))(X) =1 +

( ∑
1≤j≤n

T Stj (X)

)
;

T S((x t1...tn))(X) =1 +

( ∑
1≤j≤n

T Stj (X)

)
.

Figure 2 The Definition of T S(·)(X).

pearing in t, of the length of the longest descending @-chain starting from f. The definitional
depth of t is denoted as ∂(t). By a standard reducibility argument, one can prove that every
term of a STTRS satisfying the termination criterion is strongly normalizing (see again [3]
for the details).

In the rest of this section, we show that all that matters for the time complexity of
STTRSs satisfying the termination criterion is the size of first-order values that can pos-
sibly appear along the reduction of terms. In other words, we are going to prove that if
the latter is bounded, then the complexity of the starting term is known, modulo a fixed
polynomial. Showing this lemma, which will be crucial in the following, requires introducing
many auxiliary definitions and results.

Given a term t and a natural number n ∈ N, n is said to be a bound of first order values
for t if for every reduct s of t, if s contains a first-order value v, then |v| ≤ n. Suppose a
function symbol f takes n base arguments. Then f is said to have base values bounded by
a function q : Nn → N if (f t1 . . . tn) has q(|t1|, . . . , |tn|) as a bound of its first-order values
whenever t1, . . . , tn are first-order values. Given a function symbol f, R(f) denotes the set of
terms appearing in the right-hand side of rules for f, not taking into account recursive calls.
For every term t, define its space-time weight as a polynomial T St(X) on the indeterminate
X, by induction on (∂(t), |t|), following the lexicographic order, as in Figure 2. We denote
here by FO (resp. HO) the arguments tj of f of base type (resp. functional type). The
collapsed size ||t|| of a term t is its size, where however all first-order values count for 1.
We define a rewrite relation ⇒ which is like →, except that whenever a recursive function
symbol is unfolded, it is unfolded completely in just one rewrite step.

We are now ready to explain why the main result of this section holds. First of all,
T St(X) is an upper bound on the collapsed size of t, a result which can be proved by
induction on t:

I Lemma 4.1. For every n ≥ 1 and for every t, T St(n) ≥ ||t||.

Moreover, T St(X) decreases along any ⇒ step if X is big enough:
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I Lemma 4.2. If n is a bound of first-order values for t, and t⇒ s, then T St(n) > T Ss(n).

It is now easy to reach our goal:

I Proposition 4.3. Suppose that R satisfies the termination criterion. Moreover, suppose
that f has base values bounded by a function q : Nn → N. Then, there is a polynomial
p : N→ N such that if t1, . . . , tn are first-order values and (f t1 . . . tn)→m s, then m, |s| ≤
p(q(|t1|, . . . , |tn|)).

To convince yourself that linearity is needed to get a result like Proposition 4.3, consider
the following STTRS, whose terms cannot be typed in our linear type system:

((comp x y) z) → (x (y z)
(autocomp x) → (comp x x)
(id x) → x

(expid 0) → id
(expid (s x)) → (autocomp (expid x))

Both id and (expid t) (for every value t of type NAT ) can be given type NAT → NAT .
Actually, they all are the same function, extensionally. But try to see what happens if
expid is applied to natural numbers of growing sizes: there is an exponential blowup going
on which does not find any counterpart in first-order values.

4.2 Higher-Order Max-Polynomials
We want to refine the type system for higher-order polynomials, in order to be able to use
types to restrict the domain of functionals. The grammar of types is now the following one:

S ::= N | S ( S; A ::= S | A→ A.

Types of the first (resp. second) grammar are called linear types (resp. types) and denoted
as R,S . . . (resp. A,B,C . . . ). The linear function type ( is a subtype of →, i.e., one can
define a relation v between types by stipulating that S ( R v S → R and by closing the
rule above in the usual way, namely by imposing that A → B v C → E whenever C v A

and B v E.
We now consider the following new set of constructors:

DP = {+ : N ( N ( N,max : N ( N ( N,× : N→ N→ N} ∪ {n : N | n ∈ N?},

and we define the following grammar of Church-typed terms

M := xA | cA | (MA→BNA)B | (λxA.MB)A→B | (MS(RNS)R | (λxS .MR)S(R

where cA ∈ DP . We also require that:
in (λxA.MB)A→B , the variable xA occurs at least once in MB ;
in (λxS .MR)S(R, the variable xS occurs exactly once in MR and in linear position (i.e.,
it cannot occur on the right-hand side of an application NA→BL

A).
One can check that this class of Church-typed terms is preserved by β-reduction. A higher-
order max-polynomial (HOMP) is a term as defined above and which is in β-normal form.
We define the following objects and constructions on objects:
N is the domain of strictly positive integers, equipped with the natural partial order,
denoted here ≤N ,
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if σ, τ are objects, then σ × τ is obtained by the product ordering,
σ ⇒ τ is the set of monotonic total functions from σ to τ , equipped with the extensional
order: f ≤σ⇒τ g if for any a of σ we have f(a) ≤τ g(a).

This way, one obtains a subcategory FPOS of the category POS with partial orders as objects
and monotonic total functions as morphisms. As before with ≺ we define ≤ so as to compare
the semantics of terms which do not have the same free variables.

In order to interpret the ( construction in this category we introduce a notion of size.
A size is a (finite) multiset of elements of N. The empty multiset will be denoted ∅. Given
a multiset S, we denote by max S its maximal element and by

∑
S the sum of its elements.

By convention max ∅ =
∑
∅ = 0. Now, given an object σ of the category FPOS, we say that

an element e ∈ σ admits a size in the following cases:
If σ is N , then e is an integer n, and S is a size of e iff we have: max S ≤ n ≤

∑
S.

If σ = σ1×· · ·×σn, then S is a size of e = (e1, . . . , en) iff there exists for any i ∈ {1, . . . , n}
a multiset Si which is a size of ei, and such that S = ∪ni=1Si.
If σ = τ ⇒ ρ, then S is a size of e iff for any f of τ which has a size T , S ∪ T is a size
of e(f). τ _ ρ is the subset of all those functions in σ which admit a size.

We denote by JAK≤ the semantics of A as an object of FPOS, where N is mapped to N , →
is mapped to ⇒ and ( to _. As for HOPs, any HOMP M can be naturally interpreted
as a monotonic function between the appropriate partial orders, which we denote by JMK≤.
We will speak of the size of an HOMP M , by which we mean a size of its interpretation
JMK≤. Note that not all terms admit a size. For instance × : N→ N→ N does not admit
a size. If M reduces to N , then they have the same sizes, if any. Let us examine some
examples:

The term n of type N admits the following sizes: [n], [1, . . . , 1]︸ ︷︷ ︸
k times

with k ≥ n, and more

generally [n1, . . . , nk] such that ∀i ∈ {1, k}, ni ≤ n and
∑k
i=1 ni ≥ n.

The terms max and + of type N ( N ( N admit as size ∅ or [0].
The terms λx.(x+ 3), λx.max(x, 3) of type N ( N both have size 3.
The term λf.(f 2 3) of type (N ( N) ( N has size [2, 3].

Actually, if we consider first-order terms with types of the form N ( . . .( N, it is sufficient
to consider singletons as sizes. If we only wanted to deal with these terms we could thus use
integers for sizes, instead of multisets. Non-singleton multisets only become necessary when
we move to higher-order types, as in the last example above:

I Proposition 4.4. If M is a HOMP of type Nk ( N with free variables x1 : N, . . . , xn : N
which are linear in M , then it admits a size of the form [m] where m ∈ N.

The following will be useful to obtain the Subterm Property:

I Lemma 4.5. For every type A there is a closed HOMP of type A.

4.3 Higher-Order Quasi-Interpretations
Now, a HOMP assignment [ · ] is defined by: for any fA ∈ X (resp. fA ∈ C ∪ F), [f ]
is a variable f (resp. a closed HOMP M) with a type B, where B is obtained from (the
curryfication of) A by:

replacing each occurrence of a base type D by N,
replacing each occurrence of → in A by either → or (.

For instance if A = (D1 → D2)→ D3 we can take for B any of the types: (N ( N)→ N,
(N → N) → N, etc. In the sequel we will write A for any of these types B. Now,
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if t = (t0 t1 . . . tn) then [t] is defined if for any 0 ≤ i ≤ n, [ti] is defined and if [t] ≡
(. . . ([t0][t1]) . . . [tn]) is well-typed. Additive HOMP assignments are defined just as additive
HOP assignments. Now, we say that an assignment [ · ] is a quasi-interpretation for R
if for any rule l → r of R, [l] and [r] are defined and have the same type, and it holds
that JlK≤ ≥ JrK≤. Observe that contrarily to the case of polynomial interpretations, these
inequalities are not strict, and moreover they are stated with respect to the new domains,
taking into account the distinction between the two connectives → and (.

The interpretation of a term does not, like in the strict case, necessarily decrease along
a reduction step. However, it cannot increase: if t →∗ s, then JsK≤ ≤ JtK≤. This, together
with the possibility of forming HOMPs of arbitrary type (Lemma 4.5) implies the following,
crucial, property:

I Proposition 4.6 (Subterm Property). Suppose that an STTRS R has an additive quasi-
interpretation [ · ]. Then, for every function symbol f of arity n with base arguments, there
is a polynomial p : Nn → N such that if (f t1 . . . tn)→∗ s and if s contains an occurrence of
a base term r, then |r| ≤ p(|t1|, . . . , |tn|).

And here is the main result of this Section:

I Theorem 4.7 (Polytime Soundness). If an STTRS R has an additive quasi-interpretation,
R satisfies the termination criterion and f has arity n with base type arguments, then there
is a polynomial p : Nn → N such that whenever (f t1 . . . tn) →m s, it holds that m, |s| ≤
p(|t1|, . . . , |tn|). So if f has a type D1 × · · · ×Dn → D then instances of f can be computed
in polynomial time.

Proof. A consequence of Proposition 4.6 and of Proposition 4.3. J

Notice how Theorem 4.7 is proved by first observing that terms of STTRSs having a quasi-
interpretation are bounded by natural numbers which are not too big with respect to the
input, thus relying on the termination criterion to translate these bounds to complexity
bounds.

Higher-order quasi interpretations, like their strict siblings, can be extended by enlarging
DP so as to include more combinators, provided they are bounded by polynomials. One
of these extensions is discussed in [3] and allows to (re)prove LFPL programs to represent
polytime functions.

4.4 Examples
Consider the program foldr given by:

((foldr f b) nil)→ b; (1)
((foldr f b) (cons x xs))→ (f x ((foldr f b) xs)); (2)

where functions, variables and constructors have the following types:

foldr : (D × E → E)× E → L(D)→ E; f : D × E → E;

and nil, cons typed as in Sect. 3.5. Now, we choose as assignment:

[nil] = 1 : N; [cons] = λn.λm.n+m+ 1 : N→ N→ N;
[foldr] = λφ.λp.λn.p+ n× (φ 1 1) : (N ( N ( N)→ N→ N→ N.
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Observe the ( in the type of the first argument of [foldr] which is the way to restrict the
domain of arguments. We then obtain the following interpretations of terms:

[((foldr f b) nil)] = b+ 1× (f 1 1);
[((foldr f b) (cons x, xs))] = b+ (x+ xs+ 1)× (f 1 1);

[(f x ((foldr f b) xs))] = f x (b+ xs× (f 1 1)).

It is easy to see that condition JrK≤ ≤ JlK≤ holds for rule (1). As to rule (2) consider
φ ∈ N ( N ( N . We know that φ has a size c ≥ 0, and thus for every x, y ∈ N ,

c ≤ φ x y ≤ x+ y + c. (3)

Then we have:

f x (b+ xs× f(1, 1)) ≤ x+ b+ xs× (f 1 1) + c ≤ x× (f 1 1) + b+ xs× (f 1 1) + c

≤ b+ (x+ xs+ 1)× (f 1 1),

where for the two last steps we used (f 1 1) ≥ 1 and (f 1 1) ≥ c (because of (3)). So JrK≤ ≤
JlK≤ also holds for (2) and we have an additive quasi-interpretation. As to the termination
criterion, it is satisfied because in rule (2), xs is a strict sub-pattern of (cons x xs) and the
term (f x y) can be typed in the linear type system as required. Summing up, we can apply
Theorem 4.7 and conclude that if the termination criterion is satisfied by all functions, if
tD×E→E , bE are terms and [t] is a HOMP with type N ( N ( N, then (foldr t b) is a
polynomial time program of type L(D)→ E.

Note that the idea of ensuring complexity bounds when the programs are fed with func-
tional arguments admitting additional conditions had already been suggested in [10], on
particular examples. The present setting using types, however, brings a more systematic
account of this property.

5 Discussion and Relation with Other ICC Systems

The authors believe that the interest of the present work does not lie much in bringing yet
another ready-to-use ICC system but rather in offering a new framework in which to design
ICC systems and prove their complexity properties. Indeed, considered as an ICC system
our setting presents two limitations:
1. given a program one needs to find an assignment and to check that it is a valid quasi-

interpretation, which in general will be difficult to automatize;
2. the termination criterion currently does not allow to reuse higher-order arguments in full

generality.
To overcome 2. we think it will be possible to design more liberal termination criteria, while
attacking 1. could possibly consist in defining type systems such that if a program is well-
typed, then it admits a quasi-interpretation, and for which one could devise type-inference
algorithms. On the other hand, recently introduced techniques for inferring higher-order
polynomial interpretations [17] could shed some light on this issue, which is however outside
the scope of this paper.

Related and Further Work. Let us first compare our approach to other frameworks
for proving complexity soundness results. At first-order, we have already emphasized the
fact that our setting is an extension of the quasi-interpretation approach of [9] (see also [1]
for the relation with non-size-increasing, at first-order). At higher-order, various approaches
based on realizability have been used [14, 11]. While these approaches were developed for
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logics or System T-like languages, our setting is adapted to a language with recursion and
pattern-matching. We think it might also be easier to use in practice.

Let us now discuss the relations with known ICC systems. Several variants of System
T based on restriction of recursion and linearity conditions [19, 7, 12] have been proposed
which characterize polynomial time. Another system [20] based on a linear type system for
non-size-increasing computation, called LFPL, offers more intensional expressivity. Terms of
the latter calculus can indeed be proved to be reducible in polynomial time by showing they
admit quasi-interpretations and satisfy the termination criterion (details are omitted here,
due to space constraints, but can be found in [3]). With respect to [20], the advantages we
bring are a slightly more general handling of higher-order arguments, but also the possibility
to capture size-increasing polytime algorithms. As an example, we are able to assign a quasi-
interpretation to (STTRSs computing) functions in Bellantoni and Cook’s algebra BC [6] (see
again [3]).

Some other works are based on type systems built out of variants of linear logic [5, 18, 4].
They are less expressive for first-order functions but offer more liberal disciplines for hand-
ling higher-order arguments. In future work we will examine if they could suggest a more
flexible termination condition for our setting, maybe itself based on quasi-interpretations,
following [13].

6 Conclusions

We have advocated the usefulness of simply typed term rewriting systems to smoothly extend
notions from first-order rewrite systems to the higher-order setting. Our main contribution is
a new framework for studying (and distilling) ICC systems for higher-order languages. While
up to now quite distinct techniques had been successful for providing expressive criteria for
polynomial time complexity at first-order and at higher-order respectively, our approach
brings together these techniques: interpretation methods on the one hand, and semantic
domains and type systems on the other. We have illustrated the strength of this framework
by designing an ICC system for polynomial time based on a termination criterion and on
quasi-interpretations, which allows to give some sufficient conditions for programs built with
higher-order functionals (like foldr) to work in bounded time. We think this setting should
allow in future work to devise new, more expressive, systems for ensuring complexity bounds
for higher-order languages.
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