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Abstract
Although sometimes it is necessary, no one likes to stay in a hospital, and patients who need to
stay in bed but do not require constant medical surveillance prefer their own bed at home. At
the same time, a patient in a hospital has a high cost for the community, that is not acceptable
if the patient needs service only a few minutes a day.

For these reasons, the current trend in Europe and North-America is to send nurses to visit
patients in their home: this choice reduces costs for the community and gives better quality of
life to patients. On the other hand, it introduces the combinatorial problem of assigning patients
to the available nurses in order to maximize the quality of service, without having nurses travel
for overly long distances.

In this paper, we describe the problem as a practical application of Constraint Logic Program-
ming. We first introduce the problem, as it is currently addressed by the nurses in the National
Health Service (NHS) in Ferrara, a mid-sized city in the North of Italy. Currently, the nurses
solve the problem by hand, and this introduces several inefficiencies in the schedules.

We formalize the problem, obtained by interacting with the nurses in the NHS, into a Con-
straint Logic Programming model. In order to solve the problem efficiently, we implemented
a new constraint that tackles with the routing part of the problem. We propose a declarative
semantics for the new constraint, and an implementation based on an external solver.
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1 Introduction

One of current trends to reduce costs and maintain service quality of health services is to
close peripheral hospitals, reduce patients hospitalization, and concentrate the service at
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few, big structures, able to provide specialized treatments and high quality consultancy. At
the same time, though, those patients who do not need to be treated in a hospital, must be
provided health care directly at their homes. The challenge is to keep costs at a low level,
while achieving high service quality standards, comparable to those achievable at a hospital.

In this paper we describe an application concerning home health care in the city of
Ferrara, Italy. We describe the problem as stated by the workers in the local agency of the
National Health Service (NHS), together with the data they provided us. Then, we model
the problem in Constraint Logic Programming on finite domains (CLP(FD)).

1.1 The home health care service in Ferrara
At present, the home health care (HHC) service in the city of Ferrara, Italy, is managed by
the local agency of the National Health Service (NHS), namely AUSL 109. All patients who
are not self sufficient and in need for medical treatment are eligible for HHC. Each request is
thus characterized by a patient identifier (name and address), a medical treatment, and the
specific day of the week when the treatment must be delivered (each patient can have more
than one request per week).

Service is provided by a set of qualified nurses. Every day, each nurse starts his/her duty
at the city hospital, visits the patients in his/her list, delivers the required treatments and
travels by car from one patient’s home to the next, until (s)he finally returns to the hospital.

A treatment lasts from 5 to 60 minutes, depending on its specific characteristics.
While Ferrara is a medium-size town (about 150,000), the area administered by AUSL 109

is rather large and its population ageing. Although most of the population is concentrated
in town, a number of elderly people live in the countryside and they are those more likely to
be enrolled in the service. Therefore, the service is characterized at the same time by a high
variance of duration and a significant geographical dispersion of the requests.

Scheduling such a service poses several challenges; good solution should achieve:
from the NHS point of view, the minimization of the travel time over the service time; in
fact during travel a nurse is on duty but is not delivering any service.
from the nurses point of view, the equidistribution of the workload, which can not be
guaranteed by simply equally subdividing patients, due to heterogeneous requests.
from the patient point of view, a good degree of loyalty, i.e., the number of different
nurses who are in charge of a single patient should be kept as low as possible.

A total of 15 nurses is involved. A duty should last up to 7 hours and 12 minutes. As a
representative sample, in February 2010 there were 3323 requests, subdivided among 458
patients.

At present, nurses organize their duties themselves. In order to simplify the subdivision of
the patients to the nurses, the territory pertaining AUSL 109 has been partitioned statically
into 9 zones Each nurse receives in charge most of the patients belonging to one such area.
Then the nurse tries to fit the patients requests into the working shifts while complying with
the maximum workload allowed. Such decisions are not driven by any optimization criteria,
and the routing is not necessarily optimal within the day, leaving apart what could be gained
in terms of travelled distance if requests would be exchanged between nurses. Due to the
greedy procedure followed, the nurse weekly schedules have very different workloads and
balancing this load over the months leads to a detriment in loyalty. Nurses complain about
such disparities, and have difficulties adapting their schedule to new incoming patients, new
treatments, or to any other change. Moreover, if the workload balance could be improved by
optimizing the routing component, nurses could be available at the hospital for others tasks,
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thus reducing the overall costs. In addition, an improved routing plan would impact on the
direct expenses related to gas and car usage, which contribute to the overall cost.

2 A Constraint for the Traveling Salesman Problem

Before delving into the actual CLP model of the problem, we present a new constraint useful
to address efficiently the routing component of the problem. Intuitively, the new constraint
provides the length of the shortest Hamiltonian cycle connecting a given subset of the nodes
in a graph.

Given a fully-connected graph G ≡ (N,E) with a special node 0 ∈ N , a weighting
function d : N ×N 7→ R (also represented in matrix notation D = (di,j)), and a selection
function s : N 7→ {0, 1} (also represented as a list, or a 1-dimensional matrix S) constraint

traveltime(N,D, S, T trv) (1)

solves a TSP and computes the length of the shortest Hamiltonian cycle associated to the set
of nodes N ′ = {n ∈ N |S(n) = 1}. More precisely, given a list of nodes N = (p1, p2, . . . , pm),
a matrix of distances D, and a list of values S = (s1, . . . , sm), constraint (1) is true iff

T trv = min
P ath

∑
(i,j)∈P ath

di,j

such that
Path is a sequence of the form

0, (0, pk1), pk1 , (pk1 , pk2), pk2 , . . . (pkn−1 , pkn
), pkn

, (pkn
, 0), 0

that alternates nodes with edges, starting and ending at node 0;
the visited nodes are exactly those corresponding to elements in the list S:

pi ∈ Path⇐⇒ Si = 1.

Pseudocode in Figure 1 outlines the implementation of the traveltime constraint. Op-
erationally, it awakes every time one of the si variables is instantiated. If si = 1, it means
node pi must be visited. Note that, in a generic node of the search tree, some of the si

variables will have value 1, some will have been set to 0, and some will still be unassigned.
The predicate in line 2 selects in DefinitelyV isited the nodes that have definitely to be
visited. This variable is, in turn, passed as an argument to the predicate which computes the
corresponding TSP (line 3). The TSP thus takes into account at this stage the nodes which
are currently known to be visited, i.e., those for which the S variable has been set to 1.

If not all of the S variables are ground (test on line 4), the TSP cost provides a valid
lower bound to the actual travel time (line 6) and can be used in a branch-and-bound search.
In fact, if the lower bound is higher than the elements in the domain of the variable T trv

(for example, because the working hours of the nurse are almost all used for servicing the
patients, so there is not enough time for traveling), we can immediately fail and backtrack,
avoiding to continue the search in a wrong branch of the search tree.

When all of the S variables are ground, the cost of the TSP becomes the real travel time,
and we are able to finally fix the value of T trv to the TSP cost (line 5).
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1 traveltime (P ,D,S,T trv ):-
2 select_definitely_visited_nodes (P ,S,DefinitelyV isited),
3 compute_tsp (DefinitelyV isited,D,LowerBound),
4 (ground(S)
5 -> T trv = LowerBound

6 ; T trv ≥ LowerBound,
7 suspend( traveltime (P ,D,S,T trv ))
8 ).
9 select_definitely_visited_nodes ([] ,[] ,[]).
10 select_definitely_visited_nodes ([Pi|P],[Si|S], Definitely ):-
11 (ground(Si), Si =1 -> Definitely = [Pi|LV] ; Definitely = LV),
12 select_definitely_visited_nodes (LP ,LS ,LV).

Figure 1 Pseudocode for the traveltime constraint.

3 A Constraint Logic Programming Model

Formally, the input data consists of:
a set Sserv of services, of size Ns; for each service s we know the patient pats, the day
days and the duration durs

a matrix of distances D; the element di,j is the travel time from patient i to patient j (if
i and j are both greater than 0), or from/to the hospital (if i = 0 or j = 0)
Snurse = {1, . . . , Nn} is the set of available nurses
Nd is the number of days considered in the scheduling
MpD is the amount of minutes available per day for each nurse; this includes both service
time and travel time

A solution is an assignment of a nurse to each service, respecting all the constraints. The
quality of the solution depends on how balanced the week workloads of the nurses are and
on how many different nurses take care of the same patient during the week.

3.1 The CLP Model
To each service s we associate a decision variable Nurses that can take a value between 1
and the number of available nurses Nn.

It can be useful to represent the nurses variables also in their Boolean channeling version,
using constraint reification; this simplifies the definition of some requirements, as will be
clear in the following. We have a matrix SN of size Ns ×Nn such that

SNs,n = 1 ⇐⇒ Nurses = n. (∀s ∈ Sserv,∀n ∈ Snurse) (2)

We are interested in computing the workload of each nurse n in each day d: DayWLn,d.
Each day workload is the sum of the total service time and the travel time of that nurse:

DayWLn,d = T svc
n,d + T trv

n,d (∀n ∈ Snurse, ∀d ∈ 1 . . . Nd). (3)

The total day workload for each nurse cannot exceed MpD, so for each day d and each nurse
n, the domains of variables DayWLn,d, T svc

n,d and T trv
n,d are from 0 to MpD.

The week workload WeekWLn of nurse n is the sum of the respective day workloads

WeekWLn =
∑Nd

d=1 DayWLn,d (∀n ∈ Snurse). (4)
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The service time is the total time of the durations of the services given by nurse n in day d:

T svc
n,d =

∑
s∈Sserv,days=d

durs · SNs,n. (5)

As mentioned in Section 2, the routing part is addressed by constraint traveltime (Eq. 1)
that solves the TSP of a nurse that visits a subset of the patients. In order to compute the
travel time T trv

n,d of nurse n in day d, we need to provide to such constraint
1. the nodes of the graph, that are the patients’ locations
2. the matrix of distances D,
3. the selection function S (in its list representation), that is a sub-matrix of the SN matrix,
4. and the (finite domain) variable that represents the travel time: T trv

n,d .
More precisely, since we want to compute the travel time for day d, item 1 will be the set
Patientsd , {pats|s ∈ Sserv, days = d} of those patients that will be visited in day d, while
item 3 will be the sub-matrix SNd

n , {SNs,n|s ∈ Sserv, days = d} containing only those
services to be given in day d. In other words, the actual parameters passed to constraint
traveltime to compute the traveltime of nurse n in day d will be:

traveltime(Patientsd, D, SNd
n, T

trv
n,d ).

3.2 The Objective Function
The requirements given by the chief nurse are to optimize two main objectives, namely the
equal repartition of the workload to the various nurses and the loyalty, although psychological
factors or tiredness can also affect the quality of the service.

Concerning the first objective, there are various ways to achieve balanced week workloads
for the nurses [14]. We chose to minimize the maximum week workload, obtained as

MaxWeekWL = max
n∈Snurse

WeekWLn

One way to obtain maximum loyalty is to minimize the number of nurses that visit a
same patient. Let ServicePatp be the set of services of patient p. The information if a
patient p is visited during the week by nurse n is given by:

PNp,n =
∨

s∈ServiceP atp
SNs,n ∀p ∈ Spatient,∀n ∈ Snurse

(where we identify truth values true and false with 1 and 0, respectively); then

LoyaltyPenalty =
∑

p∈Spatient,n∈Snurse

PNp,n

The global objective can be given as a weighted sum of the two components

min(α1 ·MaxWeekWL+ α2 · LoyaltyPenalty), (6)

where α1 and α2 are positive real numbers that can be chosen by the user in order to reflect
the current priorities adopted in the AUSL. Of course, such values can be tuned later on.

4 Example

As an example, we have three patients, requesting a total of 5 services, whose durations are
in Fig 2 and the distance matrix (in upper triangular form) is in Figure 3. Assume we have
two nurses, n1 and n2, and that the limit on the day workload is MpD = 30.

One solution could be to assign
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patient mon thu
p1 10 5
p2 20
p3 20 5

Figure 2 Patients’ requests with durations.

h p1 p2 p3

h 3 3 5
p1 2 7
p2 8

Figure 3 Distance Matrix.

on mon, nurse n1 to patient p1 (formally, Nurse(p1,mon) = n1) and nurse n2 to p3

on tue, nurse n1 to patients p1 and p3, and nurse n2 to p2.

In this assignment, we have DayWLn1,mon = T svc
n1,mon + T trv

n1,mon = 10 + (3 + 3) = 16
(going from the hospital h to p1 and coming back); DayWLn2,mon = 20 + (5 + 5) = 30;
DayWLn1,tue = (5 + 5) + (3 + 8 + 5) = 26; DayWLn2,tue = 20 + (3 + 3) = 26. The total
week workload is WeekWLn1 = 16 + 26 = 42 for nurse n1 and WeekWLn2 = 30 + 26 = 52
for n2. The loyalty penalty will be 1 for patients p1 and p2 (that are visited by one nurse)
and 2 for p3, that is visited by both nurses. So, the value of the objective function will be
α1 ·max{42, 52}+ α2 · (1 + 1 + 2) = 52α1 + 4α2.

5 Implementation

The TSP solving algorithm (predicate compute_tsp in Figure 1) can be implemented in
CLP(FD), with different constraint models.

One model assigns a decision variable for each city to be visited. We have a sequence
of decision variables X1, . . . , Xn, each of them ranging on the set of cities to be visited,
and where X1 is the first city to be visited, X2 is the second, . . . , Xn is the last city to
be visited. The fact that all cities must be visited is imposed through an alldifferent
constraint [13]. In this model, the cost is the sum of the distances d(X1, X2) + d(X2, X3) +
· · ·+ d(Xn−1, Xn) + d(Xn, X1).

A second model uses the circuit constraint [4] for which various propagation algorithms
have been proposed [6, 10]. Again, we have a sequence of decision variables X1, . . . , Xn,
each ranging on the set of possible cities, but in this case the meaning is different: X1 is
the city to be visited immediately after city number 1, X2 is the city to be visited after city
whose name is “2”, . . . , Xn is the city that is visited after the city named n. The circuit
constraint ensures that allowed assignments form a Hamiltonian circuit, and the cost is the
sum d(1, X1) + d(2, X2) + · · ·+ d(n,Xn).

However, it is well known in the literature [6] that solving large TSPs in CLP(FD) is very
demanding in terms of computing time, so we decided to implement predicate compute_tsp
as an invocation of an efficient TSP solver [9], based on the Lagrangian Relaxation technique
used in Operations Research. We could have used other solvers, but we found that our
choice performed well on the typical size of the considered TSP instances. Although the
TSP instances were very difficult for a CLP(FD) implementation, they were rather easy
for Lagrangian Relaxation, and solving them through LR did not show a deterioration in
performance with respect to state-of-the-art TSP solvers [1], so we preferred to use a solver for
which we had access to the source code. A detailed description of the Lagrangian Relaxation
technique is out of the scope of this work; the interested reader can refer to [9].
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6 Search Strategies

We tried our model with five search strategies. The first four were developed with the goal
of obtaining a good general-purpose search strategy; then we tried to improve by exploiting
better the structure of the problem.

The Generic Search (GS) strategy is a depth-first search in which the next variable
to be assigned is selected with the smallest domain heuristic. Since the decision variables
are the Nurse variables (Section 3.1), we select first the service that can be assigned to the
smallest number of nurses. The assigned nurse is selected at random. The Generic Search
with Restarts (GSR) also applies restarts with the optimal timeout sequence [11].

We also modified the variable selection heuristics; instead of selecting the variable with
the smallest domain within the services of the whole week, we try to complete the assignments
of a single day before starting with another day (first assign all the services of the first day,
then the second day, etc). The idea is that if we made some wrong decisions in one day, so
that it is impossible to assign all the patients of that day, we want to fail as soon as possible
before initiating the assignments in other days. Within each day, we select first the variable
with the smallest domain. This strategy was applied without restarts, Generic Search by
Day (GSD) and with restarts Generic Search by Day with Restart (GSDR).

Finally, we defined a search strategy more tailored to the problem at hand, called Loyalty
Guided Search (LGS). We first sort the services in decreasing order of duration, so that
those services with higher duration will be assigned first. The idea is to try to fit first the
most difficult services into the available time for the nurses. Then, given a service s of
patient pats, we try to assign him/her a nurse who is already visiting this patient, in order to
minimize the LoyaltyPenalty. The domain of Nurses is divided into two parts: the nurses
who are already visiting this patient and those who are not; we try first the first part, then
the second. Moreover, both parts are sorted by the current WeekWL of the nurse; in this
way, we try first the nurses that are less occupied, in order to balance the workload.

7 Experiments and Results

The program was implemented in the open-source CLP system ECLiPSe 6.0 [2], and linked to
a Java part implementing Lagrangian Relaxation (LR) for the TSP. All tests were performed
on an Intel i5 processor 2.40GHz computer with 4GB of RAM on four weekly instances.

Figure 4 shows the computation time required by the routing aspect of the problem with
the various methods described in Section 5. The values are obtained by imposing a full
weekly assignment of services to nurses and then computing the Nn×Nd resulting TSPs with
each of the different methods. It can be noticed that the circuit-based one is more efficient
than the alldifferent-based one, however solving the TSPs with Lagrangian Relaxation is
orders of magnitude faster than both of them (times are reported on a logarithmic scale).
Using CLP(FD) as a unifying framework, it is practical and convenient to take advantage of
the efficiency of LR on this specific subproblem by enclosing it in our traveltime constraint.

Table 1 shows the best results obtained for the five search strategies described in Section 6
running them for a maximum of 10 minutes. The randomized algorithms (the GS* strategies)
were run 20 times each. For each week, we show the Objective and the corresponding
MaxWeekWL and LoyaltyPenalty. The Objective is given by the weighted sum in Eq. 6;
in these particular experiments, we used α1 = α2 = 1, so Objective is simply the sum of
the two subsequent columns. The results are compared to the solution hand-made (HMS)
by the nurses considering the division of the city into 9 areas. We can see that the model
was very effective, as all the search strategies were able to improve on the hand-made
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Table 1 Best results for each search strategy.

First Week Second Week Third Week Fourth Week
Objective=WL+LP Objective=WL+LP Objective=WL+LP Objective=WL+LP

GS 2203 1918 + 285 2371 2064 + 307 2331 2033 + 298 2387 2063 + 324

GSR 2125 1841 + 284 2347 2040 + 307 2270 1963 + 307 2345 2022 + 323

GSD 2185 1905 + 280 2351 2052 + 299 2255 1963 + 292 2389 2071 + 318

GSDR 2097 1811 + 286 2345 2033 + 312 2263 1958 + 305 2342 2011 + 331

LGS 1982 1782 + 200 2277 2042 + 235 2181 1954 + 227 2290 2034 + 256

HMS 2356 2124 + 232 2405 2153 + 252 2395 2141 + 254 2433 2146 + 287
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Figure 4 Comparison of computing time re-
quired to solve the TSPs with the different meth-
ods.
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Figure 5 Box plot of the 5 strategies
and the hand-made solution (HMS).

solution. Moreover, LGS was able to improve on the hand-made solution both in terms of
equidistribution of the workload and in terms of loyalty, thus improving both the working
conditions of the nurses and the service quality for the patients. Unluckily, we were not able
to compute the optimal solution, so we cannot compare with it.

Since some of the search strategies use randomization, we also show the box plots of the
20 repetitions (Figure 5). The plots reveal that restarts are the most important factor in the
general purpose strategies. The strategies not using restarts often were unable to improve
the hand-made solution. Labeling on single days can sometimes give a further improvement.
However, a search strategy tailored for the problem is able to provide a large improvement
with respect to the general purpose ones. Notice that LGS and HMS are strategies that do not
include randomization, so they always provide the same solution each time they are executed;
this explains why the box plot reduces to a single line. A significance test supports the
conjecture that LGS improves upon the hand made solution. The Wilcoxon-Mann-Whitney
test [3] rejects the hypothesis that LGS is worse than HMS with a p-value of 0.01429, well
below the usual significance threshold of 0.05.

8 Related Work

The efficient delivery of HHC service attracted the attention of the CLP and the Operations
Research communities. Application papers are generally focused on the particular type of
service that has to be optimized. In many countries for example the Home Health Care
service is managed together with the Home Care that involves other types of services and



M. Cattafi, R. Herrero, M. Gavanelli, M. Nonato, F. Malucelli, and J.J. Ramos 423

most of the times requires the specification of time windows in which the services have to be
delivered and this is one of the main differences that we found with our case.

For example, Bertels and Fahle [5] adopt a hybrid approach, combining Constraint
Programming, local search and Linear Programming. The approach takes advantage of the
presence of tight time windows: “Due to time window constraints, in the HHC only few
permutations correspond to feasible orderings. In our approach we enumerate those orderings
by a CP approach, and we use an LP to find optimal start times . . . ”. In our case time
windows are not present thus enumerating the feasible orderings is not viable.

Laps Care [7] is a system adopted in Sweden for Home Care, although it is also able
to consider some of the issues in HHC. Laps Care uses an iterative method, in which an
initial solution uses a single route for each service; then routes are joined until no further
improvement is possible. To escape from the local optimum, one of the routes is split into
one route for each patient, and the joining phase restarts.

Looking at the problem from a more abstract viewpoint, one may see some similarities
with the classical Capacitated Vehicle Routing Problem (CVRP). In the CVRP a set of
disjoint routes for a fleet of vehicles has to be found so that all customers (nodes) are visited,
the required quantity of goods is delivered to each customer, the capacity of the vehicles is
not exceeded and the objective function is minimized. The usual objective function is the
overall traveled distance or the number of vehicles. In our case we can see nurses as vehicles
and patients as customers. There are some important differences with CVRP that make
all the efficient method developed for the classical problem not applicable in our case. One
difference concerns the capacity. As in CVRP we may consider nurse daily duty time as a
capacity constraint, however, unlike the CVRP, in our case the sequence in which patients
are visited matters on how the capacity is consumed. This actually turns our problem into a
time constrained VRP which is not as easy as the CVRP and for which the classical CVRP
methods are not so efficiently adapted.

The other difference concerns the objective function. On the one hand, as in VRP, we
would have to minimize the total traveled distance, in order to make the service as efficient
as possible, on the other hand we have to balance the workload among nurses. Thus this
component of the objective function is a kind of bottleneck (min-max), that is difficult to
address with OR methods. Finally the loyalty factor is component of the objective function
that makes our problem very peculiar, not to say unique.

Various works consider how to solve the TSP, or its variant with Time Windows, in CP
or with hybrid algorithms [6, 12, 8]; the TSP is only a component of the HHC problem.

9 Conclusions

In this paper, we presented a Constraint Logic Programming application for a Home Health
Care problem. We modelled the problem that is currently solved by hand by the nurses
of the National Health Service unit of the city of Ferrara, in Italy. The novelty of the
model stands in two issues that are peculiar of the problem in Ferrara. The first issue
is the objective: reducing the disparities in workload of the nurses, while at the same
time improving the quality of service from the patients’ viewpoint, by keeping minimal
the number of different nurses that take care of a same patient. The second issue is the
implementation of a new constraint that addresses the routing component of the problem.
The constraint was implemented by embedding into a constraint an efficient solver for the
Travelling Salesperson Problem. Although the new constraint is implemented through a
technique used in Operations Research (namely, Lagrangian Relaxation), it has a clear logical
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semantics, that smoothly integrates into the constraint model.
We implemented various general-purpose search-strategies, then we moved to a new search

strategy that is more tailored to the given problem, obtaining strong improvements.
Experimental results show a large improvement with respect to the currently used

solutions, showing that Logic Programming can be effective to address real life problems.
The logic program consists of about 300 lines of ECLiPSe code, including custom

constraints, and the interfacing to the Java TSP solver, plus about 600 lines of Java code.
The main objective of the application was to provide to nurses more balanced workloads,
and to patients more continuity (loyalty) in the service. In other words, the objective was to
improve the feeling of the quality of working conditions for the nurses and the perception
of the quality of service for the patients. However, as a by-product, we also reduced the
workload of the nurses, in terms of travel time. With respect to the hand-made solution, a
nurse saves about 3 hours per week. In this way, the working time of the nurses is used more
effectively to provide service to patients, instead of travelling on sub-optimal routes. The
saved time could be used to provide better service to the patients, or to serve more patients,
which is a strong improvement in a period of crisis and governmental cuts.

The application was mainly designed, developed and tested by two PhD students in about
six months. As a rough estimate, the person-months for the development will be returned in
about 8 months, which shows that Logic Programming can be an economically affordable
technology to improve working conditions and service quality.

References
1 David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, 2006.
2 K. Apt and M. Wallace. Constraint logic programming using ECLiPSe. 2007.
3 Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete, and Mike Preuss, editors. Ex-

perimental Methods for the Analysis of Optimization Algorithms. Springer, Germany, 2010.
4 N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathematical

and Computer Modelling, 20(12):97 – 123, 1994.
5 S. Bertels and T. Fahle. A hybrid setup for a hybrid scenario: combining heuristics for the

home health care problem. Computers & OR, 33(10), 2006.
6 Yves Caseau and François Laburthe. Solving small TSPs with constraints. In L. Naish,

editor, ICLP. The MIT Press, 1997.
7 P. Eveborn, M. Rönnqvist, H. Einarsdóttir, M. Eklund, K. Lidén, and M. Almroth. Oper-

ations research improves quality and efficiency in home care. Interfaces, 2009.
8 Filippo Focacci, Michela Milano, and Andrea Lodi. Soving TSP with time windows with

constraints. In Danny De Schreye, editor, ICLP, pages 515–529. MIT Press, 1999.
9 R. Herrero, J.J. Ramos, and D. Guimarans. Lagrangian metaheuristic for the travelling

salesman problem. In Extended abstracts of Operational Research Conference 52, Royal
Holloway, University of London, September 2010.

10 L. Kaya and J. Hooker. A filter for the circuit constraint. In F. Benhamou, editor, CP,
volume 4204 of Lecture Notes in Computer Science, pages 706–710. Springer, 2006.

11 M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms. Inf.
Process. Lett., 1993.

12 G. Pesant, M. Gendreau, J-Y. Potvin, and J-M. Rousseau. An exact constraint logic
programming algorithm for the TSP with time windows. Transp. Science, 32(1), 1998.

13 J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In B. Hayes-Roth
and R. Korf, editors, AAAI, pages 362–367. AAAI Press / The MIT Press, 1994.

14 H. Simonis. Models for global constraint applications. Constraints, 12:63–92, 2007.


	Introduction
	The home health care service in Ferrara

	A Constraint for the Traveling Salesman Problem
	A Constraint Logic Programming Model
	The CLP Model
	The Objective Function

	Example
	Implementation
	Search Strategies
	Experiments and Results
	Related Work
	Conclusions

