
Deriving a Fast Inverse of the Generalized Cantor
N-tupling Bijection
Paul Tarau

Dept. of Computer Science and Engineering
University of North Texas, Denton, Texas, USA
tarau@cs.unt.edu

Abstract
We attack an interesting open problem (an efficient algorithm to invert the generalized Cantor
N-tupling bijection) and solve it through a sequence of equivalence preserving transformations
of logic programs, that take advantage of unique strengths of this programming paradigm. An
extension to set and multiset tuple encodings, as well as a simple application to a “fair-search”
mechanism illustrate practical uses of our algorithms.

The code in the paper (a literate Prolog program, tested with SWI-Prolog and Lean Prolog)
is available at http://logic.cse.unt.edu/tarau/research/2012/pcantor.pl.

1998 ACM Subject Classification F.4.1 Mathematical Logic, Logic Programming

Keywords and phrases generalized Cantor n-tupling bijection, bijective data type transfor-
mations, combinatorial number system, solving combinatorial problems in Prolog, optimization
through program transformation, logic programming and software engineering

Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.312

1 Introduction

It is by no means a secret that logic programming is an ideal paradigm for solving combi-
natorial problems. Built-in backtracking, unification and availability of constraint solvers
facilitates quick prototyping for problems involving search or generation of combinatorial
objects. It also provides an easy path from executable specification to optimal implementation
through a well-understood set of program transformations. From a software engineering
perspective, problem solving with help of logic programming tools is a natural fit to agile de-
velopment practices as it encourages a fast moving iterative process consisting of incremental
refinements.

This paper reports on tackling a somewhat atypical problem solving instance: finding a
fast inverse of a generalization of Cantor’s pairing bijection to n-tuples. This generalization
is mentioned in two relatively recent papers [2, 7] with a possible attribution in [2] to Skolem
as a first reference.

The formula, given in [2] p.4, looks as follows:

Kn(x1, . . . , xn) =
(

n−1+x1+...+xn

n

)
+ · · ·+

(
k−1+x1+...+xk

k

)
+ . . . +

(1+x1+x2
2

)
+
(

x1
1
)

where
(

n
k

)
represents the number of subsets of k elements of a set of n elements and

Kn(x1, . . . , xn) denotes the natural number associated to the tuple x1, . . . , xn. So the
problem of inverting it means finding a solution of the Diophantine equation(

x1

1

)
+
(

1 + x1 + x2

2

)
+ . . . +

(
n− 1 + x1 + . . . + xn

n

)
= z (1)

© Paul Tarau;
licensed under Creative Commons License ND

Technical Communications of the 28th International Conference on Logic Programming (ICLP’12).
Editors: A. Dovier and V. Santos Costa; pp. 312–322

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://logic.cse.unt.edu/tarau/research/2012/pcantor.pl
http://dx.doi.org/10.4230/LIPIcs.ICLP.2012.312
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P. Tarau 313

and proving that it is unique. Unfortunately, despite extensive literature search, we have not
found any attempt to devise an algorithm that computes the inverse of the function Kn, so
we had to accept the fact that we were looking at an open problem with possibly interesting
implications, given that for n = 2 it reduces to Cantor’s pairing function that has been used
in hundreds of papers on foundations of mathematics, logic, recursion theory as well as in
some practical applications (dynamic n-dimensional arrays) like [11].

As an inductive proof that Kn is a bijection is given in [7] (Theorem 2.1), we know that
a solution exists and is unique, so the problem reduces to computing the first solution of the
Diophantine equation (1).

Unfortunately, solving an arbitrary Diophantine equation is Turing-equivalent. This is
a consequence of the negative answer to Hilbert’s 10-th problem, proven by Matiyasevich
[8], based on earlier work by Robinson, Davis and Putnam [4, 10], and some fairly simple
instances of it, like Fermat’s ∃x, y, z > 0,∃n ≥ 3, xn + yn = zn have waited for centuries
before being solved.

On the other hand, things do not look that bad in this case, as it is easy to show that
in the equation (1), ∀i, xi ≤ z holds. Therefore, an enumeration of all tuples x1, . . . , xn for
0 ≤ xi ≤ z provides an obvious but dramatically inefficient solution.

So our open problem reduces to finding an efficient, linear or low polynomial algorithm
for computing the inverse. This paper provides a surprisingly simple solution to it in section
7, after telling the story of our incremental refinements (as well as backtracking steps) leading
to it. Section 2 overviews the well-known solution for n = 2. Section 3 provides the Prolog
implementation of the mapping from n-tuples to natural numbers. Section 4 describes the
successive refinements of the inverse function, from its specification to a moderately useful
implementation. Section 5 introduces a list-to-set bijection that will turn out to be helpful
in “connecting the dots” to a well-known combinatorial problem that leads to our solution
described in section 7 (after a small “backtracking step” shown in section 6). Section 8
extends the bijection to sets and multisets. Section 10 discusses related work and section 11
concludes the paper.

2 The Classic Result: Cantor’s Pairing Function and its Inverse

Cantor’s pairing function is a polynomial of degree 2, obtained from the generalized one for
n = 2, given by the formula f(x1, x2) = x1 + (x1+x2+1)(x1+x2)

2 .
The following Prolog code implements it:

cantor_pair(X1,X2,P) :- P is X1 + (((X1+X2+1) * (X1+X2)) // 2).

Note that by composing it n times, one can obtain an n-tupling function, but unfortunately
the resulting polynomial is of degree 2n, in contrast to the generalized n-tupling bijection
which is a polynomial of degree n. On the other, hand, as the following Prolog code shows,
the problem of finding its inverse efficiently is relatively easy. Basically, the inverse of Cantor’s
pairing function is obtained by solving a second degree equation while keeping in mind that
solutions should be natural numbers [17].

cantor_unpair(P,K1,K2) :- E is 8*P+1, intSqrt(E,R), I is (R-1)//2,
K1 is P-((I*(I+1))//2), K2 is ((I*(3+I))//2)-P.

We face a small bump here – Prolog’s ordinary square root returning a fixed size float
or double does not make sense when working with arbitrary size integers, so we need to

ICLP’12

314 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

implement an “integer square root” of N returning the natural number that provides the
largest perfect square ≤ N . Fortunately, we can ensure fast convergence using Newton’s
method:
intSqrt(0,0).
intSqrt(N,R) :- N>0, iterate(N,N,K), K2 is K*K, (K2>N -> R is K-1 ; R=K).

iterate(N,X,NewR) :- R is (X+(N//X))//2, A is abs(R-X),
(A<2 -> NewR=R ; iterate(N,R,NewR)).

As the following example shows, computations with larger than 64-bit operands are handled,
provided that the underlying Prolog system supports arbitrary size integers.
?- cantor_pair(1234567890,9876543210,P),cantor_unpair(P,A,B).
P = 61728394953703703760, A = 1234567890, B = 9876543210.

3 Implementing the Generalized Cantor n-tupling Bijection

Tupling/untupling functions are a natural generalization of pairing/unpairing operations.
They are called ranking/unranking functions by combinatorialists as they map bijectively
various combinatorial objects to N (ranking) and back (unranking).

The natural generalization of Cantor’s pairing bijection described in [2] is introduced
using geometric considerations that make it obvious that it defines a bijection Kn : Nn → N.
More precisely, they observe that the enumeration in N2 of integer coordinate pairs laying
on the anti-diagonals x1 + x2 = c can be lifted to points with integer coordinates laying on
hyperplanes of the form x1 + x2 + . . . + xk = c. The same result, using a slightly different
formula is proven algebraically, by induction in [7]. We remind that the bijection Kn is
defined by the formula

Kn(x1, . . . , xn) =
n∑

k=1

(
k − 1 + x1 + . . . + xk

k

)
(2)

where
(

n
k

)
, also called “binomial coefficient” denotes the number of subsets of n with k

elements as well as the coefficient of xk in the expansion of the binomial (x + y)n.
It is easy to see that the generalized Cantor n-tupling function defined by equation (2) is

a polynomial of degree n in its arguments, and a conjecture, attributed in [2] to Rudolf Fueter
(1923), states that it is the only one, up to a permutation of the arguments. As mentioned
in section 1, as we have found out through extensive literature search, while hoping for the
contrary, it was also an open problem to find an efficient inverse for it.

Our first step is an efficient implementation of the function Kn : Nk → N. By all means,
this is the easy part, just summing up a set of binomial coefficients.

3.1 Binomial Coefficients, efficiently
Computing binomial coefficients efficiently is well-known(

k

n

)
= n!

k!(n− k)! = n(n− 1) . . . (n− (k − 1))
k! (3)

However, we will need to make sure that we avoid unnecessary computations and reduce
memory requirements by using a tail-recursive loop. After simplifying the slow formula in the
first part of the equation (3) with the faster one based on falling factorial n(n− 1) . . . (n−
(k − 1)), and performing divisions as early as possible to avoid generating excessively large
intermediate results, one can derive the binomial_loop tail-recursive predicate:

P. Tarau 315

binomial_loop(_,K,I,P,R) :- I>=K, !, R=P.
binomial_loop(N,K,I,P,R) :- I1 is I+1, P1 is ((N-I)*P) // I1,

binomial_loop(N,K,I1,P1,R).

Note that, as a simple optimization, when N −K ≤ K, the faster computation of
(

N
N−K

)
is

used to reduce the number of steps in binomial_loop.
The resulting predicate binomial(N,K,R) computes

(
N
K

)
and unifies the result with R.

binomial(N,K,R) :- N<K, !, R=0.
binomial(N,K,R) :- K1 is N-K, K>K1, !, binomial_loop(N,K1,0,1,R).
binomial(N,K,R) :- binomial_loop(N,K,0,1,R).

3.2 The Nk → N bijection
We are ready to implement a first version of the Nk → N ranking function as a tail-recursive
computation using the accumulator pairs L1 → L2, that hold the states of the length of the
list processed so far, and S1 → S2, that hold the state of the prefix sum of X1, X2, . . . Xk

computed so far.

from_cantor_tuple1(Xs,R) :- from_cantor_tuple1(Xs,0,0,0,R).

from_cantor_tuple1([],_L,_S,B,B).
from_cantor_tuple1([X|Xs],L1,S1,B1,Bn) :- L2 is L1+1, S2 is S1+X, N is S2+L1,

binomial(N,L2,B), B2 is B1+B,
from_cantor_tuple1(Xs,L2,S2,B2,Bn).

The following examples illustrate the fact that the values of the result are relatively small,
independently of the length or the size of the values on the input list.

?- from_cantor_tuple([],N).
N = 0.
?- from_cantor_tuple([0,2012,999,0,10],N).
N = 2107259417045595.
?- from_cantor_tuple([9,8,7,6,5,4,3,2,1,0,0,1,2,3,4,5,6,7,8,9],N).
N = 3706225144988231392404.

4 Refining the Specification of the Inverse

We start with an executable specification of the inverse, seen as defining, for a given K, a
bijection gK : N→ NK .

4.1 Enumerating, naively
The predicate to_cantor_tuple1(K,N,Ns) computes, for each K, the function gK associating
to the natural number N a tuple represented as a list Ns of length K.

to_cantor_tuple1(K,N,Ns) :- numlist(0,N,Is), cartesian_power(K,Is,Ns),
from_cantor_tuple1(Ns,N),
!. % just an optimization - no other solutions exist

Note that the built-in numlist(From, To, Is) is used to generate a list of integers in the
interval [From..To]).

The predicate to_cantor_tuple1 uses cartesian_power(K,Is,Ns) to enumerate candi-
dates of length K, drawn from the initial segment [0..N] of N.

ICLP’12

316 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

cartesian_power(0,_,[]).
cartesian_power(K,Is,[X|Xs]) :- K>0, K1 is K-1, member(X,Is),

cartesian_power(K1,Is,Xs).

As cartesian_power backtracks over this finite set of potential solutions, the predicate
from_cantor_tuple1(Ns,N) is called until the first (and known to be unique) solution is
found. Given the unicity of the solution, the CUT in the predicate to_cantor_tuple1 is
simply an optimization without an effect on the meaning of the program.

The following example illustrates the correctness of this executable specification.

?- to_cantor_tuple1(3,42,R), from_cantor_tuple(R,S).
R = [1, 2, 2], S = 42.

Unfortunately, performance deteriorates quickly around K larger than 5 and N larger than
100 as the time complexity of this program is at least O(NK). However, given our reliance
on Prolog’s backtracking, the search uses at most O(Klog(N)) space when filtering through
lists of length K containing numbers of at most the bitsize of N.

4.2 A better algorithm, using a tighter upper limit
The next step in deriving an efficient untupling function is a bit trickier. First we observe that,
as from_cantor_tuple(K,Ns,N) runs through successive hyperplanes X1 + . . . + Xk = M ,
for each of them the sum maxes out when X1 = M and Xk = 0 for 1 ≤ K ≤ N . We can
compute directly this maximum value with the predicate largest_binomial_sum as follows:

largest_binomial_sum(K,M,R) :- largest_binomial_sum(K,M,0,R).

largest_binomial_sum(0,_,R,R).
largest_binomial_sum(K,M,R1,Rn) :- K>0, K1 is K-1, M1 is M+K1,

binomial(M1,K,B), R2 is R1+B,
largest_binomial_sum(K1,M,R2,Rn).

The predicate largest_binomial_sum(K,M,R) computes the same R as cantor_tuple([M,
0,...,0], R), with K-1 0s following M.

Next we compute the upper limit for possible values of the sum M of [X1, ..., Xk] such
that the relation to_cantor_tuple([X1,...,Xk],N) holds, i.e. we find the hyperplane
X1 + . . . + Xk = M defining the Cantor K-tuple. This computation, is implemented by the
predicate find_hyper_plane(K,N,M) which, when given the inputs K and M, finds the value
of the sum M that defines the hyperplane containing our tuple.

find_hyper_plane(0,_,0).
find_hyper_plane(K,N,M) :- K>0, between(0,N,M), largest_binomial_sum(K,M,R), R>=N,!.

Note the use of the built-in between(From,To,I) that backtracks over integers in the interval
[From..To].

We are now ready to define a more efficient inverse of the from_cantor_tuple1 bijec-
tion, called to_cantor_tuple2, as a search through the set of lists such that the relation
from_cantor_tuple1(Xs,N) holds.

to_cantor_tuple2(K,N,Ns) :- find_hyper_plane(K,N,M),
sum_bounded_cartesian_power(K,M,Xs),
from_cantor_tuple1(Xs,N),
!,
Ns=Xs.

P. Tarau 317

The search, restricted this time to integers in the interval [0..M] is implemented by the
predicate sum_bounded_cartesian_power.

sum_bounded_cartesian_power(0,0,[]).
sum_bounded_cartesian_power(K,M,[X|Xs]) :- K>0, M>=0, K1 is K-1,

between(0,M,X), M1 is M-X,
sum_bounded_cartesian_power(K1,M1,Xs).

Note that, after applying the upper limit M computed by find_hyper_plane, to ensure
that only tuples summing up to M are explored, we are using a customized cartesian prod-
uct computation, in the predicate sum_bounded_cartesian_power backtracking over lists
[X1...Xk] that sum-up to M. However, as the query

?- findall(M,(between(0,31,N),P is 2^N,find_hyper_plane(2,P,M)),Ms).
Ms = [1,1,2,3,5,7,10,15,22,31,44,63,90,127,180,255,361,511,723,1023,

1447,2047,2895,4095,5792,8191,11584,16383,23169,32767,46340,65535]

indicates, while M grows significantly slower than P it can reach intractable ranges quite
quickly.

The predicate to_cantor_tuple2 is a good improvement over to_cantor_tuple1, but
it is by no means the efficient algorithm we are seeking.

Clearly, a “paradigm shift” is needed at this point, as obvious optimizations only promise
diminishing returns. The highest hope would be to find a deterministic predicate similar to
the integer square root based inverse for the case N = 2, but this time the arbitrary degree
N of our polynomial looks like an insurmountable obstacle.

5 The Missing Link: from Lists to Sets and Back

After rewriting the formula for the Nk → N bijection as:

Kn(x1, . . . , xn) =
n∑

k=1

(
k − 1 + sk

k

)
(4)

where sk =
k∑

i=1
xi, we recognize the prefix sums sk incremented with values of k starting at 0.

At this point, as our key “Eureka step”, we instantly recognize here the “set side” of the
bijection between sequences of n natural numbers and sets of n natural numbers described
in [13]1. We can compute the bijection list2set together with its inverse set2list as

list2set(Ns,Xs) :- list2set(Ns,-1,Xs).

list2set([],_,[]).
list2set([N|Ns],Y,[X|Xs]) :- X is (N+Y)+1, list2set(Ns,X,Xs).

set2list(Xs,Ns) :- set2list(Xs,-1,Ns).

set2list([],_,[]).
set2list([X|Xs],Y,[N|Ns]) :- N is (X-Y)-1, set2list(Xs,X,Ns).

1 In [13] a general framework for bijective data transformations provides such conversion algorithms
between a large number of fundamental data types.

ICLP’12

318 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

The following examples illustrate how it works:

?- list2set([2,0,1,2],Set).
Set = [2, 3, 5, 8].

?- set2list([2, 3, 5, 8],List).
List = [2, 0, 1, 2].

As a side note, this bijection is mentioned in [5] and implicitly in [2], with indications that it
might even go back to the early days of the theory of recursive functions.

6 Backtracking one step: revisiting the Nk → N bijection

It is time to step back at this point, and factor out list2set from our tail-recursive
“untupling” loop from_cantor_tuple1.

The predicate from_cantor_tuple implements the the Nk → N bijection in Prolog, using
the iterative computation of the binomial

(
n
k

)
as well as the sequence to set transformer

list2set. In contrast to from_cantor_tuple1, untupling_loop does not need to add the
increments 1, 2, ..L− 1 as this task has been factored out and processed by list2set.

from_cantor_tuple(Ns,N) :-
list2set(Ns,Xs),
untupling_loop(Xs,0,0,N).

untupling_loop([],_L,B,B).
untupling_loop([X|Xs],L1,B1,Bn) :- L2 is L1+1, binomial(X,L2,B), B2 is B1+B,

untupling_loop(Xs,L2,B2,Bn).

This shifts the problem of computing its inverse from lists to sets, an apparently minor use
of a bijective data type transformation, that will turn out to be the single most critical step
toward our solution.

7 The Efficient Inverse

We have now split our problem in two simpler ones: inverting untupling_loop and then
applying set2list to get back from sets to lists.

Our first attempt was to try out constraint solving as it can sometime reverse arithmetic
operations. Moreover, global constraints like all_different can take advantage of the fact
that we are dealing with sets. However, the code (included as a comment in the companion
Prolog file), turned out to be orders of magnitude slower than to_cantor_tuple2. This
happened despite of the fact that we have tried also to take advantage of the optimizations
implemented by the predicate to_cantor_tuple2, most likely because delaying computations
brought unnecessary overhead without changing the essentially nondeterministic nature of
the search.

The key “Eureka step” at this point is to observe that untupling_loop implements the
sum of the combinations

(
X1
1
)
+
(

X2
2
)
+. . .+

(
XK

K

)
= N , which is nothing but the representation

of N in the combinatorial number system of degree K, [16], due to [6]. Fortunately, efficient
conversion algorithms between the conventional and the combinatorial number system are
well known, [1, 5].

For instance, theorem L in [5] describes the precise position of a given sequence in the
lexicographic order enumeration of all sequences of length k.

P. Tarau 319

I Theorem 1 (Knuth). The combination [ck, . . . c2, c1] is visited after exactly
(

ck

k

)
+ . . . +(

c2
2
)

+
(

c1
1
)
other combinations have been visited.

We are ready to implement the Prolog predicate tupling_loop(K,N,Ds), which, given
the degree K indicating the number of “combination digits”, finds and repeatedly subtracts
the greatest binomial smaller than N.
tupling_loop(0,_,[]).
tupling_loop(K,N,[D|Ns]) :- K>0, NewK is K-1, I is K+N,

between(NewK,I,M), binomial(M,K,B), B>N,
!, % no more search is needed
D is M-1, % the previous binomial gives the "digit" D
binomial(D,K,BM), NewN is N-BM,
tupling_loop(NewK,NewN,Ns).

The predicate tupling_loop implements a deterministic greedy search algorithm, by sub-
tracting the combination containing the most significant “digit” D at each step from the
variable N. At a given step, this results in the variable NewN that carries on the result in
the tail-recursive loop. At the same time, the decreased value of K, used in the binomial is
carried on as the variable NewK.

The efficient inverse of Cantor’s N-tupling is now simply:
to_cantor_tuple(K,N,Ns) :- tupling_loop(K,N,Xs), reverse(Xs,Rs), set2list(Rs,Ns).

Note that we reverse the intermediate result Xs to ensure that set2list receives it in
increasing order - our canonical representation for sets. The following example illustrates
that it works as expected, including on very large numbers:

?- to_cantor_tuple(1234,6666777788889999000031415,Ns), from_cantor_tuple(Ns,N).
Ns = [0, 0, 0, 0, 0, 0, 0, 0, 0...,0, 0, 1, 0], N = 6666777788889999000031415 .

8 Extending the Bijection to Sets and Multisets of K Natural
Numbers

We obtain a bijection from natural numbers to sets of K natural numbers, canonically
represented as lists of strictly increasing elements, by simply dropping the set2list and
list2set operations.
from_cantor_set_tuple(Xs,N) :- untupling_loop(Xs,0,0,N).

to_cantor_set_tuple(K,N,Xs) :- tupling_loop(K,N,Ts), reverse(Ts,Xs).

Multisets of K natural numbers are represented canonically as sequences of nonde-
creasing, but possibly duplicated elements. Following [13], a transformation, similar to
list2set/set2list can be derived for multisets. After a few unfoldings, the resulting code,
using tail recursive helper predicates, becomes:
mset2set(Ns,Xs) :- mset2set(Ns,0,Xs).

mset2set([],_,[]).
mset2set([X|Xs],I,[M|Ms]) :- I1 is I+1, M is X+I, mset2set(Xs,I1,Ms).

set2mset(Xs,Ns) :- set2mset(Xs,0,Ns).

set2mset([],_,[]).
set2mset([X|Xs],I,[M|Ms]) :- I1 is I+1, M is X-I, set2mset(Xs,I1,Ms).

ICLP’12

320 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

The two transformations can be seen as defining a bijection between strictly increasing and
nondecreasing sequences of natural numbers:

?- set2mset([2,5,6,8,9],Mset), mset2set(Mset,Set).
Mset = [2, 4, 4, 5, 5], Set = [2, 5, 6, 8, 9].

We can combine this bijection with the Cantor n-tupling bijection and obtain

from_cantor_multiset_tuple(Ms,N) :- mset2set(Ms,Xs), from_cantor_set_tuple(Xs,N).

to_cantor_multiset_tuple(K,N,Ms) :- to_cantor_set_tuple(K,N,Xs), set2mset(Xs,Ms).

For instance, when dealing with commutative and associative operations, such multiset
encodings turn out to be a natural match.

9 A Simple Application: Fair Search

One might ask, legitimately, why would one bother with pairing and n-tupling bijections.
While the case has been made (see for instance [11]) for various applications besides theo-
retical computer science, that range from indexing multi-dimensional data and geographic
information systems to cryptography and coding theory, we will focus here on a simple appli-
cation with immediate relevance to logic programming: fair search through a multi-parameter
search space.

A theorem conjectured by Bachet and proven by Lagrange, states that “every natural
number is the sum of at most four squares”. Let’s assume that one wants to find, a “simple”
solution to the equation (5), knowing that, as a consequence of this theorem, a solution
always exists.

N = X2 + Y 2 + Z2 + U2 (5)

Let us define “simple solution” as a solution bounded by O(X + Y + Z + U). We want to
enumerate “simpler” candidates first, efficiently. To this end, we can use the fast inverse
of the Cantor n-tupling function (specialized to multisets, given that both the “*” and “+”
operations, involved in the equation 5, are associative and commutative). We can write a
generic fair_multiset_tuple_generator as:

fair_multiset_tuple_generator(From,To,Length, Tuple) :- between(From,To,N),
to_cantor_multiset_tuple(Length,N,Tuple).

We can specialize fair_multiset_tuple_generator for our specific problem as:

to_lagrange_squares(N,Ms) :- M is N^2, % conservative upper limit
fair_multiset_tuple_generator(0,M,4,Ms),
maplist(square,Ms,MMs), sumlist(MMs,N),
!. % keep the first solution only

square(X,S) :- S is X*X.

The algorithm is quite efficient, for instance, it takes only a few seconds to find a decomposition
for 2012:

?- time(to_lagrange_squares(2012,Xs)), maplist(square,Xs,Ns), sumlist(Ns,N).
% 9,685,955 inferences, 4.085 CPU in 4.085 seconds (100% CPU, 2371347 Lips)
Xs = [15, 23, 23, 27], Ns = [225, 529, 529, 729], N = 2012.

P. Tarau 321

The algorithm is also simple enough to be used as an executable specification and it ensures
optimality of the solution, in the sense that our search scans hyperplanes of the form
X1 + X2 + X3 + X4 = K for progressively larger and larger values of K. Also, given the
multiset representation, the associativity and commutativity of “*” and “+” are factored in,
reducing the search space significantly. However, our simple algorithm is no match to the
O(log2(N)) randomized algorithm of [9]. As a side note, deriving a faster algorithm for this
decomposition is a fascinating task on its own, starting with the observation that it needs
only to be computed for the prime factors of a number and involving some elegant identities
holding for Hurwitz quaternions [18]. More importantly, the mechanism sketched here can
also be used in iterative deepening algorithms as a fair a goal selector (for both conjunctions
and disjunctions). This can be done initially in a meta-interpreter and possibly partially
evaluated or moved to the underlying Prolog abstract machine.

Note also that, depending on the natural representation of the candidate data tuple (i.e.
set, multiset or sequence), one can customize the fair tuple generator accordingly.

10 Related Work

We have found the first reference to the generalization of Cantor’s pairing function to n-tuples
in [2], and benefited from the extensive study of its properties in [7].

There are a large number of papers referring to the original ”Cantor pairing function”
among which we mention the surprising result that, together with the successor function it
defines a decidable subset of arithmetic [3]. Combinatorial number systems can be traced
back to [6] and one can find efficient conversion algorithms to conventional number systems
in [5] and [1]. Finally, the “once you have seen it, obvious” list2set / set2list bijection
is borrowed from [13], but not unlikely to be common knowledge of people working in
combinatorics or recursion theory. This simple bijection between lists and sets of natural
numbers shows the unexpected usefulness of the framework supporting bijective data type
transformations [13, 15, 12], of which, a large Haskell-based2 instance is described in [14].

11 Conclusion

We have derived through iterative refinements a fairly surprising solution to an open problem
for which we had no a priori idea if it is solvable, or within which complexity bounds could
be solved. The key “Eureka step” was to recognize a bijective data type transformation
that suddenly brought us to a relatively well known equivalent problem for which efficient
algorithms were available. Through the process, the ability to automate search algorithms
relying directly on an executable declarative specification has been a major catalyst. The
ability to derive equivalent logic programs using simple transformations has been also unusu-
ally helpful. From a software engineering perspective, this recommends logic programming as
an ideal problem solving tool. Last but not least, proven sources of fundamental algorithms
like [5] and the unusually high quality of Wikipedia articles on related topics have helped
“connecting the dots” quickly and effectively.

Acknowledgement

This research has been supported by NSF research grant 1018172.

2 but designed in a guarded Horn-clause style, for virtually automatic transliteration to Prolog

ICLP’12

322 Deriving a Fast Inverse of the Generalized Cantor N-tupling Bijection

References
1 B. P. Buckles and M. Lybanon. Generation of a Vector form the Lexicagraphical Index

[G6]. ACM Transactions on Mathematical Software, 5(2):180–182, June 1977.
2 Patrick Cegielski and Denis Richard. On arithmetical first-order theories allowing encoding

and decoding of lists. Theoretical Computer Science, 222(1–2):55 – 75, 1999.
3 Patrick Cégielski and Denis Richard. Decidability of the Theory of the Natural Integers

with the Cantor Pairing Function and the Successor. Theor. Comput. Sci., 257(1-2):51–77,
2001.

4 Martin Davis, Hilary Putnam, and Julia Robinson. The decision problem for exponential
diophantine equations. The Annals of Mathematics, 74(4):425–436, nov 1961.

5 Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley Professional, 2005.

6 D. H. Lehmer. The machine tools of combinatorics. In Applied combinatorial mathematics,
pages 5–30. Wiley, New York, 1964.

7 Meri Lisi. Some remarks on the Cantor pairing function. Le Matematiche, 62(1), 2007.
8 Yuri Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, London, 1993.
9 Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Com-

munications on Pure and Applied Mathematics, 39(S1):S239–S256, 1986.
10 Julia Robinson. Unsolvable diophantine problems. Proceedings of the American Mathemat-

ical Society, 22(2):534–538, aug 1969.
11 Arnold L. Rosenberg. Efficient pairing functions – and why you should care. International

Journal of Foundations of Computer Science, 14(1):3–17, 2003.
12 Paul Tarau. A Groupoid of Isomorphic Data Transformations. In J. Carette, L. Dixon,

C. S. Coen, and S. M. Watt, editors, Intelligent Computer Mathematics, 16th Symposium,
Calculemus 2009, 8th International Conference MKM 2009 , pages 170–185, Grand Bend,
Canada, July 2009. Springer, LNAI 5625.

13 Paul Tarau. An Embedded Declarative Data Transformation Language. In Proceedings
of 11th International ACM SIGPLAN Symposium PPDP 2009, pages 171–182, Coimbra,
Portugal, September 2009. ACM.

14 Paul Tarau. Declarative Combinatorics: Isomorphisms, Hylomorphisms and Hereditarily
Finite Data Types in Haskell, January 2009. Unpublished draft, http://arXiv.org/abs/
0808.2953, updated version at http://logic.cse.unt.edu/tarau/research/2010/ISO.
pdf, 150 pages.

15 Paul Tarau. Isomorphisms, Hylomorphisms and Hereditarily Finite Data Types in Haskell.
In Proceedings of ACM SAC’09, pages 1898–1903, Honolulu, Hawaii, March 2009. ACM.

16 Wikipedia. Combinatorial number system — wikipedia, the free encyclopedia, 2011. [On-
line; accessed 21-March-2012].

17 Wikipedia. Pairing function — wikipedia, the free encyclopedia, 2011. [Online; accessed
23-March-2012].

18 Wikipedia. Lagrange’s four-square theorem — wikipedia, the free encyclopedia, 2012. [On-
line; accessed 22-March-2012].

http://arXiv.org/abs/0808.2953
http://arXiv.org/abs/0808.2953
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf
http://logic.cse.unt.edu/tarau/research/2010/ISO.pdf

	Introduction
	The Classic Result: Cantor's Pairing Function and its Inverse
	Implementing the Generalized Cantor n-tupling Bijection
	Binomial Coefficients, efficiently
	The Nk N bijection

	Refining the Specification of the Inverse
	Enumerating, naively
	A better algorithm, using a tighter upper limit

	The Missing Link: from Lists to Sets and Back
	Backtracking one step: revisiting the Nk N bijection
	The Efficient Inverse
	Extending the Bijection to Sets and Multisets of K Natural Numbers
	A Simple Application: Fair Search
	Related Work
	Conclusion

