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Abstract
Although Boolean Constraint Technology has made tremendous progress over the last decade,
it suffers from a great sensitivity to search configuration. This problem was impressively coun-
terbalanced at the 2011 SAT Competition by the rather simple approach of ppfolio relying on a
handmade, uniform and unordered solver schedule. Inspired by this, we take advantage of the
modeling and solving capacities of ASP to automatically determine more refined, that is, non-
uniform and ordered solver schedules from existing benchmarking data. We begin by formulating
the determination of such schedules as multi-criteria optimization problems and provide corre-
sponding ASP encodings. The resulting encodings are easily customizable for different settings
and the computation of optimum schedules can mostly be done in the blink of an eye, even when
dealing with large runtime data sets stemming from many solvers on hundreds to thousands of
instances. Also, its high customizability made it easy to generate even parallel schedules for
multi-core machines.
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1 Introduction

Boolean Constraint Technology has made tremendous progress over the last decade, leading
to industrial-strength solvers. Although this advance in technology was mainly conducted
in the area of Satisfiability Testing (SAT; [3]), it meanwhile also led to significant boosts
in neighboring areas, like Answer Set Programming (ASP; [2]), Pseudo-Boolean Solving
[3, Chapter 22], and even (multi-valued) Constraint Solving [21]. However, there is yet a
prize to pay. Modern Boolean constraint solvers are rather sensitive to the way their search
parameters are configured. Depending on the choice of the respective configuration, the
solver’s performance may vary by several orders of magnitude. Although this is a well-known
issue, it was impressively laid bare once more at the 2011 SAT competition, where 16 prizes
were won by the portfolio-based solver ppfolio [17]. The idea underlying ppfolio is very simple:
it independently runs several solvers in parallel. If only one processing unit is available, three
solvers are started. By relying on the operating system, each solver gets nearly the same time
to solve a given instance. We refer to this as a uniform, unordered solver schedule. If more
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Table 1 Table of solver runtimes on problem instances with κ = 10.

s1 s2 s3 oracle

i1 1 (11) 3 1
i2 5 (11) 2 2
i3 8 1 (11) 1
i4 (11) (11) 2 2
i5 (11) 6 (11) 6
i6 (11) 8 (11) 8

timeouts 3 3 3 0

processing units are available, one solver is in turn started on each unit; though multiple
ones may end up on the last unit.

Inspired by this plain, yet successful system, we provide a more elaborate, yet still simple
approach that takes advantage of the modeling and solving capacities of ASP to automatically
determine more refined, that is, non-uniform and ordered solver schedules from existing
benchmarking data. The resulting encodings are easily customizable for different settings.
For instance, our approach is directly extensible to the generation of parallel schedules for
multi-core machines. Also, the computation of optimum schedules can mostly be done in
the blink of an eye, even when dealing with large runtime data sets stemming from many
solvers on hundreds to thousands of instances. Unlike both, our approach does not rely on
any domain-specific features, which makes it easily adaptable to other problems.

The remainder of this article is structured as follows. In Section 2, we formulate the
determination of optimum schedules as multi-criteria optimization problems. In doing so,
our primary emphasis lies in producing robust schedules that aim at the fewest number of
timeouts by non-uniformly attributing each solver (or solver configuration) a different time
slice. Once such a robust schedule is found, we optimize its runtime by selecting the best solver
alignment. We next extend this approach to parallel settings in which multiple processing
units are available. With these specifications at hand, we proceed in two steps. First, we
provide an ASP encoding for computing (parallel) timeout-minimal schedules (Section 3).
Once such a schedule is identified, we use the encoding to find a time-minimal alignment of
its solvers (Section 4). Both ASP encodings reflect interesting features needed for dealing
with large sets of runtime data. Finally, in Section 5, we provide a empirical evaluation
of the resulting system aspeed, and we contrast it with related approaches (Section 6). In
what follows, we presuppose a basic acquaintance with ASP (see [2] for a comprehensive
introduction).

2 Solver Scheduling

Sequential Scheduling. Given a set I of problem instances and a set S of solver configurations,
we use function t : I × S 7→ R to represent a table of solver runtimes on instances. Also, we
use an integer κ to represent a given cutoff time.

For illustration, consider the runtime function in Table 1; it deals with 6 problem instances,
i1 to i6, and 3 solvers, s1, s2, and s3. Each solver can solve three out of six instances within
the cutoff time, κ = 10. A timeout is represented in Table 1 by 11, that is, an increased
cutoff time. The oracle solver, also called virtually best solver, is obtained by assuming the
best performance of each individual solver. As we see in the rightmost column, the oracle
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would allow for solving all instances in our example within the cutoff time. Thus, if we knew
beforehand which solver to choose for each instance, we could solve all of them. Unlike this,
we can already obtain an improvement by successively running each solver within a limited
time slice rather than running one solver until cutoff. For instance, running s1 for 1, s2
for 6, and s3 for 2 seconds allows us to solve 5 out of 6 instances, as indicated in bold in
Table 1. In what follows, we show how such a schedule can be obtained beforehand from
given runtime data.

Given I, S, t, and κ as specified above, a timeout-optimal solver schedule can be expressed
as an unordered tuple σ, represented as a function σ : S → [0, κ], satisfying the following
condition:

σ ∈ arg maxσ:S→[0,κ] |{i | t(i, s) ≤ σ(s), (i, s) ∈ I × S}|

such that
∑
s∈Sσ(s) ≤ κ

(1)

An optimal schedule σ consists of slices σ(s) indicating the (possibly zero) time allotted to
each solver s ∈ S. Such a schedule maximizes the number of solved instances, or conversely,
minimizes the number of obtained timeouts.

The above example corresponds to the schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2}; in fact, σ
constitutes one among nine timeout-optimal solver schedules in our example. Note that the
sum of all time slices is even smaller than the cutoff time. Hence, all schedules obtained by
adding 1 to either of the three solvers are also timeout-optimal. A timeout-optimal schedule
consuming the entire allotted time is {s1 7→ 0, s2 7→ 8, s3 7→ 2}.

In practice, however, the criterion in (1) turns out to be too coarse, that is, it yields many
heterogeneous solutions among which we would like to make an educated choice. To this
end, we take advantage of L-norms for regulating the selection. In our case, an Ln-norm
on schedules is defined as1 Σs∈S,σ(s)6=0 σ(s)n. Depending upon the choice of n as well as
whether we minimize or maximize the norm, we obtain different selection criteria. For
instance, L0-norms suggest using as few/many solvers as possible and L1-norms aim at
minimizing/maximizing the sum of time slices. Minimizing the L2-norm amounts to allotting
each solver a similar time slice, while maximizing it prefers schedules with large runtimes
for few solvers. In more formal terms, an Ln-norm gives rise to objective functions of the
following form. For a set of schedules of a set S of solvers, we define:

σ ∈ arg minσ:S→[0,κ] Σs∈S,σ(s)6=0 σ(s)n (2)

An analogous function is obtained for maximization with arg max.
For instance, our exemplary schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2} has the Li-norms 3,

9, and 41 for i = 0..2. For a complement, we get norms 3, 9, and 27 for the (suboptimal)
uniform schedule {s1 7→ 3, s2 7→ 3, s3 7→ 3} and 1, 9, and 81 for a singular schedule {s3 7→ 9},
respectively. Although we empirically discovered no clear edge of the latter, we favor a
schedule with a minimal L2-norm. First, it leads to a significant reduction of candidate
schedules and, second, it results in schedules with a most homogeneous distribution of time
slices, similar to ppfolio. In fact, our exemplary schedule has the smallest L2-norm among
all nine timeout-optimal solver schedules.

Once we have identified a most robust schedule wrt criteria (1) and (2), it is interesting
to know which solver alignment yields the best performance as regards time. More formally,

1 The common Ln-norm is defined as n
√

Σx∈Xxn. We take the simpler definition in view of using it merely
for optimization.
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we define an alignment of a set S of solvers as the bijective function π : {1, . . . , |S|} → S.
Consider the above schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2}. The alignment π = {1 7→ s1, 2 7→
s3, 3 7→ s2} induces the execution sequence (s1, s3, s2) of σ. This sequence solves all six
benchmarks in Table 1 in 29 seconds; in detail, it takes 1, 1+2, 1+2+1, 1+2, 1+2+6, 1+2+6
seconds for benchmark ik for k = 1..6. Note that benchmark i3 is successfully solved by the
third solver in the alignment, viz. s2. Hence the total time amounts to the allotted time by
σ to s1 and s3, viz. σ(s1) and σ(s3), plus the effective time of s2, viz. t(i3, s2). Because the
timeout-minimal time slices are given, we do not distinguish whether an alignment solves a
benchmark after the total time of the schedule or not. For instance, our exemplary alignment
π takes 9 seconds on both i5 and i6, although it only solves the former but not the latter.

This can be made precise as follows. Given a schedule σ and an alignment π of a set S of
solvers, and an instance i ∈ I, we define:

τσ,π(i) =


(∑min (P )−1

j=1 σ(π(j))
)

+ t(i, π(min (P ))) if P 6= ∅,

κ otherwise
(3)

where P = {l ∈ {1, . . . , |S|} | t(i, π(l)) ≤ σ(π(l))}. While minP gives the position of the first
solver solving instance i in a schedule σ aligned by π, τσ,π(i) gives the total time to solve
instance i by schedule σ aligned by π. If an instance i cannot be solved at all by a schedule,
τσ,π(i) is set to the cutoff κ. For our exemplary schedule σ and its alignment π, we get for
i3: minP = 3 and τσ,π(i3) = 1 + 2 + 1 = 4.

For a schedule σ of solvers in S, we then define:

π ∈ arg minπ:{1,...,|S|}→S
∑
i∈Iτσ,π(i) (4)

For our timeout-optimal schedule σ = {s1 7→ 1, s2 7→ 6, s3 7→ 2} wrt criteria (1)
and (2), we obtain two optimal alignments, yielding execution alignments (s3, s1, s2) and
(s1, s3, s2), both of which result in a solving time of 29 seconds.

Parallel Scheduling. The increasing availability of multi-core processors makes it inter-
esting to extend our approach for distributing a schedule’s solvers on different processing
units. For simplicity, we take a coarse approach in binding solvers to units, thus precluding
re-allocations during runtime.

To begin with, let us provide a formal specification of the extended problem. To this
end, we augment our ensemble of concepts with a set U of (processing) units and associate
each unit with subsets of solvers from S. More formally, we define a distribution of a set S
of solvers as the function η : U → 2S such that

⋂
u∈U η(u) = ∅. With it, we can determine

timeout-optimal solver schedules for several cores simply by strengthening the condition
in (1) to the effect that all solvers associated with the same unit must respect the cutoff
time. This leads us to the following extension of (1):

σ ∈ arg maxσ:S→[0,κ] |{i | t(i, s) ≤ σ(s), (i, s) ∈ I × S}|

such that
∑
s∈η(u)σ(s) ≤ κ for each u ∈ U

(5)

For illustration, let us reconsider Table 1 along with schedule σ = {s1 7→ 1, s2 7→ 8, s3 7→
2}. Assume that we have two cores, 1 and 2, along with the distribution η = {1 7→ {s2}, 2 7→
{s1, s3}}. This distributed schedule solves all benchmarks in Table 1 with a cutoff of κ = 8.
Hence, it is an optimal solution to the optimization problem in (5).

We keep the definitions of a schedule’s Ln-norm as a global constraint.
For determining our secondary criterion, enforcing time-optimal schedules, we relativize

the auxiliary definitions in (3) to account for each unit separately. Given a schedule σ and a
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set U of units, we define for each unit u ∈ U a local alignment of the solvers in η(u) as the
bijective function πu : {1, . . . , |η(u)|} → η(u). Given this and an instance i ∈ I, we extend
the definitions in (3) as follows:

τσ,πu
(i) =


(∑min (P )−1

j=1 σ(πu(j))
)

+ t(i, πu(min (P ))) if P 6= ∅,

κ otherwise
(6)

where P = {l ∈ {1, . . . , |η(u)|} | t(i, πu(l)) ≤ σ(πu(l))}.
The collection (πu)u∈U regroups all local alignments into a global alignment. For a

schedule σ of solvers in S and a set U of (processing) units, we then define:

(πu)u∈U ∈ arg min(πu:{1,...,|η(u)|}→η(u))u∈U

∑
i∈I minu∈U τσ,πu(i) (7)

For illustration, reconsider the above distribution and suppose we chose the local aligments
π1 = {s2 7→ 1} and π2 = {s1 7→ 1, s3 7→ 2}. This global alignment solves all six benchmark
instances in 22 seconds. In more detail, it takes 12, 1 + 22, 11, 1 + 22, 61, 81 seconds for
benchmark ik for k = 1..6, where the solving unit is indicated by the subscript.

Note that the definitions in (5), (6), and (7) correspond to their sequential counterparts
in (1), (3), and (4) whenever we are faced with a single processing unit.

3 Solving Timeout-Optimal Scheduling with ASP

To begin with, we detail the basic encoding for identifying robust (parallel) schedules. In
view of the remark at the end of the last section, however, we directly provide an encoding
for parallel scheduling, which collapses to one for sequential scheduling whenever a single
processing unit is used.

Following good practice in ASP, a problem instance is expressed as a set of facts. That
is, Function t : I × S 7→ R is represented as facts of form time(i,s,t), where i ∈ I, s ∈ S,
and t is the runtime t(i, s) converted to a natural number with a limited precision. The
cutoff is expressed via Predicate kappa/1. And the number of available processing units is
captured via Predicate units/1, here instantiated with 2 cores. Given this, we can represent
the contents of Table 1 as follows.

kappa (10).
units (2).

time(i1 , s1 , 1). time(i1 , s2 , 11). time(i1 , s3 , 3).
time(i2 , s1 , 5). time(i2 , s2 , 11). time(i2 , s3 , 2).
time(i3 , s1 , 8). time(i3 , s2 , 1). time(i3 , s3 , 11).
time(i4 , s1 , 11). time(i4 , s2 , 11). time(i4 , s3 , 2).
time(i5 , s1 , 11). time(i5 , s2 , 6). time(i5 , s3 , 11).
time(i6 , s1 , 11). time(i6 , s2 , 8). time(i6 , s3 , 11).

The encoding in Listing 1 along with all following ones are given in the input language
of gringo, documented in [7]. The first three lines of Listing 1 provide auxiliary data. The
set S of solvers is given by Predicate solver/1. Similarly, the runtimes for each solver are
expressed by time/2. In addition, the ordering order/3 of instances by time per solver is
precomputed.

order(I,K,S) :-
time(I,S,T), time(K,S,V), (T,I) < (V,K),
not time(J,S,U) : time(J,S,U) : (T,I) < (U,J) : (U,J) < (V,K).
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The above results in facts order(I,K,S) capturing that instance I is solved immediately
before instance K by solver S. Although this information could be computed via ASP (as
shown above), we make use of external means for sorting (the above rule needs cubic time
for instantiation, which is infeasible for a few thousand instances).2

The idea is now to guess for each solver a time slice and a processing unit. With the
resulting schedule, all solvable instances can be identified. And finally all schedules solving
most instances are selected.

Listing 1 ASP encoding for Timeout-Minimal (Parallel) Scheduling.
1 solver (S) :- time(_,S,_).
2 time(S,T) :- time(_,S,T).
3 unit (1..N) :- units(N).

5 {slice(U,S,T): time(S,T): T <= K: unit(U)} 1 :- solver (S),kappa(K).
6 slice(S,T) :- slice(_,S,T).

8 :- not [ slice(U,S,T) = T ] K, kappa(K), unit(U).

10 solved (I,S) :- slice(S,T), time(I,S,T).
11 solved (I,S) :- solved (J,S), order(I,J,S).
12 solved (I) :- solved (I,_).

14 # maximize { solved (I) @ 2 }.
15 # minimize [ slice(S,T) = T*T @ 1 ].

A schedule is represented by atoms slice(U,S,T) allotting a time slice T to solver S on unit
U. In Line 5, at most one time slice is chosen for each solver subject to the trivial condition
that it is equal or less the cutoff time. At the same time, a processing unit is uniquely
assigned to the selected solver. The following line projects out the processing unit because
it is irrelevant when determining solved instances (in Line 10). The integrity constraint in
Line 8 ensures that the sum over all selected time slices on each core is not greater than
the cutoff time. This implements the side condition in (5); and it reduces to the one in (1)
whenever a single unit is considered. In lines 10 to 12, all instances solved by the selected
time slices are gathered via predicate solved/1. Given that we collect in Line 6 all time
slices among actual runtimes, each time slice allows for solving at least one instance. This
property is used in Line 10 to identify the instance I solvable by solver S. Given this and the
sorting of instances by solver performance in order/3, we collect in Line 11 all instances
that can be solved even faster than the instance in Line 10. Note that at first sight it might
be tempting to encode this differently:

solved (I) :- slice(S,T), time(I,S,TS), T <= TS.

The problem with the above rule is that it has a quadratic number of instantiations in the
number of benchmark instances in the worst case. Unlike this, our ordering-based encoding
is linear because only successive instances are considered. Finally, the number of solved
instances is maximized in Line 14, following the recipe in (5) (or (1), respectively). This
major objective gets a higher priority, viz. 2, than the L2-norm from (2) having priority 1.

2 To be precise, we use gringo’s embedded scripting language lua for sorting.
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4 Solving (Timeout and) Time-Minimal Parallel Scheduling with ASP

In the previous section, we have determined a timeout-minimal schedule. Here, we present
an encoding that takes such a schedule and calculates a solver alignment per processing unit
while minimizing the overall runtime according to Criterion (7). This two-phase approach is
motivated by the fact that an optimal alignment must be determined among all permutations
of a schedule. While a one shot approach had to account for all permutations of all potential
timeout-minimal schedules, our two-phase approach reduces the second phase to searching
among all permutations of a single timeout-minimal schedule.

We begin by extending the problem instance of the last section (in terms of kappa/1,
units/1, and time/3) by facts over slice/3 providing the time slices of a timeout-minimal
schedule (per solver and processing unit). To take on our example from Section 2, we use
the obtained timeout-minimal schedule to create the following problem instance:

kappa (10). units (2).
time(i1 , s1 , 1). time(i1 , s2 , 11). time(i1 , s3 , 3).
...
slice (1,s2 ,8). slice (2,s1 ,1). slice (2,s3 ,2).

The idea of the encoding in Listing 2 is to guess a permutation of solvers and then to use
ASP’s optimization capacities for calculating a time-minimal alignment. The challenging
part is to keep the encoding compact. That is, we have to keep the size of the instantiation
of the encoding small because otherwise we fail to solve common problems with thousands of
benchmark instances. To do this, we make use of #sum aggregates with negative weights to
find the fastest processing unit without representing any sum of times explicitly.

Listing 2 ASP encoding for Time-Minimal (Parallel) Scheduling.
1 solver (U,S) :- slice(U,S,_).
2 instance (I) :- time(I,_,_).
3 unit (1..N) :- units(N).
4 solvers (U,N) :- unit(U), N := { solver (U,_)}.
5 solved (U,S,I) :- time(I,S,T), slice(U,S,TS), T <= TS.
6 solved (U,I) :- solved (U,_,I).
7 capped (U,I,S,T) :- time(I,S,T), solved (U,S,I).
8 capped (U,I,S,T) :- slice(U,S,T), solved (U,I), not solved (U,S,I).
9 capped (U,I,d,K) :- unit(U), kappa(K), instance (I), not solved (U,I).

10 capped (I,S,T) :- capped (_,I,S,T).

12 1 { order(U,S,X) : solver (U,S) } 1 :- solvers (U,N), X = 1..N.
13 1 { order(U,S,X) : solvers (U,N) : X = 1..N } 1 :- solver (U,S).

15 solvedAt (U,I,X+1) :- solved (U,S,I), order(U,S,X).
16 solvedAt (U,I,X+1) :- solvedAt (U,I,X), solvers (U,N), X <= N.

18 mark(U,I,d,K) :- capped (U,I,d,K).
19 mark(U,I,S,T) :- capped (U,I,S,T), order(U,S,X), not solvedAt (U,I,X).
20 min (1,I,S,T) :- mark (1,I,S,T).

22 less(U,I) :- unit(U), unit(U+1), instance (I),
23 [min(U,I,S1 ,T1): capped (I,S1 ,T1) = T1 , mark(U+1,I,S2 ,T2) = -T2] 0.

25 min(U+1,I,S,T) :- min(U,I,S,T), less(U,I).
26 min(U,I,S,T) :- mark(U,I,S,T), not less(U-1,I).

28 # minimize [min(U,_,_,T): not unit(U+1) = T].
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The block in Line 1 to 10 gathers static knowledge about the problem instance, that
is, solvers per processing unit (solver/2), instances appearing in the problem description
(instance/1), available processing units (unit/1), number of solvers per unit (solvers/2),
instances solved by a solver within its allotted slice (solved/3), and instances that could be
solved on a unit given the schedule (solved/2). In view of Equation (6), we precompute the
times that contribute to the values of τσ,πu and capture them in capped/4 (and capped/3).
A fact capped(U,I,S,T) assigns to instance I run by solver S on unit U a time T. In Line 7,
we assign the time needed to solve the instance if it is within the solver’s time slice. In Line 8,
we assign the solver’s time slice if the instance could not be solved but at least one other
solver could solve it on the processing unit. In Line 9, we assign the whole cutoff to dummy
solver d (we assume that there is no other solver called d) if the instance could not be solved
on the processing unit at all; this is to implement the else case in (6) and (3).

The actual encoding starts in Line 12 and 13 by guessing a permutation of solvers. Here
the two head aggregates ensure that for every solver (per unit) there is exactly one index
and vice versa. In Line 15 and 16, we mark indexes (per unit) as solved if the solver with
the preceding index could solve the instance or if the previous index was marked as solved.
Note that this is a similar “chain construction” as done in the previous section in order to
avoid a combinatorial blow-up.

In the block from Line 18 to 26, we determine the time for the fastest processing unit
depending on the guessed permutation. The rules in Line 18 and 19 mark the necessary
times that have to be added up on each processing unit. The sums of the marked times
correspond to τσ,πu(i) in Equation (6) and (3). Next, we determine the smallest sum of
times. Therefore, we iteratively determine the minimum. An atom min(U,I,S,T) marks the
times of the fastest unit in the range from unit 1 to U to solve an instance (or the cutoff via
dummy solver d if the schedule does not solve the instance for the unit). To begin with, we
initialize min/4 with the times for the first unit in Line 20. Then, we add a rule in Line 22
and 23 that, given minimal times for units in the range of 1 to U and times for unit U+1,
determines the faster one. The current minimum contributes positive times to the sum, while
unit U+1 contributes negative times. Hence, if the sum is negative or zero, the sum of times
captured in min/4 is smaller or equal to the sum of times of unit U+1 and the unit thus slower
than some preceding unit, which makes the aggregate true and derives the corresponding
atom over less/2. Depending on less/2, we propagate the smaller sum, which is either
contributed by the preceding units (Line 25) or the unit U+1 (Line 26). Finally, in Line 28
the times of the fastest processing unit are minimized in the optimization statement, which
implements Equation (7) and (4).

5 Experiments

After describing the theoretical foundations and ASP encodings underlying our approach, we
now present some short results from an empirical evaluation. The python implementation
of our solver, dubbed aspeed, uses the ASP systems [4] of the potassco group [6], namely
grounder the gringo (3.0.4) and the ASP solver clasp (2.0.5). The sets of runtime data
(including a list of the solvers and instances) used in this work are freely available online [1].

To provide a thorough empirical evaluation of our approach, we selected five large data sets
of runtimes for two prominent and widely studied problems, SAT and ASP. The sets Random,
Crafted and Application contain the runtimes taken from the 2011 SAT Competition [18];
the 3s-Set is the training set of the portfolio SAT solver 3s [13]; and the ASP instance set
(ASP-Set) contains runtimes based on different configurations of the highly parametric ASP
solver clasp [8].
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Table 2 Comparison of different approaches w.r.t. #timeouts for a cutoff time of 5000 CPU
seconds for Random (|I| = 600, |S| = 9), Crafted (|I| = 300, |S| = 15), Application (|I| = 300,
|S| = 18) and 3s-Set (|I| = 5467, |S| = 37) and 600 seconds for ASP-Set (|I| = 313, |S| = 8).

Random Crafted Application 3s-Set ASP-Set
Single Best 254 (42.3%) 155 (51.6%) 85 (28.3%) 1881 (34.4%) 28 (8.9%)
Uniform 155 (25.8%) 123 (41.5%) 116 (38.6%) 1001 (18.3%) 29 (9.2%)
ppfolio-like 127 (21.1%) 126 (42.0%) 82 (27.3%) 645 (11.8%) 17 (5.4%)
satzilla 115 (19.2%) 101 (34.0%) 74 (24.7%) −− (−%) −− (−%)
aspeed (seq) 131 (21.8%) 98 (32.6%) 83 (27.6%) 536 (9.8%) 18 (5.7%)
aspeed (par 8) 109 (18.2%) 85 (28.3%) 51 (17.0%) 140 (2.5%) 8 (2.6%)
Oracle 108 (18%) 77 (26%) 45 (15%) 0 (0%) 4 (1.3%)

Based on these data sets, we compare sequential aspeed and parallel aspeed with eight
cores (par 8 ) against the best solver in the portfolio (Single Best), a uniform distribution
of the time slices over all solvers in the portfolio (Uniform), the Oracle performance (also
called virtual best solver) and two SAT solvers: a ppfolio-like approach inspired by the
single-threaded version of ppfolio, where the best three complementary solvers are selected
with a uniform distribution of time slices, and satzilla [23] based on the results of [24] as
a representative of a sequential portfolio-based algorithm selector. To obtain an unbiased
evaluation of performance, we used 10-fold cross validation. Table 2 shows the number
of timeouts and, in brackets, the corresponding fraction of the instance set; hence, small
numbers indicate better performance. In all cases, aspeed showed better performance than
the Single Best solver. aspeed performed better than ppfolio-like in three out of five settings,
namely on Crafted, 3s-Set and ASP-Set, and better than satzilla in one out of three settings,
namely, Crafted.

6 Related Work

Our work forms part of a long line of research that can be traced back to John Rice’s seminal
work on algorithm selection [16] on one side, and to work by Huberman, Lukos, and Hogg
[12] on parallel algorithm portfolios on the other side.

Most recent work on algorithm selection is focused on mapping problem instances to
a given set of algorithms, where the algorithm to be run on a given problem instance i
is typically determined based on a set of (cheaply computed) features of i. This is the
setting considered prominently by Rice [16], as well as by the work on SATzilla, which makes
use of regression-based models of running time [22, 23]; work on the use of decision trees
and case-base reasoning for selecting bid evaluation algorithms in combinatorial auctions
[10, 5]; and work on various machine learning techniques for selecting algorithms for finding
maximum probable explanations in Bayes nets in real time [11]. All these approaches are
similar to ours in that they exploit complementary strengths of a set of solvers for a given
problem; however, unlike these per-instance algorithm selection methods, aspeed selects and
schedules solvers to optimize performance on a set of problem instances, and therefore does
not require instance features.

cphydra is a portfolio-based procedure for solving constraint programming problems that
is based on case-based reasoning for solver selection and a simple complete search procedure
for sequential solver scheduling [15]. Like the previously mentioned approaches, and unlike
aspeed, it requires instance features for solver selection, and, according to its authors, is
limited to a low number of solvers (in their work, five). Like the simplest variant of aspeed,
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the solver scheduling in cphydra aims to maximize the number of given problem instances
solved within a given time budget.

Early work on parallel algorithm portfolios highlights the potential for performance
improvements, but does not provide automated procedures for selecting the solvers to be run
in parallel from a larger base set [12, 9]. ppfolio, which demonstrated impressive performance
at the 2011 SAT Competition, is a simple procedure that runs between 3 and 5 SAT solver
concurrently (and, depending on the number of processors or cores available, potentially
in parallel) on a given SAT instance. The component solvers have been chosen manually
based on performance on past competition instances, and they are all run for the same
amount of time. Unlike ppfolio, our approach automatically selects solvers to minimize the
number of timeouts or total running time on given training instances using a powerful ASP
solver and can, at least in principle, work with much larger numbers of solvers. Furthermore,
unlike ppfolio, aspeed can allot variable amounts of time to each solver to be run as part of a
sequential schedule.

Concurrently with our work presented here, Yun and Epstein [25] developed an approach
that builds sequential and parallel solver schedules using case-based reasoning in combination
with a greedy construction procedure. Their RSR-WG procedure combines fundamental
aspects of cphydra [15] and GASS [20]; unlike aspeed, it relies on instance features. RSR-WG
uses a relatively simple greedy heuristic to optimize the number of problem instances solved
within a given time budget by the parallel solver schedule to be constructed; our use of an
ASP encoding, on the other hand, offers considerably more flexibility in formulating the
optimization problem to be solved, and our use of powerful, general-purpose ASP solvers can
at least in principle find better schedules. Our approach also goes beyond RSR-WG in that
it permits the optimization of parallel schedules for runtime.

Perhaps most closely related to our approach is the recent work of Kadioglu et al. on
algorithm selection and scheduling [13]. They study pure algorithm selection and various
scheduling procedures based on mixed integer programming techniques. Unlike aspeed, their
more sophisticated procedures rely on instance features for nearest-neighbour-based solver
selection, based on the (unproven) assumption that any given solver shows similar performance
on instances with similar features [14]. (We note that in the literature on artificially created,
‘uniform random’ SAT and CSP instances there is some evidence suggesting that at least with
the cheaply computable features that can be practically exploited by per-instance algorithm
selection approaches this assumption may not hold.) We focussed deliberately on a simpler
setting than their best-performing semi-static scheduling approach in that we do not use
per-instance algorithm selection, yet still obtain excellent performance; furthermore, we
consider the more general case of parallel solver schedules, while their work is limited to
sequential execution of solvers.

7 Conclusion

In this work, we demonstrated how ASP formulations and a powerful ASP solver (clasp) can
be used to compute sequential and parallel solver schedules. Compared with earlier model-free
and model-based approaches (ppfolio and satzilla, respectively), our new procedure, aspeed,
performs very well on SAT and ASP – two widely studied problems for which substantial
and sustained effort is being expended in the design and implementation of high-performance
solvers.

aspeed is open-source and available online [1]. We expect aspeed to work particularly
well in situations where various different kinds of problem instances have to be solved (e.g.,
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competitions) or where single good (or even dominant) solvers or solver configurations are
unknown (e.g., new applications). Our approach leverages the power of multi-core and
multi-processor computing environments and, because of its use of easily modifiable and
extensible ASP encodings, can in principle be readily modified to accommodate different
constraints on and optimization criteria for the schedules to be constructed. Unlike most
other portfolio-based approaches, aspeed does not require instance features and can therefore
be applied more easily to new problems.

Because, like various other approaches, aspeed is based on minimisation of timeouts, it is
currently only applicable in situations where some instances cannot be solved within the time
budget under consideration (this setting prominently arises in many solver competitions). In
future work, we intend to investigate strategies that automatically reduce the time budget if
too few timeouts are observed on training data; we are also interested in the development of
better techniques for directly minimizing runtime.

In situations where there is a solver or configuration that dominates all others across
the instance set under consideration, portfolio-based approaches are generally not effective
(with the exception of performing multiple independent run of a randomized solver). The
degree to which performance advantages can be obtained through the use of portfolio-based
approaches, and in particular aspeed, depends on the degree to which there is complementarity
between different solvers or configurations, and it would be interesting to investigate this
dependence quantitatively, possibly based on recently proposed formal definitions of instance
set homogeneity [19].
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