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Abstract
In this paper we describe a sound and complete concurrent operational semantics for constraint
functional logic programming languages which allows to model declarative applications in which
the interaction between demand-driven narrowing and constraint solving helps to prune the search
space, leading to shorter goal derivations. We encode concurrency into the generic CFLP(D)
scheme, a uniform foundation for the operational semantics of constraint functional logic pro-
gramming systems parameterized by a constraint solver over the given domain D. In this concur-
rent version of the CFLP(D) scheme, goal solving processes can be executed concurrently and
cooperate together to perform their specific tasks via demand-driven narrowing and declarative
residuation guided by constrained definitional trees, constraint solving, and communication by
synchronization on logical variables.
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1 Introduction

Multiparadigm logic programming languages and systems [2, 6, 8, 11] aim to integrate the most
important declarative programming paradigms, namely functional programming (demand-
driven rewriting strategies, higher-order facilities, etc.) and (constraint) logic programming
(goal solving, logical variables, computation with constraints, etc.). The endeavor to extend
this declarative combined logic paradigm to a practical language suitable for concurrent
executions has stimulated much research over the last two decades, resulting in a large
variety of proposals [3, 6, 8]. The aim of this research area is the development of concurrent
functional and constraint logic programming systems [2, 8] that maintain the balance between
expressiveness and declarative reading: abstraction, computations as proofs, amenability to
meta-programming, etc. However, the interactions between all these different features are
complex, so the design and implementation of a sound and complete theoretical framework
of concurrent and constrained multiparadigm logic programming systems is non-trivial.
A common feature of the various approaches is the attempt to define declarative operational
models for concurrency within the Constraint Logic Programming scheme CLP(D) [7], which
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replaces the basic computational model of logic programming (i.e., SLD-resolution with
syntactic unification) by constraint solving over some constraint domain D (e.g., the integer or
the real numbers). The CLP(D) scheme can be generalized into the framework of concurrent
constraint programming [10] to accommodate a simple and powerful model of declarative
concurrent computation based on a global store, represented by a constraint on the values
that variables can assume. All goal solving processes of the system share this common store,
and instead of “reading” and “writing” the values of variables, processes may ask (check if a
constraint is entailed by the store) and tell (augment the store with a new constraint).

The CFLP(D) scheme [9] elegantly captures the fundamental ideas behind the multi-
paradigm logic systems, generalizing the CLP(D) scheme to provide uniform foundations
for the semantics of functional and constraint logic programming languages. The efficient
operational semantics relies on demand-driven narrowing with definitional trees [12], a com-
bination of syntactic unification and demand-driven rewriting, parameterized by a constraint
solver over the given domain D, which is sound and complete with respect to a declarative
semantics formalized by a constraint rewriting logic [9], and uses a hierarchical structure
called definitional tree to efficiently control the computation. The current version of the
constraint functional logic system T OY [11] has been designed to efficiently implement
the CFLP(D) scheme. However, concurrency is not supported in the CFLP(D) execution
model and its efficient implementation in the T OY system, although declarative forms of
concurrency do exist for similar (but less expressive) approaches [3, 6, 8].

Despite those concurrent extensions, we are not aware of any implementation backed
by theoretical results concerning the combination of sound and complete demand-driven
narrowing with definitional trees and constraint solving to provide a more powerful de-
clarative integration of concurrent programming techniques. The development of these
practical techniques is essential for the implementation of concurrent multiparadigm logic
programming systems, since they allow further optimizations related to the synchronization
and communication of constraint solving mechanisms that can considerably reduce the search
space generated by narrowing.

The aim of this paper is to provide a well-founded concurrent operational semantics that
has the potential to be at the basis of more efficient implementations of constraint functional
logic programming languages than the current ones [4]. The main contribution of this work is
the hybrid operational combination between constraint solving and demand-driven narrowing
guided by definitional trees, to show that this concurrent operational model allows constraint
solving to efficiently reduce the search space generated by narrowing.

The rest of this paper is organized as follows. Section 2 introduces our approach by
presenting an example of declarative concurrency in CFLP(FD), a concrete instance of
constraint functional logic programming over the finite domain FD of integer numbers. In
Sections 3 and 4 we introduce and enrich the presentation of the generic CFLP(D) scheme
[9] underlying the implementation of the T OY system [11], now with concurrent features.
Finally, Section 5 summarizes some conclusions and plans for future work.

2 An Example of Concurrent Execution in CFLP(FD)

For a first impression of our proposal of a concurrent operational model in constraint
functional logic programming, we consider the following conditional (⇐) rewriting rules
(→) with constraints over the constraint finite domain FD of integers defining a simple
CFLP(FD)-program to compute Fibonacci numbers:
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fib (0) → 1
fib (1) → 1
fib (N) → fib (N − 1) + fib (N − 2) ⇐ N ≥ 2

From this program, we want to compute all the values for the variable X from the user-defined
constraint fib (X) ≤ 2 (i.e., the values 0, 1 and 2 for X). We propose a concurrent operational
semantics to improve the efficiency of the sequential T OY(FD) system [11] implementing
CFLP(FD). This enhanced operational semantics begins separating (we use the symbol ‘2’
for this purpose) the initial goal fib (X) ≤ 2 into the evaluation of a function call fib (X)→ R

and a solved constraint store with a primitive constraint R ≤ 2, introducing a logical variable
R for communication and synchronization between both parts:

fib (X)→ R 2 R ≤ 2

The new system tries to concurrently evaluate both parts: the function call fib (X)→ R by
demand-driven narrowing [12] (i.e., a combination of lazy rewriting ‘→’ and unification ‘7→’
by substitutions) for each of the three (variable-renamed) program rules, and the primitive
constraint R ≤ 2 by the FD-constraint solver of SICStus Prolog underlying T OY(FD) [11]:

1. First program rule: fib (0)→ 1
In order to evaluate the function call fib (X)→ R, the first program rule can be applied
to instantiate the argument X to 0 (indicated in the goal by the separation symbol ‘2’
and the unification substitution {X 7→ 0}) and to store the corresponding rewriting result
1 in the logical variable R:

1→ R 2 R ≤ 2 2 {X 7→ 0}

Now, we can reduce R to 1 and apply the accumulated substitution {R 7→ 1, X 7→ 0} to
instantiate the constraint R ≤ 2. Then, the FD-constraint solver checks the satisfiability
of the instantiated store 1 ≤ 2. Thus, the first answer computed by constrained demand-
driven narrowing is {X 7→ 0}:

2 1 ≤ 2 2 {R 7→ 1, X 7→ 0} ⇒ σ1 = {X 7→ 0} (First computed answer)

2. Second program rule: fib (1)→ 1
Concurrently, X can be also instantiated to 1 in our computational model, and then the
second program rule can be applied to compute the second answer:

1→ R 2 R ≤ 2 2 {X 7→ 1}
2 1 ≤ 2 2 {R 7→ 1, X 7→ 1} ⇒ σ2 = {X 7→ 1} (Second computed answer)

3. Third program rule: fib (X) → fib (X − 1) + fib (X − 2) ⇐ X ≥ 2
Also concurrently, a variable-renamed variant of the third program rule can be applied to
the goal, resulting in the evaluation of two new fib function calls:

fib (X − 1) + fib (X − 2)→ R 2 X ≥ 2, R ≤ 2
fib (X − 1)→ R1, fib (X − 2)→ R2 2 X ≥ 2, R1 +R2 = R, R ≤ 2

In this third case (3), our enhanced version of the T OY(FD) system explores concurrently
two possible ways to efficiently compute more answers, according to the two possible
flows of communication and synchronization (i.e., instantiation of the common logical
variables X, R1, R2 and R) between the mechanisms of demand-driven narrowing and
constraint solving, differing in their length (and therefore in efficiency) due to the different
concurrent interleavings of both computational mechanisms.
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3.1 From narrowing to constraint solving: In this first case, closer to the sequential
execution of the T OY(FD) system [11], our operational model evaluates concurrently
the function calls fib (X − 1) and fib (X − 2) (or equivalently, the flattened and
standardized forms fib (N1) and fib (N2) with new constraints N1 = X − 1 and
N2 = X − 2, respectively, in the common constraint store) by applying again a
combination of demand-driven narrowing and constraint solving. For example, the
system can compute the value {X 7→ 2} for X applying concurrently the second and
the first program rules, respectively, to compute {N1 7→ 1} and {N2 7→ 0}, and then
applying the constraint solver to 1 = X − 1 and 0 = X − 2. Then, the corresponding
result 1 will be stored in the logical variables R1 and R2:
1→R1, 1→R2 2X ≥ 2, R1 +R2 =R, R≤ 2, 1 =X−1, 0 =X−22 {N1 7→ 1, N2 7→ 0}
1→R1, 1→R2 2R1 +R2 =R, R≤ 22 {N1 7→ 1, N2 7→ 0X 7→ 2 }

To ensure the consistency of this evaluation process by the demand-driven narrowing
computation, our concurrent operational model has to protect (or suspend) the eva-
luation of variables R1 and R2 from the action of the constraint solver in favour of
an evaluation only by narrowing to compute {R1 7→ 1, R2 7→ 1} from 1→R1 and
1→R2. Analogously, since we want to compute values {N1 7→ 1, N2 7→ 0} for the
variables N1 and N2 by narrowing, we also need to protect both variables from the
action of the constraint solver (this is the so-called flex narrowing option in this work).
Finally, since both processes are synchronized by sharing the common constraint store
that contains R1 +R2 = R, R ≤ 2, and we have computed by narrowing the values
{R1 7→ 1, R2 7→ 1}, the constraint solver can compute now the substitution {R 7→ 2}
and offer to the user the third computed answer {X 7→ 2}:
2 1 + 1 = R, R ≤ 2 2 {N1 7→ 1, N2 7→ 0, X 7→ 2, R1 7→ 1, R2 7→ 1}
2 2 ≤ 2 2 {N1 7→ 1, N2 7→ 0, X 7→ 2, R1 7→ 1, R2 7→ 1, R 7→ 2} ⇒ σ3 = {X 7→ 2}

At this point, the narrowing computation in T OY(FD) performs an infinite and
useless “trial and error” generation of other possible values for X to find new possible
answers. For example, alternatively applying the first and second program rules it is
possible to compute other values for N1 and N2 due to the concurrent evaluation of
fib (N1) and fib (N2): {N1 7→ 0, N2 7→ 0}, {N1 7→ 0, N2 7→ 1} or {N1 7→ 1, N2 7→ 1}.
All of these concurrent processes only obtain inconsistent values for X from N1 = X−1
and N2 = X − 2 and must be discarded. Moreover, for each application of the third
program rule, we have to evaluate two new function calls fib in order to infinitely
compute concrete values for R1 and R2, and to check that each concrete instance of
the constraint store R1 + R2 = R, R ≤ 2 fails. How can our concurrent operational
model efficiently help to prevent this infinite and useless search space generated by
narrowing? This is the main idea of our paper:

3.2 From constraint solving to narrowing: In this case, our concurrent operational
model needs to protect (or suspend) variables N1 and N2, now from the narrowing
action (this is the so-called rigid narrowing or residuation option in this work). Then,
as an important difference with respect to (3.1), the solver allows to solve the constraint
X ≥ 2 to generate and assign directly to the variables X, N1 =X − 1 and N2 =X − 2
only correct integer values: {X 7→ 2, N1 7→ 1, N2 7→ 0}, {X 7→ 3, N1 7→ 2, N2 7→ 1},
{X 7→ 4, N1 7→ 3, N2 7→ 2}, etc. For each of these possible values, the system creates
a process and awakes simple concurrent applications of rewriting (instead of expensive
“trial and error” applications of narrowing as we have seen in (3.1)). For example, for
the values {X 7→ 2, N1 7→ 1, N2 7→ 0} the concurrent system computes the same third
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answer {X 7→ 2} in less time. For any other value X ≥ 3, this process is free to use,
concurrently, efficient FD-constraint solving techniques [1, 4] to add directly to the
constraint store R1 +R2 > 2. Then, the solver fails checking the extended common
constraint store R1 +R2 > 2, R1 +R2 = R, R ≤ 2 and stops the generation of more
values for X. Moreover, since the goal solving processes share the same constraint
store, the (3.2) option kills automatically all the remaining active processes in the
(3.1) option, avoiding the generation of an infinite and useless narrowing computation.
In conclusion, in this case constraint solving has helped to efficiently compute the last
answer, and at the same time has reduced the search space generated by narrowing.

3 Concurrent Constraint Functional Logic Programming

In this section we give a revised summary of the generic CFLP(D) scheme [9] underlying
our proposal of a concurrent system for multiparadigm logic programming.

3.1 Expressions, Patterns, and Constraints
A signature is a tuple Σ = 〈DC ,FS〉 where DC =

⋃
n∈N DCn and FS =

⋃
n∈N FSn are

families of countably infinite and mutually disjoint sets of data constructors and evaluable
function symbols. Evaluable functions can be further classified into domain dependent
primitive functions PFn ⊆ FSn (e.g., +, ≤ ∈ PF2) and user defined functions DFn = FSn

\ PFn for each arity n ∈ N (e.g., fib ∈ DF1). We also assume a countably infinite set Var
of variables X,Y, . . . and a set U of primitive elements u, v, . . . (as e.g., the set Z of integer
numbers).

Expressions e, e′ ∈ Exp(U) have the syntax e ::= ⊥ | u | X | h | (e e′), where ⊥ is a
special symbol in DC 0 to denote an undefined data value, u ∈ U , X ∈ Var , and h ∈ DC
∪ FS . The following classification of expressions is useful: X em with X ∈ Var and m ≥ 0
is called a flexible expression, while u ∈ U and h em with h ∈ DC ∪ FS are called rigid
expressions. Moreover, a rigid expression h em is called active if and only if h ∈ FSn and
m ≥ n, and passive otherwise. The occurrence of a symbol is passive if and only if is a
primite element u ∈ U or is the root symbol h of a passive expression (a symbol used in this
sense is called a passive symbol). Another class of expressions are Patterns s, t ∈ Pat(U),
built as t ::= ⊥ | u | X | c tm | f tm, where c ∈ DCn (m ≤ n) and f ∈ FSn (m < n).

For every expression e, the set of positions in e is inductively defined as follows: the
empty sequence identifies e itself, and for every expression of the form hem, the sequence
i · q, where i is a positive integer not greater than m and q is a position, identifies the
subexpression of ei at q. The subexpression of e at p is denoted by e|p and the result of
replacing e|p with e′ in e is denoted by e[e′]p. If e is a linear expression (without repeated
variable occurrences), pos(X, e) will be used for the position of the variable X occurring in
e. Substitutions σ ∈ Sub(U) are mappings σ : V → Pat(U) extended homomorphically to
σ : Exp(U)→ Exp(U). We define the domain Dom(σ) of a substitution σ as the collection of
variables that are not mapped to themselves.

A constraint domain D provides a set of specific data elements u ∈ U along with certain
primitive functions p ∈ PF operating on them. For example, the constraint finite domain
FD [4, 9] can be formalized as a structure with carrier set consisting of patterns built from
the symbols in a signature Σ and the set of primitive elements Z. Symbols in Σ are intended
to represent data constructors (e.g., the list constructors), domain specific primitive functions
(e.g., addition and multiplication over Z), and user defined functions. Constraints have the
syntactic form p en, with p ∈ PFn a primitive relational symbol and en ∈ Exp(U) (e.g.,
fib (X) ≤ 2, X ≥ 2 or R1 +R2 = R in infix notation).
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3.2 Programs and Constrained Definitional Trees
In the sequel, we assume an arbitrarily fixed constraint domain D built over a set of primitive
elements U . In this setting, a program is a set of constrained rewrite rules that defines the
behavior of possibly higher-order and/or non-deterministic lazy functions over D, called
program rules. More precisely, a program rule R for f ∈ DFn has the form f tn → r ⇐ P 2C

(abbreviated as f tn → r if P and C are both empty; see Section 2) and is required to satisfy:

The left-hand side f tn is a linear expression with tn ∈ Pat(U), and the right-hand side
r ∈ Exp(U).
P is a finite sequence of so-called productions of the form ei → Ri (1 ≤ i ≤ k), intended
to be interpreted as a conjunction of local definitions with no cycles [9]. For all 1≤ i≤ k,
ei ∈Exp(U), and Ri /∈Var(f tn) are different variables.
C is a finite set of constraints, also intended to be interpreted as a conjunction, and
possibly including occurrences of user-defined function symbols.

Tτ is a constrained Definitional Tree over D (cDT (D) for short) with call pattern τ (a
linear pattern of the form ftn, where f ∈DFn and tn ∈Pat(U)) if its depth is finite and one
of the following cases holds for the rules of a program P:

Tτ ≡ rule(τ → r1 ⇐ P1 �C1 ‖ . . . ‖ rm ⇐ Pm �Cm), where τ → ri ⇐ Pi �Ci for all
1 ≤ i ≤ m are variants of overlapping program rules in P.
Tτ ≡ case(τ,X, op, [T1, . . . , Tk]), where X is a variable in τ , op ∈ {flex, rigid, flex/rigid},
h1, . . . , hk (k > 0) are pairwise different passive symbols of P, and for all 1 ≤ i ≤ k, Ti
is a cDT (D) with call pattern τσi, where σi = {X 7→ hiY mi} with Y mi new distinct
variables such that hiY mi ∈ Pat(U).

A Tf of a function symbol f ∈ DFn defined by a program P is a cDT (D) with call pattern
fXn, where Xn are new variables, and the collection of all the program rules obtained from
the different rule nodes equals, up to variants, the collection of all the program rules defining
f in P.

3.3 Goals and Answers
A goal G for a program has the general form P �C �S �σ, where the separation symbol
‘� ’ must be interpreted as a conjunction, and:

P ≡ e1 → R1, . . . , en → Rn is a finite conjunction of so-called productions, where each Ri
is a distinct variable and ei is an expression (we call these productions suspensions), or a
pair of the form < τ, T > with τ an instance of the call pattern in the root of a cDT (D)
T (we call these productions demanded productions). The set of produced variables is
PVar(P ) =def {R1, . . . , Rn} (e.g., R, R1 and R2 in Section 2).
C ≡ δ1, . . . , δk is a finite conjunction of constraints (possibly including user-defined
function symbols; e.g., fib (X) ≤ 2 in the initial goal of Section 2).
S ≡ π1, . . . , πl is a finite conjunction of primitive constraints (i.e., constraints with only
pattern arguments; e.g., R ≤ 2), called constraint store.
σ ∈Sub(U) is an idempotent substitution called answer substitution such that Dom(σ)∩
Var(P � C � S) = ∅.

A solved goal is a goal � �S �σ in which P and C are empty, and identifies an answer S �σ
(or simply σ, as we have seen in Section 2). We say that X ∈ Var(G) is a demanded variable
in G if and only if one of the following cases holds:
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160 A Concurrent Operational Semantics for CFLP(D)

1. Any substitution that is a solution of S cannot bind X to the undefined value ⊥ (shortly,
X ∈ DVarD(S)). For example, R ∈ DVarFD(R ≤ 3).

2. There exists a suspension (Xak → R) ∈ P such that k > 0 and R is a demanded variable
in G (this case is only necessary to deal with higher-order [9]).

3. There exists a demanded production (< e, case (τ, Y, op, [T1, . . . , Tk]) > → R) ∈ P such
that X = e|pos(Y,τ) and R is a demanded variable in G (see e.g., N1 and N2 in (3.1) and
(3.2)). If op in the branch node is of type flex, the variable X is called a flex variable
(e.g., N1 and N2 in (3.1)). Otherwise, the variable X is called a rigid variable (e.g., N1
and N2 in (3.2)).

4 A Concurrent Operational Semantics for CFLP(D)

In this section we present a set of concurrent goal transformation rules of the form G `̀ R ‖ki=1
Gi, specifying all the possible concurrent evaluations (‖ki=1) of subgoals Gi obtained by
applying a rule R of goal solving (`̀ R) to a goal G in our concurrent operational semantics
for the CFLP(D) scheme. All these rules (formally presented in Figures 1 and 2) have been
implemented in the T OY system [11] and are implicitly applied in our running example
of Section 2. We refer the reader to that section for detailed examples illustrating the
application of all these rules. We write G `̀ ∗ ‖ki=1 Gi to represent concurrent derivations,
given by the successive application (`̀ ∗) of concurrent goal transformation rules from G.
For example, the concurrent derivation G `̀ ∗G′1 ‖G21 ‖ G22 represents the concurrent goal
transformation steps G `̀ G1 ‖G2 with G1 `̀ G′1 and G2 `̀ G21 ‖G22.

Each time a goal G contains the conjunction of two or more atomic statements that
could be concurrently evaluated (e.g., two or more productions), our operational model
creates concurrent goal solving processes, each of one consisting of an atomic statement
from G, together with the necessary information for an adequate and consistent demand-
driven evaluation applying a concurrent goal transformation rule (i.e., the sets of produced,
demanded, rigid and flex variables). Moreover, for synchronization and in order to properly
combine the possible computed answers from subgoal processes, as well as the cases in which
processes remain suspended (indicated by the symbol 	) or fail (indicated by the symbol �),
new subgoals must share the constraint store of the main goal G.

4.1 Concurrent Demand-Driven Narrowing and Residuation
We start with a suspension e → R representing the computation of a function call, for
example fib (X) → R, where e has a user-defined function symbol f in the root (e.g., fib)
and R is a demanded variable (e.g., by the constraint store R ≤ 2). Then, the rule DT (see
Figure 1) is applicable, awakening the suspension e→R, decorating e with an appropriate
cDT (D) Tf (e.g., Tfib given in Section 3), and introducing a new demanded production
< e, Tf >→R into the goal. If the function call is not demanded (i.e., R is not a demanded
variable), this computation remains suspended (	) until the variable R disappears from
the goal (and then the suspension can be eliminated) or R becomes demanded. The goal
transformation rules for demanded productions < e, Tf > → R encode the demand-driven
narrowing strategy [12] guided by the constrained definitional tree Tf , now in a concurrent
setting:

If Tf is a rule tree, then the transformation RRA can be concurrently applied (‖ki=1) for
each of the k available overlapping program rules for rewriting e, introducing appropriate
suspensions and constraints into the new subgoals so that a demand-driven evaluation
can be ensured.
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DT Definitional Tree

fen → R,P �C�S�σ `̀ DT

{
< fen, TfXn >→ R,P �C�S�σ if R ∈ DVarD(P �S)

	 if R /∈ DVarD(P �S)

}

if f ∈ DFn, and all variables in T
fXn

are new variables.

RRA Rewrite Rule Application
< fen, rule (ftn → r1 ⇐ P1�C1 ‖ . . . ‖ rk ⇐ Pk �Ck) >→ R,P �C �S�σ `̀ RRA

‖ki=1 en → tn, ri → R,Pi, P � Ci, C � S � σ

CSS Case Selection
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C�S�σ `̀ CSS < e, Ti >→ R,P �C�S�σ

if e|pos(X,τ) = hi . . . with 1≤ i≤ k given by e, and hi is the passive symbol associated to Ti.

CC Case non-Cover
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ CC �

if e|pos(X,τ) =h. . . is a passive symbol h /∈{h1, . . . , hk}, being hi the passive symbol associated to Ti.

DN Demand Narrowing
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DN

e|pos(X,τ) → R′, < e[R′]pos(X,τ), case (τ,X, op, [T1, . . . , Tk]) >→ R,P � C �S�σ

if e|pos(X,τ) = g . . . with g ∈ FS active (primitive or defined function), and R′ a new variable.

DP Demand Produced Variable
< e, case (τ,X, op, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DP	

if e|pos(X,τ) = Y with Y ∈ PVar(P ).

DR Demand Residuation
< e, case (τ,X, rigid, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DR 	

if e|pos(X,τ) = Y with Y /∈ PVar(P ).

DI Demand Instantiation
< e, case (τ,X,flex, [T1, . . . , Tk]) >→ R,P �C �S�σ `̀ DI

‖ki=1 (< e, Ti >→ R,P �C �S)σi�σσi
if e|pos(X,τ) = Y with Y /∈PVar(P ), and σi = {Y 7→ hiY mi} with hi (1≤ i≤ k) the pas-
sive symbol associated to Ti, and Y mi are new variables.

Figure 1 Rules for concurrency in constrained demand-driven narrowing and residuation.

If Tf is a case tree, one of the transformations CSS, CC, DN, DP, DR or DI must be
applied, according to the kind of symbol h occurring in e at the case-distinction position
pos(X, τ):

If h is a passive symbol hi, then CSS selects the appropriate subtree Ti (otherwise
CC fails �).
If h is an active primitive or defined function symbol g, then DN introduces a new
demanded suspension in the goal to evaluate e|pos(X,τ).
If h is a produced variable Y , the goal must remain suspended (	) using DP until a
concurrent process of the computation evaluates Y .
If Y is a non-produced variable, there are two possibilities:
∗ If the branch node has the option rigid (or flex/rigid), we must suspend the

evaluation (	) using DR until the variable has been bound, for example, by the
action of the constraint solver (as we have seen in (3.2) for N1 and N2, and we
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AC Atomic Constraint
P � pen, C�S�σ `̀ AC ‖ni=1 ei → Xi, P �C� pXn, S�σ

if p ∈ PFn, pen is a constraint, and Xn are new variables.
CS Constraint Solving

P �C�S�σ `̀ CS{χ} ‖ki=1

 (P �C)σi�Si�σσi if (i) or (ii) or (iii) in Section 4.2

	 otherwise


if SolverD(S, χ) =

∨k

i=1(Si�σi) with χ =def PVar(P ) ∪ FVar(P ).
SF Solving Failure

P �C �S�σ `̀ SF{χ} � if SolverD(S, χ) = fail.

Figure 2 Rules for concurrent constraint solving.

will formalize in the next subsection). This case corresponds to the computational
principle of declarative residuation [6].

∗ If the branch node has the option flex (or flex/rigid), then DI selects concurrently
(‖ki=1) each subtree Ti, generating an appropriate binding σi for Y (as e.g., for N1
and N2 in (3.1)).

4.2 Concurrent Constraint Solving
The goal transformation rules concerning concurrent constraint solving (see Figure 2) are
designed to concurrently combine the evaluation of (primitive or user-defined) constraints
with the action of a constraint solver over the given domain. The first rule AC evaluates
non-primitive constraints pen (e.g., fib (X) ≤ 2) by performing a concurrent evaluation (‖ni=1)
of their arguments ei in suspensions ei → Xi, and introducing a flattened primitive constraint
pXn into the common constraint store, with new logical variables Xn for the communication
and synchronization among all these concurrent goal solving processes.

For the evaluation of primitive constraints in a constraint domain D we postulate a
constraint solver of the form SolverD(S, χ), which can reduce any given finite conjunction
of primitive constraints S representing the constraint store of the goal into an equivalent
simpler solved form. The constraint solver needs to take proper care of a selected set of
so-called critical (or protected) variables χ =def PVar(P ) ∪ FVar(P ) occurring in S to ensure
a correct demand-driven evaluation (see variables R1, R2 and N1, N2 in (3.1) and (3.2) of
Section 2). We require that any solver invocation returns a finite disjunction of k simpler
solved form alternatives Si �σi. Then, the rule CS describes the possible concurrent (‖ki=1)
evaluations of a single goal by a solver’s invocation for each possible alternative solved form
computed by the constraint solver. To avoid deadlock situations, we require solvers to have
the ability to compute and discriminate a distinction of the following cases and situations for
each concurrent solved form alternative (illustrated by (3.1) and (3.2) in Section 2):

(i) A suspended production (	) (e.g., suspended by the DT rule) with a non-demanded
critical variable at the right-hand side may be now demanded (and then activated) by
the new constraint store Si of some alternative Si �σi (formally, DVarD(Si) ∩ χ 6= ∅), or

(ii) A suspended demanded production (	) (for example, suspended by the DR rule) could
be activated by applying σi to instantiate a rigid and not produced variable in this
production (i.e., Dom(σi)∩RVar(P ) 6= ∅), or

(iii) A suspended production (	) could be irrelevant for the new constraint store Si (i.e.,
Var(Si) ∩ χ = ∅) and then has to be eliminated.
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For any other situation, the corresponding goal solving process must be suspended (	)
by the action of the constraint solver. Additionally, the failure rule SF is used for failure
detection (�) in the constraint solving process.

4.3 Soundness and Completeness
We conclude this section with the main theoretical result of the paper ensuring soundness
and completeness for concurrent CFLP(D)-derivations w.r.t. the declarative semantics of the
CFLP(D) scheme formalized in [5, 9] by means of a Constraint Rewriting Logic CRWL(D).

I Theorem 1 (Soundness and Completeness). Let S �σ be an answer of G.

(a) Soundness: If G `̀ ∗ ‖ki=1 Gi is a concurrent derivation from G of a finite number k of
goals Gi, for each Gi ≡ � �Si �σi a solved goal, Si �σi is an answer of the initial goal
G. Formally, SolD (Gi) ⊆ SolP (G).

(b) Completeness: There exists a concurrent derivation G `̀ ∗ ‖ki=1 Gi, ending with a
finite number k of solved goals Gi ≡ � �Si �σi, that covers all the solutions of the initial
answer S �σ. Formally, SolP (G) ⊆

⋃k
i=1 SolD (Gi).

5 Conclusions and Future Work

The set of transformation rules presented in Section 4 provides a sound and complete ope-
rational model to describe a concurrent CFLP(D) scheme as a novel generalization of the
classical CLP(D) scheme useful for concurrent functional and constraint logic programming.

We are currently investigating other practical instances of constraint domains (e.g., linear
and non-linear arithmetic constraints over real numbers) and the cooperative integration
of more efficient constraint solving methods into our concurrent system (e.g., based on the
ILOG CP technology [1] or using declarative modeling languages such as OPL).
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