
A Tool for the Certification of Sequential
Function Chart based System Specifications
Jan Olaf Blech

fortiss GmbH
Guerickestr. 25, 80805 Munich, Germany

Abstract
We describe a tool framework for certifying properties of sequential function chart (SFC) based
system specifications: CertPLC. CertPLC handles programmable logic controller (PLC) de-
scriptions provided in the SFC language of the IEC 61131–3 standard. It provides routines to
certify properties of systems by delivering an independently checkable formal system description
and proof (called certificate) for the desired properties. We focus on properties that can be de-
scribed as inductive invariants. System descriptions and certificates are generated and handled
using the Coq proof assistant. Our tool framework is used to provide supporting evidence for
the safety of embedded systems in the industrial automation domain to third-party authorities.
In this paper we focus on the tool’s architecture, requirements and implementation aspects.

Digital Object Identifier 10.4230/OASIcs.SSV.2011.57

1 Introduction

Discovering and validating properties of safety critical embedded systems has been a research
topic during the last decades. Automatic verification tools based on model checking and
static analysis techniques are used in various software and hardware development projects.
Automatic verification tools are successfully applied to increase confidence in the system
design. However, even the verdicts about systems provided by automatic verification tools
may be erroneous, since automatic verification tools are likely to contain errors themselves:
they use sophisticated algorithms, resulting in complicated implementations. Due to this
high level of complexity of their algorithms and the underlying theory, they are hardly ever
considered as trustable by certification authorities.

In contrast to general purpose higher-order theorem provers, an automatic verification
tool possesses a high degree of automation, but it does not achieve the same level of trusta-
bility and is usually specialized towards a problem-specific domain. Higher-order theorem
provers, like Coq [13], are based on a few deduction rules and come with very small, simple,
and trusted proof checkers which are based on type checking algorithms and provide a high
level of confidence.

For this reason we provide a verification / certification environment based on higher-
order theorem provers. It may be used to re-check properties that have been discovered by
automatic verification tools or stated by humans in the first place. If such a check is run
successfully in the higher-order theorem prover one lifts these properties to the high level of
confidence provided by the higher-order theorem prover.

Based on our ideas on certification of properties for a modeling language [8] and our
work on a certificate generating compiler [5] we present a tool framework CertPLC which
emits certificates and allows reasoning about properties of models for programmable logic
controller (PLC) provided in the sequential function chart (SFC) language of the IEC 61131–
3 standard [17]. Our work comprises a generation mechanism for Coq representations
of our models – a kind of compiler that emits Coq readable files for given models. In

© Jan Olaf Blech;
licensed under Creative Commons License NC-ND

6th International Workshop on Systems Software Verification (SSV’11).
Editors: Jörg Brauer, Marco Roveri, Hendrik Tews; pp. 57–70

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/OASIcs.SSV.2011.57
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

58 Certification of SFC

addition to this, it comprises other related proof generation mechanisms and a framework
for supporting proofs that properties of these models do hold. Our Coq certificates – system
description, properties and their proofs – are based on an explicit semantics definition of the
SFC language, thereby ensuring that correctness conditions hold for the system described
in the certificate.

The Coq environment has been accepted by French governmental authorities in a certi-
fication to the highest level of assurance of the Common Criteria for Security [12].

In this paper we focus on the following aspects of the CertPLC tool framework:
– tool architecture,
– proof generation and the construction of certificates,
– and additional implementation issues.

Furthermore, we give an overview on usage scenarios, the formalized SFC semantics and
present and discuss general characteristics of the methodology. A long version of this paper
is available as a report [4]. In the current state of implementation the tool framework
is applicable for standard PLC described using SFC. An exemplary usage with another
language: function block diagrams (FBD) is also described to illustrate the flexibility of the
described framework. The support of other languages and a detailed investigation of case
studies are not subjects of this paper.

Our certification framework is mostly characterized by:
– The usage of an explicit semantics for properties and systems. This is human

readable, an important feature to convince certification authorities.
– The focus on the PLC domain and the integration in an existing tool.
– A high degree of automation – compared to other work using higher-order theorem
provers, that still allows human interaction.

– The integration into an existing tool for graphically designing PLC: EasyLab [2]. The
high expressiveness of our semantics framework is largely facilitated by the usage of a higher-
order theorem prover.

1.1 Certification
In the context of this paper we define

certification as the process of establishing a certificate.
automatic certification is the process of establishing a certificate automatically.
In our work certificates comprise a formal description of a system, a formal description
of a desired property and a proof description (a proof script or a proof term) that this
property does hold.
certificate checking is the process of checking that the property does indeed hold for the
formal system description in the certificate. This checking is done by using the proof
description in the certificate.

1.2 The Trusted Computing Base in Certification
Apart from components like operating system and hardware, in our certification approach,
the trusted computing base (TCB) comprises the certificate checker (the core of the Coq
theorem prover) and the program that generates formal PLC descriptions for Coq auto-
matically. The check that these descriptions indeed represent the original PLC can be done
manually. One goal for the generation is human readability to make such a check feasible at
least for experienced users. Not part of the TCB are the proof description and its generation
mechanism. The proof description only provides hints to the certificate checker. In case of

J. O. Blech 59

faulty proof descriptions a valid property might not be accepted by a certificate checker. It
can never occur that a faulty property is accepted even if wrong proof descriptions are used.
Thus, our approach is sound, but not necessarily complete.

1.3 Related Work
Notable milestones on frameworks to certify properties of systems comprise proof carrying
code [16]. Proofs for program-specific properties are generated during the compilation of
these programs. These are used to certify that these properties do indeed hold for the
generated code. Thus, users can execute the certified code and have, e.g., some safety
guarantees. At least two problems have been identified:
1. Properties have to be formalized with respect to some kind of semantics. This is some-

times just implicitly defined.
2. Proof checkers can grow to a large size. Nevertheless, they have to be trusted.
The problem of trustable proof checkers is addressed in foundational proof carrying code
[1, 22]. Here the trusted computing base is reduced by using relatively small proof checkers.
The problem of providing a proof carrying code approach with respect to a mathematically
founded semantics is addressed in [20]. In previous work we have also addressed the problem
of establishing a formal semantics for related scenarios [5, 8].

Formal treatment of PLC and the IEC 61131–3 standard has been discussed by a larger
number of authors before. Formalization work on the semantics of the Sequential Function
Charts is given in [10, 11]. This work was a starting point for our formalization of SFC
semantics.

The paper [3] considers the SFC language, too. Untimed SFC models are transformed
into the input language of the Cadence SMV tool. Timed SFC models are transformed into
timed automata. These can be analyzed by the Uppaal tool.

Another language of the IEC 61131–3 standard used for specifying PLC are function
block diagrams (FBD). Work in the formal treatment of FBD can be found in [23]. The
FBD programs are checked using a model-checking approach. A Coq formalization of
instruction lists (IL) – also part of the IEC 61131–3 standard – is presented in [18].

The approach presented in [21] regards a translation from the IL language to an inter-
mediate representation (SystemC). A SAT instance is generated out of this representation.
The correctness of an implementation is guaranteed by equivalence checking with the spec-
ification model.

1.4 Overview
We present the IEC 61131–3 standard, including the SFC language and its semantics as
formalized in Coq in Section 2. The tool environment in which our CertPLC tool frame-
work is supposed to be used and an overview about the tool’s architecture is described in
Section 3. The CertPLC ingredients and their interactions are described in some detail in
Section 4. Typical proofs that can either be generated or hand-written by using our seman-
tics are discussed in Section 5. Finally, an implementation overview and a short evaluation
is given in Section 6. A conclusion is featured in Section 7.

2 IEC 61131–3, SFC, Semantics and Certification

In this section we sketch the semantics of sequential function charts (SFC). The description in
this section is based on our earlier work [6] which is influenced by the descriptions in [10, 11].

SSV’11

60 Certification of SFC

Figure 1 A loop in the SFC language.

Furthermore, we present some work on the integration of function block diagrams (FBD)
into our tool framework.

2.1 The SFC Language
Our tool framework works with PLC described in the SFC language. The SFC language
is a graphical language for modeling PLC. It is part of the IEC 61131–3 standard and
frequently used together with other languages of this standard. In such a case, SFC are
used to describe the overall control flow structure of a system. The standard is mainly used
in the development of embedded systems in the industrial automation domain.

The standard leaves a few semantical aspects open to the implementation of the PLC
modeling and code generation tool. In cases where the semantics is not well defined by the
standard we have adapted our tool to be compatible with the EasyLab [2] tool.

Syntax

Syntactically we represent an SFC as a tuple (S, S0, T, A, F, V, ValV). It comprises a set of
steps S and a set of transitions T between them. A step is a system location which may
either be active or inactive in an actual system state, it can be associated with SFC action
blocks from a set A. These perform sets of operations and can be regarded as functors that
update functions representing memory. The mapping of steps to sets of action blocks is done
by the function F . Memory is represented by a function from a set of variables V to a set
of their possible values ValV . S0 ⊆ S is the set of initially active steps.

A transition is a tuple (Sin, g, Sout). It features a set of states that have to be enabled
Sin ⊆ S in order to take the transition. It features a guard g that has to be evaluated to
true for the given system state. g is a function from system memory to a truth value – in
Coq we formalize this as a function to the Prop datatype. A transition may have multiple
successor steps Sout ⊆ S. The types ValV that are formalized in our SFC language comprise
different integer types and boolean values.

Figure 1 shows an example SFC structure realizing a loop with a conditional branch.
The execution starts with an initialization step Init. After it has been processed control may
pass to either Step2 or to a step Return. Once Step2 has been processed control is passed
to Init again.

Please note, that in addition to loops and branches SFC allow for the formalization of

J. O. Blech 61

parallel processing and synchronization of control. This is due to the multiple successor and
predecessor steps in a transition.

Semantics

Semantically the execution of an SFC encounters states, which are (m, a, s) tuples. They
are characterized by a memory state m, the function from variables to their values, a set of
active action blocks a that need to be processed and a set of active steps s.

The semantics is defined by a state transition system which comprises two kinds of rules:
1. A rule for processing of an action block from the set of active action blocks a. This

corresponds to updating the memory state and removing the processed action block
from a.

2. A rule for performing a state transition. The effect on the system state is that some
steps are deactivated, others are activated. Each transition needs a guard that can be
evaluated to true and a set of active steps. Furthermore, we require that all pending
action blocks of a step that is to be deactivated have been executed.

It is customary to specify the timing behavior of a step by time slices: a (maximal)
execution time associated with it. In our work, this is realized using special variables that
represent time.

2.2 The FBD Language
Function block diagrams are a language from the IEC 61131–3 standard used to model
the behavior of action blocks in SFC. Other languages that may be used for this purpose
comprise instruction lists (IL) and ladder diagrams (LD).

FBD comprise two basic kinds of elements: function blocks and connections between
them. Each function block represents an instruction. There are special instructions for
reading and writing global variables. Edges between function blocks are used to model
dataflow. Thus, FBD are used to describe functions.

Apart from the basic functionality, FBD may contain cycles in their dataflow description.
Semantically such a cycle must feature a delay element. Variable values associated with such
an FBD are computed in an iterative process.

In the case of cyclic dependencies an FBD has to be associated with a time slice, a
maximal time – number of iterations – for the execution of the FBD. Thus, on an abstract
level, FBD may still be regarded as functions and as SFC action blocks.

We have formalized an FBD syntax and semantics framework in Coq that follows the
description above. Most parts of this, however, are only to be used manually by users who
manually change system descriptions and corresponding proofs.

3 The Tool Setting

In this section we describe our CertPLC tool’s architecture and usage scenarios. Figure 2
shows the CertPLC ingredients and their interconnections. In an invocation of the tool
framework an SFC model is given to a

representation generator which generates a Coq representation out of it. This is
included in one or several files containing the model specific parts of the semantics of the
SFC model. The Coq representation is human readable and can be validated against
the original graphical SFC specification by experienced users.

The same SFC model is given to a

SSV’11

62 Certification of SFC

CertPLC

representation generator proof generator

PLC model

(SFC)

basic properties
+

proofs
Coq representation

certificate

proofs + tactics

user defined properties

CertPLC CertPLC

Figure 2 CertPLC overview.

proof generator which generates Coq proof scripts that contain lemmas and their
proofs for some basic properties that state important facts needed for machine handling
of the proofs of more advanced properties.

In order to achieve a certificate one needs a property that the certificate shall ensure. One
needs to formalize this desired property. The property is proved in Coq by using either
a provided tactic or a hand written proof script. Our provided tactics use the generated
properties and their proofs – provided by the proof generator – and a collection of

proofs and tactics, a kind of library. It contains additional preproved facts and tactics
which may be used to automatically prove a class of properties.

System description, used lemmas and their proofs, and the property and its proof form a
certificate.

Furthermore, our tool framework comprises a Coq library that can be used by generated
and non-generated Coq files. It allows storage of often used definitions in addition to the
elements described so far. We have formalized some behavioral definitions of PLC blocks
which are typically modeled in other languages than SFC.

Usage Scenario
CertPLC is developed to support the following standard usage scenario:

A PLC is developed using the following work-flow:
1. Establishing requirements,
2. and derive some early formal specification.
3. Based on this specification the overall structure – e.g., the control flow – is specified

using the SFC language. More fine-grained behavioral aspects are textually specified,
e.g., by annotating the SFC structure.

4. Taking the requirements and this specification, developers potentially using the help
of automatic verification tools derive and specify consistency conditions and properties
that must hold. Some consistency conditions may directly correspond to a subset of
the requirements.

Regarding 3) the SFC structure is modeled in the graphical EasyLab tool or imported
into EasyLab.

J. O. Blech 63

Regarding 4) properties and SFC action blocks are specified using the Coq syntax by
trained developers. It is not required to do any proofs in Coq for this.
CertPLC generates representations for the PLC specification. Together with the prop-
erties a certificate is established automatically or with user interaction: the choice of
tactics and in some-cases hand-written proof script code.
The PLC development is further refined and fine grained parts may be implemented
using other languages from the IEC 61131–3 standard.
Certificates may be either regenerated – if possible – or manually adapted – in case of
unsupported language elements that may occur during the refinement – to cope with
possible changes.

The certificate can be distributed and analyzed independently by third parties. One overall
goal is to convince certification authorities and potential customers of the correctness of
PLC with the help of certificates. Since the certificates are independent of the original
development and its tools some confidential data (e.g., the certificate generation mechanism
and the analysis algorithms used to discover properties of the system) does not have to be
revealed during the process of convincing customers or certification authorities.

The described usage scenario can be adapted. It is, e.g., possible to integrate hand
written specifications and proofs.

4 The CertPLC Tool Environment and Coq

In this section we describe Coq specific parts of the CertPLC tool. We present some static
Coq code that is generic to our framework. Furthermore, we present some PLC specific
example Coq code – definitions and proofs – to demonstrate aspects of its generation.

Taking the semantics sketch of SFC in Section 2 the semantic representation of the SFC
structure is encoded in Coq as a transition system. For each given SFC SFC we generate
a Coq representation. It specifies a set of reachable states and a transition relation.

4.1 Realization Using Generic and Generated Files
In order to certify properties of PLC we need files that contain semantics of systems, inter-
esting properties and proofs of these properties. Some of these files are generic, i.e., they
can be used for a large class of PLC, properties, and proofs. CertPLC provides a library of
static files that contain generic aspects. Other files are highly specific to distinct PLC. For
each PLC CertPLC generates files that are just needed for this particular PLC, properties
formulated on it, and proofs that can be conducted on it.

In particular the following aspects are generic, thus, stored in static files:
Generic definitions and templates for SFC:

Datatype definitions and derived properties of these datatypes.
Definitions for building blocks: SFC action blocks, FBD blocks, and common combi-
nations of these blocks.
Generic semantics framework comprising an instantiable state transition relation and
a generic definition for a set of reachable states.

CertPLC is designed to support tactics for solving certain proof aspects. In particular
we distinguish:

Tactics that contain an overall proof structure, deal with certain system structures
and property structures.
Tactics that solve arithmetic constraints.

The following aspects are individual for each PLC, thus, they are generated:

SSV’11

64 Certification of SFC

A state transition like representation of SFC formalized using generic SFC definitions
and a concrete definition of reachable states instantiating a generic SFC definition.
Lemmas containing system-specific facts on the PLC and their proofs.

Furthermore, the properties that shall hold are of course specific to each PLC. Their verifi-
cation is done by either using a tactic that assembles the generic and non-generic parts of
the proof or by some hand-written proof script adaptations.

4.2 Generic / Static Parts of the Coq Infrastructure
Here we describe generic parts of the Coq parts in our CertPLC tool framework. These
are realized as static Coq files and can used by the dynamically created files.

Datatypes

Datatypes which we have formalized for SFC comprise integers of different length (8,16,32
bit, unbounded) and bools. In Coq they are stored using the datatype nat of natural
numbers plus a flag that tags them as being members of an integer type. Operators working
on these integers perform operations compliant with the type. An easy integration of other
bounded integer formalizations (as used e.g., in [15]) is also possible.

Other datatypes like floating point are seldomly used in PLC applications. They are
not yet supported, although they could be integrated relatively easy: The basic semantics
definitions in our framework are able to support a much richer type system, even dependent
datatypes.

Building Blocks

Building blocks define common elements for the construction of PLC. Two levels of building
blocks can be distinguished:

Function blocks that are intended to become part of FBD.
Predefined action blocks. These may be, but do not have to modeled using FBD.

As mentioned in Section 3 we have formalized some of these blocks. Further formalization
of blocks should be done together with new case studies since different application domains
have different sets of FBD and SFC elements. FBD elements that are highly specific to a
single application or an application domain are highly common in PLC. For FBD we have
experienced even vendor specific elements for the basic arithmetic operations.

Generic Semantics Framework

The Coq realization of the SFC syntax follows the description presented in Section 2. For
compatibility with the EasyLab tool and to ease generation we distinguish between steps
and step identifiers in our Coq files, thereby introducing some level of indirection. Most
importantly, our semantics framework comprises a template for a state transition relation of
PLC systems and a template for defining the set of reachable states. In order to realize this,
we first define generic instantiable predicates that formalize a state transition relation. We
provide a predicate executeAction defined in Figure 3 to give a look and feel. It formalizes
the effect of the execution of an action block: The predicate takes two states (sometimes
called configurations c and c′) and returns a value of type Prop. We require four conditions
to hold in order to take a state transition:
1. An action block a needs to be active.

J. O. Blech 65

Definition executeAction:
fun c c’ =>

let ’(m,activeA,activeS) := c in
let ’(m’,activeA’,activeS’) := c’ in

(exists a, In a activeA /\ m’ = a m /\
activeA’ = remove Action_eq_dec a activeA) /\
activeS = activeS’.

Figure 3 The executeAction predicate.

2. The memory mapping after the transition is the application of a to the previous memory
mapping. This is the updating of the memory by executing the action block.

3. The action block a is removed from the set of active action blocks during the transition.
4. The rest of the state does not change.
Another predicate stepTransition formalizes the effect of a transition from a set of SFC steps
to another. Here we require the following items:
1. The validity of the transition (guard expression).
2. The memory state may not change.
3. The activation of steps is conform to the semantics.
4. The activation and requirements of action blocks is semantics conform.

Using these predicates we define inductively the set of reachable states as a predicate.
It depends on an initial state (comprising a list of initially active steps), and a transition
relation. It is defined following the description in Section 2.

Structural Tactics

CertPLC supports structural tactics that perform the most basic operations for proofs of
properties. They work with semantics definitions based on our generic semantics framework.
Depending on the property such a tactic is selected by the user and applied as the first
step in order to prove the desired property. Different tactics have to be selected by the
user: Selection depends on whether the property is some kind of inductive invariant –
the default case mostly addressed in this paper – or another class of properties. We have
identified several other classes that are relevant for different application domains. Such a
tactic is applied as the first step in order to prove the desired property. These tactics already
perform most operations concerning the system structure. Especially for the non-standard
cases, tactics applications may leave several subgoals open. These may be handled with
more specialized tactics tailored for the corresponding characteristics of these proof-goals.

Arithmetic tactics

Arithmetics tactics solve subgoals that appear at later stages in the proof. They may be
called by structural tactics or work on open subgoals that are left open by these tactics.
They comprise classical decision procedures like (e.g., Omega [19] – its implementation in
Coq).

Up till now, we are only using existing tactics designed by others. However, we are
also working on tactics that combine arithmetic aspects with other system state dependent
information.

SSV’11

66 Certification of SFC

(Init::nil ,
fun m => ((fun (x : int16) => x <int16 10) (m VAR_x)),
Step2::nil)

(Step2::nil ,
fun m => ((fun (x : int16) => 1) (m VAR_x)),
Init::nil)

(Init::nil ,
fun m => ((fun (x : int16) => x >=int16 10) (m VAR_x)),
Return::nil)

Figure 4 Generated transition rules in Coq.

Lemma aux_1:
forall s, SFCreachable_states s -> (forall a, In a (snd s) ->

(a = action_Init \/ a = action_Step2)).

Figure 5 An automatically generated basic property.

4.3 Semantics Definitions as State Transition Systems
As seen in Section 4.2 we only need to instantiate a template in order to create a system
definition that captures the semantics of our PLC. We need to provide at least a set of
initially active steps, a transition relation, and action block definitions.

For the initial step, we provide an initial memory state, where all values are set to a
default value and a single active entry step.

The transition relation is generated by translating the SFC transition conditions into
Coq. The generated Coq elements of the transition relation for the SFC depicted in Figure 1
are shown in Figure 4. Three tuples are shown, each one comprises a set of activated source
steps, a condition and a set of target steps activated after the transition. It can be seen that
the condition maps a variable value mapping – part of the SFC state – to a truth condition
– returning the type Prop. The types used in this expression are 16-bit integer types.

Appropriate action blocks are selected by their names. In addition, to this, we generate
several abstract datatype definitions for identifying steps with names and identifiers and
function blocks and action blocks.

4.4 Automatically Generated Proofs for System-specific Facts
CertPLC is designed to automatically generate for each system basic properties and proofs.
These prove some system-specific facts of the system. These proofs are used automatically
by tactics, but can also be used manually to prove additional user defined properties of
systems.

One important fact that needs to be proven is that only those action blocks may appear
in the set of currently active action blocks that do belong to the actual system definition.
Our proof generator generates an individual lemma and its proof for each PLC. Figure 5
shows such a lemma for an SFC that comprises just two possible action blocks: action_Init
and action_Step2. The predicate SFCreachable_states is created by instantiating a template
definition from the generic semantics framework for a concrete PLC. In and snd (second) are
Coq functions to denote membership in a set and select an element of a tuple, respectively.
In the case at hand snd selects the set of active action blocks from a state. The proof
script itself is also generated. It comprises an induction on reachable states of the concrete

J. O. Blech 67

system. Depending on the number of action blocks in the PLC it can typically comprise
several hundred applications of elementary Coq tactics.

The certification of properties is the key feature of CertPLC. Users write their desired
properties in Coq syntax. This does not require as much understanding of the Coq envi-
ronment as one could think at a first glance. All that is required is writing a logical formula
that captures the desired property.

5 Automatic Certification of Invariant Properties

In this section we describe the principles of automatically proving properties correct. Proof
scripts encapsulating these principles are generated by the CertPLC framework compo-
nents as described in Section 4. We focus on inductive invariants.

5.1 Proof Structure for Inductive Properties
We start with an inductive invariant property I and an SFC description of a PLC SFC .
Following the ideas presented in [8] the structure of a proof contained in our certificates
is realized by generated proof scripts, generic lemmas and tactics. They establish a proof
principle that proves the following goal:

∀ s . s ∈ ReachableSF C =⇒ I(s)

The set of reachable states for SFC is denoted ReachableSFC . JSFC K specifies the state
transition relation (cf. Section 4). First we perform an induction using the induction rule
of the set of reachable states. This rule is automatically established by Coq when defining
inductive sets. After the application the following subgoals are left open:

I(s0) for initial states s0 I(s) ∧ (s, s′) ∈ JSFC K =⇒ I(s′)

The first goal can be solved in the standard case by a simple tactic which checks that all
conditions derived from I are fulfilled in the initial states.

For the second goal the certificate realizes a proof script which – in order to allow efficient
certificate checking – performs most importantly the following operations:

Splitting of conjunctions in invariants into independently verifiable invariants.
Splitting of disjunctions in invariants into two independently verifiable subgoals.
Normalizing arithmetic expressions and expressions that make distinctions on active
steps in the SFC.
Exhaustive case distinctions on possible transitions. Each case distinction corresponds
to one transition in the control flow graph of the SFC. A typical case on a transition
from a partially specified state s to a partially specified succeeding state s′ can have the
following form:

∀ s s′ .

I(s) and case distinction specific conditions on s ∧
case specific transition conditions that need to be true to go from s to s′ ∧
case distinction specific definition of s′ =⇒ I(s′)

The case distinction specific parts in such a goal can, e.g., feature arithmetic constraints,
which can be split into further cases.
Some of the cases that occur can have contradictions in the hypothesis. Consider for ex-
ample an arithmetic constraint for a variable from a precondition of a state contradicting

SSV’11

68 Certification of SFC

with a condition on a transition. These contradictions result from the fine granularity of
our case distinctions. Some effort can be spent to eliminate contradicting cases as soon
as possible (cf. [8]) which can speed up the checking process.
Unlike in classical model-checking we get the abstraction from (possibly infinite) con-
crete states to (finite) arcs in the control flow graph almost for free. Thus, in our case
distinctions, we do not have to regard every possible state, we rather partition states
into classes of states and reason about these classes symbolically.
The final step comprises the derivation of the fact that the invariant holds after the tran-
sition from the transition conditions and the decision of possible arithmetic constraints.

[8] features a completeness result for a class of inductive invariants for a similar problem.

5.2 Proving Non Inductive Invariants
The main focus of CertPLC is on inductive invariants, However, additionally we have es-
tablished a collection of preproved lemmas useful for proving the (un-)reachability of certain
states. In particular the following cases turned out to be necessary in our case studies:

State s can only be reached via a transition where a condition e must be enabled, s is
not initial, e can never be true in the system, this implies s can not be reached.
Under system specific preconditions: Given an expression over states e, if e becomes true
the succeeding state will always be s. This is one of the few non-inductive properties.
However, the proof of this benefits from a proof that e can only become true in an
explicitly classified set of states. This can be provided by one of the techniques above.

Additional consistency properties may be certified by hand-written proof scripts. This,
however, requires some level of expertise in Coq.

6 Additional Implementation Aspects and Evaluation

Here we describe additional implementation aspects that are not covered in the previous
sections and provide a short evaluation.

The Coq representation generator is implemented as an Eclipse plug-in in Java using the
IEC 61131–3 meta model of EasyLab and the Eclipse Modeling Framework (EMF) [14]. Rep-
resentations and lemmas + proofs for basic properties are generated for Coq 8.3. Likewise
our libraries for tactics, lemmas and SFC action blocks are formalized using this version.
The realization of this representation generator can be regarded as a simple compiler or
model to model transformation. A kind of visitor pattern is used to pass through the model
representation in EMF format and emit corresponding Coq code. The generation of PLC
specific lemmata and their proofs is similar to code generation. A visitor picks all necessary
information and generates the lemma text and its proof script. Some storage of intermediate
information is needed. The setup is similar to the techniques used in [8] and [9].

Likewise our work builds upon the PLC semantics of EasyLab which we have formally
described [6] and realized in Coq. A combination of our SFC semantics with a semantics
of the instruction list (IL) language and an associated case study can be found in [7].

7 Conclusion and Future Work

In this paper we have presented the CertPLC environment for certification of PLC We
described the architecture of the tool framework, possible usage scenarios, the technical re-
alization, and parts of the Coq semantics. CertPLC is aimed at the formal certification of
PLC descriptions in the SFC language. Nevertheless, some features of FBD are integrated.

J. O. Blech 69

Future work shall extend this support and aims at integrating other languages from the IEC
61131–3 standard. At the current state, the implementation of the tool is sufficient to handle
SFC comprising standard elements and smaller invariants efficiently. We believe that the
generic parts common to most SFC verification work are realized in CertPLC. The tool
framework is designed such that it is easily extendable, e.g., with additional tactics, arith-
metic decision procedures and building blocks for SFC and FBD elements. Such additions
– which might be used only in certain problem and application domains – are subject to
future work.

Acknowledgments
This work has been supported by the European research project ACROSS under the Grant
Agreement ARTEMIS-2009-1-100208.

References
1 A. W. Appel. Foundational proof-carrying code Logic in Computer Science. IEEE Com-

puter Society, 2001. (LICS’01).
2 S. Barner, M. Geisinger, Ch. Buckl, and A. Knoll. EasyLab: Model-based development of

software for mechatronic systems. Mechatronic and Embedded Systems and Applications,
IEEE/ASME, October 2008.

3 N. Bauer, S. Engell, R. Huuck, B. Lukoschus, and O. Stursberg. Verification of plc programs
given as sequential function charts. In In: Integration of Software Specification Techniques
for Applications in Eng., pages 517–540, Springer-Verlag, 2004.

4 J. O. Blech. A Tool for the Certification of PLCs based on a Coq Semantics for Sequential
Function Charts. http://arxiv.org/abs/1102.3529, 2011.

5 J. O. Blech and B. Grégoire. Certifying Compilers Using Higher Order Theorem Provers
as Certificate Checkers. Formal Methods in System Design, Springer-Verlag, 2010.

6 J. O. Blech, A. Hattendorf, J. Huang. An Invariant Preserving Transformation for PLC
Models. Model-Based Engineering for Real-Time Embedded Systems Design, IEEE, 2011.

7 J. O. Blech and S. Ould Biha. Verification of PLC Properties Based on Formal Semantics
in Coq. Software Engineering and Formal Methods. Springer-Verlag, 2011. (SEFM’11)

8 J. O. Blech and M. Périn. Generating Invariant-based Certificates for Embedded Systems.
ACM Transactions on Embedded Computing Systems (TECS). accepted

9 J. O. Blech, I. Schaefer, and A. Poetzsch-Heffter. Translation validation for system ab-
stractions. In Runtime Verification , vol. 4839 of LNCS. Springer-Verlag, March 2007.
(RV’07)

10 S. Bornot, R. Huuck, Y. Lakhnech, B. Lukoschus. An Abstract Model for Sequential
Function Charts. Discrete Event Systems: Analysis and Control, Workshop on Discrete
Event Systems, 2000.

11 S. Bornot, R. Huuck, Y. Lakhnech, B. Lukoschus. Verification of Sequential Function
Charts using SMV. Parallel and Distributed Processing Techniques and Applications.
CSREA Press, June 2000. (PDPTA 2000)

12 B. Chetali and Q. H. Nguyen. Industrial Use of Formal Methods for a High-Level Security
Evaluation. Formal Methods in the Development of Computing Systems, vol. 5014 of LNCS.
Springer-Verlag, 2008.

13 The Coq Development Team. The Coq Proof Assistant Reference Manual – Version 8.3,
2010. http://coq.inria.fr.

14 The Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/.
15 X. Leroy. A formally verified compiler back-end. In Journal of Automated Reasoning,

Vol.43, No.4, pp.363-446, 2009.

SSV’11

70 Certification of SFC

16 G. C. Necula. Proof-carrying code. Principles of Programming Languages. ACM Press,
1997. (POPL’97).

17 Programmable controllers - Part 3: Programming languages, IEC 61131-3: 1993, Interna-
tional Electrotechnical Commission, 1993.

18 S. Ould Biha. A formal semantics of PLC programs in Coq. IEEE Computer Software and
Applications Conference, 2011.

19 W. Pugh. The Omega test: a fast and practical integer programming algorithm for depen-
dence analysis. ACM/IEEE Conference on Supercomputing, 1991. (SC’91).

20 R. R. Schneck and G. C. Necula. A Gradual Approach to a More Trustworthy, Yet Scalable,
Proof-Carrying Code. Conference on Automated Deduction, vol. 2392 of LNCS, Springer-
Verlag, 2002. (CADE’02).

21 A. Sülflow and R. Drechsler. Verification of plc programs using formal proof techniques. In
Formal Methods for Automation and Safety in Railway and Automotive Systems (FORM-
S/FORMAT 2008), Budapest, 2008.

22 D. Wu, A. W. Appel, and Aaron Stump. Foundational proof checkers with small witnesses.
ACM Conference on Principles and Practice of Declarative Programming. ACM Press,
2003. (PPDP’03).

23 J. Yoo, S. Cha, and E. Jee. Verification of plc programs written in fbd with vis. In Nuclear
Engineering and Technology, Vol.41, No.1, pp.79-90, February 2009.

	Introduction
	Certification
	The Trusted Computing Base in Certification
	Related Work
	Overview

	IEC 61131–3, SFC, Semantics and Certification
	The SFC Language
	The FBD Language

	The Tool Setting
	The CertPLC Tool Environment and Coq
	Realization Using Generic and Generated Files
	Generic / Static Parts of the Coq Infrastructure
	Semantics Definitions as State Transition Systems
	Automatically Generated Proofs for System-specific Facts

	Automatic Certification of Invariant Properties
	Proof Structure for Inductive Properties
	Proving Non Inductive Invariants

	Additional Implementation Aspects and Evaluation
	Conclusion and Future Work

